Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Rep ; 40(1): 29-42, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33037884

ABSTRACT

KEY MESSAGE: Ca2+ NPs enhanced tolerance of Triticale callus under salt stress by improving biochemical activity and confocal laser scanning analysis, conferring salt tolerance on callus cells. CaO NPs (Ca2+) are significant components that act as transducers in many adaptive and developmental processes in plants. In this study, effect of Ca2+ NPs on the response and regulation of the protective system in Triticale callus under short and long-salt treatments was investigated. The activation of Ca2+ NPs was induced by salt stress in callus of Triticale cultivars. MDA, H2O2, POD, and protein activities were determined in callus tissues. Concerning MDA, H2O2, protein activities, it was found that the Ca2+ NPs treatment was significant, and it demonstrated a high correlation with the tolerance levels of cultivars. Tatlicak cultivar was detected for better MDA activities in the short time with 1.5 ppm Ca2+ NPs concentration of 50 g and 100 g NaCl. Similarly, the same cultivar responded with better H2O2 activity at 1.5 ppm Ca2+ NPs 100 g NaCl in the short time. POD activities exhibited a decreasing trend in response to the increasing concentrations of Ca2+ NPs. The best result was observed at 1.5 ppm Ca2+ NPs 100 g NaCl in the short term. Based on the protein content, treatment of short-term cultured callus cells with 1.5 ppm Ca2+ NPs inhibited stress response and it significantly promoted Ca2+ NPs signals as compared to control callus. Confocal laser scanning analysis proved that the application of Ca2+ NPs could alleviate the adverse effects of salt stress by the inhibition of stress severity in callus cells. This study demonstrated, under in vitro conditions, that the application of Ca2+ NPs can significantly suppress the adverse effects of salt stress on Triticale callus; it was also verified that the concentration of Ca2+ NPs could be important parameter to be considered in adjusting the micronutrient content in the media for this plant.


Subject(s)
Calcium Compounds/pharmacology , Nanoparticles/chemistry , Oxides/pharmacology , Salt Stress/physiology , Triticale/drug effects , Triticale/physiology , Calcium Compounds/chemical synthesis , Calcium Compounds/chemistry , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Microscopy, Confocal , Microscopy, Electron, Scanning , Oxides/chemical synthesis , Oxides/chemistry , Plant Proteins/metabolism , Salt Stress/drug effects , Spectroscopy, Fourier Transform Infrared , Triticale/cytology , X-Ray Diffraction
2.
Plant Cell Rep ; 39(9): 1185-1197, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32638075

ABSTRACT

KEY MESSAGE: A Triticeae type III non-specific lipid transfer protein (nsLTP) was shown for the first time to be translocated from the anther tapetum to the pollen cell wall. Two anther-expressed non-specific lipid transfer proteins (nsLTPs) were identified in triticale (× Triticosecale Wittmack). LTPc3a and LTPc3b contain a putative signal peptide sequence and eight cysteine residues in a C-Xn-C-Xn-CC-Xn-CXC-Xn-C-Xn-C pattern. These proteins belong to the type III class of nsLTPs which are expressed exclusively in the inflorescence of angiosperms. The level of LTPc3 transcript in the anther was highest at the tetrad and uninucleate microspore stages, and absent in mature pollen. In situ hybridization showed that LTPc3 was expressed in the tapetal layer of the developing triticale anther. The expression of the LTPc3 protein peaked at the uninucleate microspore stage, but was also found to be associated with the mature pollen. Accordingly, an LTPc3a::GFP translational fusion expressed in transgenic Brachypodium distachyon first showed activity in the tapetum, then in the anther locule, and later on the mature pollen grain. Altogether, these results represent the first detailed characterization of a Triticeae anther-expressed type III nsLTP with possible roles in pollen cell wall formation.


Subject(s)
Cell Wall/metabolism , Plant Proteins/metabolism , Pollen/metabolism , Triticale/metabolism , Brachypodium/genetics , Cysteine , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Plants, Genetically Modified , Pollen/genetics , Protein Transport , Triticale/cytology , Triticale/genetics
3.
Genome ; 59(7): 485-92, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27334255

ABSTRACT

Chromosome engineering is an important approach for generating wheat germplasm. Efficient development of chromosome aberrations will facilitate the introgression and application of alien genes in wheat. In this study, zebularine, a DNA methylation transferase inhibitor, was successfully used to induce chromosome aberrations in the octoploid triticale cultivar Jinghui#1. Dry seeds were soaked in zebularine solutions (250, 500, and 750 µmol/L) for 24 h, and the 500 µmol/L treatment was tested in three additional treatment times, i.e., 12, 36, and 48 h. All treatments induced aberrations involving wheat and rye chromosomes. Of the 920 cells observed in 67 M1 plants, 340 (37.0%) carried 817 aberrations with an average of 0.89 aberrations per cell (range: 0-12). The aberrations included probable deletions, telosomes and acentric fragments (49.0%), large segmental translocations (28.9%), small segmental translocations (17.1%), intercalary translocations (2.6%), long chromosomes that could carry more than one centromere (2.0%), and ring chromosomes (0.5%). Of 510 M2 plants analyzed, 110 (21.6%) were found to carry stable aberrations. Such aberrations included 79 with varied rye chromosome numbers, 7 with wheat and rye chromosome translocations, 15 with possible rye telosomes/deletions, and 9 with complex aberrations involving variation in rye chromosome number and wheat-rye translocations. These indicated that aberrations induced by zebularine can be steadily transmitted, suggesting that zebularine is a new efficient agent for chromosome manipulation.


Subject(s)
Chromosome Aberrations/drug effects , Chromosomes, Plant/drug effects , Cytidine/analogs & derivatives , Triticale/drug effects , Triticale/genetics , Centromere , Chromosome Deletion , Cytidine/pharmacology , DNA Methylation/drug effects , Genome, Plant , Seeds/drug effects , Seeds/genetics , Translocation, Genetic , Triticale/cytology , Triticum/genetics
4.
Protoplasma ; 253(2): 329-43, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25868512

ABSTRACT

It has been hypothesized that the powdery mildew adult plant resistance (APR) controlled by the Pm13 gene in Aegilops longissima Schweinf. & Muschl. (S(l)S(l)) has been evolutionary transferred to Aegilops variabilis Eig. (UUSS). The molecular marker analysis and the visual evaluation of powdery mildew symptoms in Ae. variabilis and the Ae. variabilis × Secale cereale amphiploid forms (2n = 6x = 42, UUSSRR) showed the presence of product that corresponded to Pm13 marker and the lower infection level compared to susceptible model, respectively. This study also describes the transfer of Ae. variabilis Eig. (2n = 4x = 28, U(v)U(v)S(v)S(v)) chromosomes, carrying powdery mildew resistance, into triticale (× Triticosecale Wittm., 2n = 6x = 42, AABBRR) using Ae. variabilis × S. cereale amphiploid forms. The individual chromosomes of Ae. variabilis, triticale 'Lamberto' and hybrids were characterized by genomic and fluorescence in situ hybridization (GISH/FISH). The chromosome configurations of obtained hybrid forms were studied at first metaphase of meiosis of pollen mother cells (PMCs) using GISH. The statistical analysis showed that the way of S-genome chromosome pairing and transmission to subsequent hybrid generations was diploid-like and had no influence on chromosome pairing of triticale chromosomes. The cytogenetic study of hybrid forms were supported by the marker-assisted selection using Pm13 marker and visual evaluation of natural infection by Blumeria graminis, that allowed to select the addition or substitution lines of hybrids carrying chromosome 3S(v) which were tolerant to the powdery mildew infection.


Subject(s)
Chromosomes, Plant/genetics , Plant Diseases/genetics , Triticale/genetics , Disease Resistance/genetics , Genetic Predisposition to Disease , Genome, Plant , Meiosis , Mitosis , Plant Diseases/microbiology , Triticale/cytology , Triticale/microbiology
5.
Genet Mol Res ; 14(3): 11271-80, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26400358

ABSTRACT

Triticale (X Triticosecale Wittmack) is an intergeneric hybrid derived from a cross between wheat and rye. As a newly created allopolyploid, the plant shows instabilities during the meiotic process, which may result in the loss of fertility. This genomic instability has hindered the success of triticale-breeding programs. Therefore, strategies should be developed to obtain stable triticale lines for use in breeding. In some species, backcrossing has been effective in increasing the meiotic stability of lineages. To assess whether backcrossing has the same effect in triticale, indices of meiotic abnormalities, meiotic index, and pollen viability were determined in genotypes from multiple generations of triticale (P1, P2, F1, F2, BC1a, and BC1b). All analyzed genotypes exhibited instability during meiosis, and their meiotic index values were all lower than normal. However, the backcrosses BC1a and BC1b showed the lowest mean meiotic abnormalities and the highest meiotic indices, demonstrating higher stability. All genotypes showed a high rate of pollen viability, with the backcrosses BC1a and BC1b again exhibiting the best values. Statistical analyses confirmed that backcrossing positively affects the meiotic stability of triticale. Our results show that backcrossing should be considered by breeders aiming to obtain triticale lines with improved genomic stability.


Subject(s)
Triticale/growth & development , Genotype , Inbreeding , Meiosis , Triticale/cytology , Triticale/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...