Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.000
Filter
1.
Physiol Plant ; 176(3): e14325, 2024.
Article in English | MEDLINE | ID: mdl-38715548

ABSTRACT

Boosting plant immunity by priming agents can lower agrochemical dependency in plant production. Levan and levan-derived oligosaccharides (LOS) act as priming agents against biotic stress in several crops. Additionally, beneficial microbes can promote plant growth and protect against fungal diseases. This study assessed possible synergistic effects caused by levan, LOS and five levan- and LOS-metabolizing Bacillaceae (Bacillus and Priestia) strains in tomato and wheat. Leaf and seed defense priming assays were conducted in non-soil (semi-sterile substrate) and soil-based systems, focusing on tomato-Botrytis cinerea and wheat-Magnaporthe oryzae Triticum (MoT) pathosystems. In the non-soil system, seed defense priming with levan, the strains (especially Bacillus velezensis GA1), or their combination significantly promoted tomato growth and protection against B. cinerea. While no growth stimulatory effects were observed for wheat, disease protective effects were also observed in the wheat-MoT pathosystem. When grown in soil and subjected to leaf defense priming, tomato plants co-applied with levan and the bacterial strains showed increased resistance to B. cinerea compared with plants treated with levan or single strains, and these effects were synergistic in some cases. For seed defense priming in soil, more synergistic effects on disease tolerance were observed in a non-fertilized soil as compared to a fertilized soil, suggesting that potential prebiotic effects of levan are more prominent in poor soils. The potential of using combinations of Bacilliaceae and levan in sustainable agriculture is discussed.


Subject(s)
Bacillus , Fructans , Plant Diseases , Solanum lycopersicum , Triticum , Fructans/metabolism , Triticum/microbiology , Triticum/metabolism , Triticum/immunology , Triticum/growth & development , Solanum lycopersicum/microbiology , Solanum lycopersicum/immunology , Solanum lycopersicum/metabolism , Solanum lycopersicum/growth & development , Plant Diseases/microbiology , Plant Diseases/immunology , Bacillus/physiology , Botrytis , Plant Immunity , Disease Resistance , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Leaves/immunology , Oligosaccharides/metabolism , Oligosaccharides/pharmacology , Seeds/growth & development , Seeds/metabolism , Seeds/microbiology , Seeds/immunology , Ascomycota
2.
BMC Pediatr ; 24(1): 367, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807087

ABSTRACT

INTRODUCTION AND AIM: Celiac disease is one of the most common autoimmune disorders. This study aimed to evaluate the relationship between celiac disease and wheat sensitization. SUBJECTS AND METHODS: In the current study, children aged < 18 years with confirmed celiac disease were included. Data were analyzed using SPSS. RESULTS: Gastrointestinal problems were the most common indication for evaluation in terms of celiac disease. Prick and patch tests were positive in 43.4% and 34% respectively. CONCLUSION: Prick test and patch test for wheat sensitization were positive in about 30-45% of the children for celiac disease.


Subject(s)
Celiac Disease , Immunoglobulin E , Patch Tests , Skin Tests , Triticum , Wheat Hypersensitivity , Humans , Celiac Disease/diagnosis , Celiac Disease/immunology , Celiac Disease/blood , Celiac Disease/complications , Child , Male , Female , Child, Preschool , Wheat Hypersensitivity/immunology , Wheat Hypersensitivity/diagnosis , Wheat Hypersensitivity/blood , Immunoglobulin E/blood , Adolescent , Skin Tests/methods , Triticum/immunology , Infant
3.
BMC Plant Biol ; 24(1): 462, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802731

ABSTRACT

In this comprehensive genome-wide study, we identified and classified 83 Xylanase Inhibitor Protein (XIP) genes in wheat, grouped into five distinct categories, to enhance understanding of wheat's resistance to Fusarium head blight (FHB), a significant fungal threat to global wheat production. Our analysis reveals the unique distribution of XIP genes across wheat chromosomes, particularly at terminal regions, suggesting their role in the evolutionary expansion of the gene family. Several XIP genes lack signal peptides, indicating potential alternative secretion pathways that could be pivotal in plant defense against FHB. The study also uncovers the sequence homology between XIPs and chitinases, hinting at a functional diversification within the XIP gene family. Additionally, the research explores the association of XIP genes with plant immune mechanisms, particularly their linkage with plant hormone signaling pathways like abscisic acid and jasmonic acid. XIP-7A3, in particular, demonstrates a significant increase in expression upon FHB infection, highlighting its potential as a key candidate gene for enhancing wheat's resistance to this disease. This research not only enriches our understanding of the XIP gene family in wheat but also provides a foundation for future investigations into their role in developing FHB-resistant wheat cultivars. The findings offer significant implications for wheat genomics and breeding, contributing to the development of more resilient crops against fungal diseases.


Subject(s)
Disease Resistance , Fusarium , Plant Diseases , Plant Proteins , Triticum , Triticum/genetics , Triticum/microbiology , Triticum/immunology , Fusarium/physiology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Immunity/genetics , Genome-Wide Association Study , Genes, Plant , Genome, Plant , Phylogeny
4.
New Phytol ; 243(1): 314-329, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38730532

ABSTRACT

Effector proteins are central to the success of plant pathogens, while immunity in host plants is driven by receptor-mediated recognition of these effectors. Understanding the molecular details of effector-receptor interactions is key for the engineering of novel immune receptors. Here, we experimentally determined the crystal structure of the Puccinia graminis f. sp. tritici (Pgt) effector AvrSr27, which was not accurately predicted using AlphaFold2. We characterised the role of the conserved cysteine residues in AvrSr27 using in vitro biochemical assays and examined Sr27-mediated recognition using transient expression in Nicotiana spp. and wheat protoplasts. The AvrSr27 structure contains a novel ß-strand rich modular fold consisting of two structurally similar domains that bind to Zn2+ ions. The N-terminal domain of AvrSr27 is sufficient for interaction with Sr27 and triggering cell death. We identified two Pgt proteins structurally related to AvrSr27 but with low sequence identity that can also associate with Sr27, albeit more weakly. Though only the full-length proteins, trigger Sr27-dependent cell death in transient expression systems. Collectively, our findings have important implications for utilising protein prediction platforms for effector proteins, and those embarking on bespoke engineering of immunity receptors as solutions to plant disease.


Subject(s)
Fungal Proteins , Nicotiana , Triticum , Zinc , Zinc/metabolism , Triticum/immunology , Triticum/microbiology , Nicotiana/immunology , Nicotiana/microbiology , Nicotiana/metabolism , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Puccinia , Plant Immunity , Protein Binding , Amino Acid Sequence , Cell Death , Protein Domains , Models, Molecular , Plant Diseases/microbiology , Plant Diseases/immunology
5.
Front Immunol ; 15: 1381130, 2024.
Article in English | MEDLINE | ID: mdl-38711499

ABSTRACT

Background: Wheat allergy (WA), characterized by immunological responses to wheat proteins, is a gluten-related disorder that has become increasingly recognized in recent years. Bibliometrics involves the quantitative assessment of publications within a specific academic domain. Objectives: We aimed to execute an extensive bibliometric study, focusing on the past 30 years of literature related to wheat allergy. Methods: We searched the Web of Science database on 5th Dec 2023. We used the keywords "wheat allergy or wheat anaphylaxis or wheat hypersensitivity," "gliadin allergy or gliadin anaphylaxis or gliadin hypersensitivity," "wheat-dependent exercise-induced anaphylaxis," and "baker's asthma" for our search. All items published between 1993 and 2023 were included. The top 100 most cited articles were identified and analyzed. Results: Our study conducted an in-depth bibliometric analysis of the 100 most-cited articles in the field of wheat allergy, published between 2002 and 2019. These articles originated from 20 different countries, predominantly Japan and Germany. The majority of these articles were centered on the pathogenesis and treatment of wheat allergy (WA). The Journal of Allergy and Clinical Immunology (JACI) was the most prolific contributor to this list, publishing 14 articles. The article with the highest citation count was published by Biomed Central (BMC) and garnered 748 citations. The peak citation year was 2015, with a total of 774 citations, while the years 1998, 2001, and 2005 saw the highest publication frequency, each with 7 articles. Conclusion: Our study aims to provide physicians and researchers with a historical perspective for the scientific progress of wheat allergy, and help clinicians effectively obtain useful articles that have a significant impact on the field of wheat allergy.


Subject(s)
Bibliometrics , Wheat Hypersensitivity , Wheat Hypersensitivity/immunology , Wheat Hypersensitivity/epidemiology , Humans , Triticum/immunology , Triticum/adverse effects , Gliadin/immunology , Periodicals as Topic/trends , Allergens/immunology
6.
Plant Physiol ; 195(2): 1624-1641, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38441329

ABSTRACT

Puccinia striiformis f. sp. tritici (Pst) secretes effector proteins that enter plant cells to manipulate host immune processes. In this report, we present an important Pst effector, Pst03724, whose mRNA expression level increases during Pst infection of wheat (Triticum aestivum). Silencing of Pst03724 reduced the growth and development of Pst. Pst03724 targeted the wheat calmodulin TaCaM3-2B, a positive regulator of wheat immunity. Subsequent investigations revealed that Pst03724 interferes with the TaCaM3-2B-NAD kinase (NADK) TaNADK2 association and thus inhibits the enzyme activity of TaNADK2 activated by TaCaM3-2B. Knocking down TaNADK2 expression by virus-mediated gene silencing significantly increased fungal growth and development, suggesting a decrease in resistance against Pst infection. In conclusion, our findings indicate that Pst effector Pst03724 inhibits the activity of NADK by interfering with the TaCaM3-2B-TaNADK2 association, thereby facilitating Pst infection.


Subject(s)
Calmodulin , Plant Diseases , Plant Immunity , Triticum , Calmodulin/metabolism , Calmodulin/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Triticum/microbiology , Triticum/genetics , Triticum/immunology , Triticum/metabolism , Plant Immunity/genetics , Puccinia/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Plant , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Gene Silencing , Host-Pathogen Interactions , Enzyme Activation
8.
J Exp Bot ; 75(10): 3070-3091, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38334507

ABSTRACT

Fusariosis causes substantial yield losses in the wheat crop worldwide and compromises food safety because of the presence of toxins associated with the fungal disease. Among the current approaches to crop protection, the use of elicitors able to activate natural defense mechanisms in plants is a strategy gaining increasing attention. Several studies indicate that applications of plant cell-wall-derived elicitors, such as oligogalacturonides (OGs) derived from partial degradation of pectin, induce local and systemic resistance against plant pathogens. The aim of this study was to establish the efficacy of OGs in protecting durum wheat (Triticum turgidum subsp. durum), which is characterized by an extreme susceptibility to Fusarium graminearum. To evaluate the functionality of OGs, spikes and seedlings of cv. Svevo were inoculated with OGs, F. graminearum spores, and a co-treatment of both. Results demonstrated that OGs are active elicitors of wheat defenses, triggering typical immune marker genes and determining regulation of fungal genes. Moreover, bioassays on spikes and transcriptomic analyses on seedlings showed that OGs can regulate relevant physiological processes in Svevo with dose-dependent specificity. Thus, the OG sensing system plays an important role in fine tuning immune signaling pathways in durum wheat.


Subject(s)
Disease Resistance , Fusarium , Plant Diseases , Triticum , Triticum/microbiology , Triticum/immunology , Triticum/genetics , Triticum/physiology , Fusarium/physiology , Plant Diseases/microbiology , Plant Diseases/immunology
9.
Cells ; 12(8)2023 04 08.
Article in English | MEDLINE | ID: mdl-37190021

ABSTRACT

The Thinopyrum elongatum Fhb7E locus has been proven to confer outstanding resistance to Fusarium Head Blight (FHB) when transferred into wheat, minimizing yield loss and mycotoxin accumulation in grains. Despite their biological relevance and breeding implications, the molecular mechanisms underlying the resistant phenotype associated with Fhb7E have not been fully uncovered. To gain a broader understanding of processes involved in this complex plant-pathogen interaction, we analysed via untargeted metabolomics durum wheat (DW) rachises and grains upon spike inoculation with Fusarium graminearum (Fg) and water. The employment of DW near-isogenic recombinant lines carrying or lacking the Th. elongatum chromosome 7E region including Fhb7E on their 7AL arm, allowed clear-cut distinction between differentially accumulated disease-related metabolites. Besides confirming the rachis as key site of the main metabolic shift in plant response to FHB, and the upregulation of defence pathways (aromatic amino acid, phenylpropanoid, terpenoid) leading to antioxidants and lignin accumulation, novel insights were revealed. Fhb7E conferred constitutive and early-induced defence response, in which specific importance of polyamine biosynthesis, glutathione and vitamin B6 metabolisms, along with presence of multiple routes for deoxynivalenol detoxification, was highlighted. The results suggested Fhb7E to correspond to a compound locus, triggering a multi-faceted plant response to Fg, effectively limiting Fg growth and mycotoxin production.


Subject(s)
Disease Resistance , Fusarium , Plant Diseases , Plants, Genetically Modified , Poaceae , Triticum , Poaceae/genetics , Metabolomics , Genetic Loci , Fusarium/growth & development , Triticum/genetics , Triticum/immunology , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Chromosomes, Plant , Polyamines/metabolism , Genetic Engineering , Plants, Genetically Modified/genetics , Plants, Genetically Modified/immunology , Plants, Genetically Modified/microbiology
10.
Nature ; 610(7932): 532-539, 2022 10.
Article in English | MEDLINE | ID: mdl-36163289

ABSTRACT

Plant intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) detect pathogen effectors to trigger immune responses1. Indirect recognition of a pathogen effector by the dicotyledonous Arabidopsis thaliana coiled-coil domain containing NLR (CNL) ZAR1 induces the formation of a large hetero-oligomeric protein complex, termed the ZAR1 resistosome, which functions as a calcium channel required for ZAR1-mediated immunity2-4. Whether the resistosome and channel activities are conserved among plant CNLs remains unknown. Here we report the cryo-electron microscopy structure of the wheat CNL Sr355 in complex with the effector AvrSr356 of the wheat stem rust pathogen. Direct effector binding to the leucine-rich repeats of Sr35 results in the formation of a pentameric Sr35-AvrSr35 complex, which we term the Sr35 resistosome. Wheat Sr35 and Arabidopsis ZAR1 resistosomes bear striking structural similarities, including an arginine cluster in the leucine-rich repeats domain not previously recognized as conserved, which co-occurs and forms intramolecular interactions with the 'EDVID' motif in the coiled-coil domain. Electrophysiological measurements show that the Sr35 resistosome exhibits non-selective cation channel activity. These structural insights allowed us to generate new variants of closely related wheat and barley orphan NLRs that recognize AvrSr35. Our data support the evolutionary conservation of CNL resistosomes in plants and demonstrate proof of principle for structure-based engineering of NLRs for crop improvement.


Subject(s)
Calcium Channels , Cryoelectron Microscopy , NLR Proteins , Plant Proteins , Receptors, Immunologic , Triticum , Arabidopsis/immunology , Arabidopsis/metabolism , Arginine , Calcium Channels/chemistry , Calcium Channels/immunology , Calcium Channels/metabolism , Cations/metabolism , Leucine , NLR Proteins/chemistry , NLR Proteins/immunology , NLR Proteins/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity , Plant Proteins/chemistry , Plant Proteins/immunology , Plant Proteins/metabolism , Receptors, Immunologic/chemistry , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Triticum/immunology , Triticum/metabolism , Amino Acid Motifs , Conserved Sequence , Electrophysiology
11.
PLoS One ; 17(2): e0264027, 2022.
Article in English | MEDLINE | ID: mdl-35171951

ABSTRACT

All stage resistance to stripe rust races prevalent in India was investigated in the European winter wheat cultivar 'Acienda'. In order to dissect the genetic basis of the resistance, a backcross population was developed between 'Acienda' and the stripe rust susceptible Indian spring wheat cultivar 'HD 2967'. Inheritance studies revealed segregation for a dominant resistant gene. High density SNP genotyping was used to map stripe rust resistance and marker regression analysis located stripe rust resistance to the distal end of wheat chromosome 1A. Interval mapping located this region between the SNP markers AX-95162217 and AX-94540853, at a LOD score of 15.83 with a phenotypic contribution of 60%. This major stripe rust resistance locus from 'Acienda' has been temporarily designated as Yraci. A candidate gene search in the 2.76 Mb region carrying Yraci on chromosome 1A identified 18 NBS-LRR genes based on wheat RefSeqv1.0 annotations. Our results indicate that as there is no major gene reported in the Yraci chromosome region, it is likely to be a novel stripe rust resistance locus and offers potential for deployment, using the identified markers, to confer all stage stripe rust resistance.


Subject(s)
Basidiomycota/physiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Triticum/genetics , Chromosome Mapping , Chromosomes, Plant , Disease Resistance/immunology , Gene Expression Regulation, Plant , India , Inheritance Patterns , Plant Diseases/immunology , Plant Diseases/microbiology , Seasons , Triticum/growth & development , Triticum/immunology
12.
Int J Mol Sci ; 23(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35163113

ABSTRACT

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive foliar diseases of wheat. In this study, we combined the bulked segregant RNA sequencing (BSR-seq) and comparative genomics analysis to localize the powdery mildew resistance gene in Chinese landrace Xiaomaomai. Genetic analysis of F1 plants from a crossing of Xiaomaomai × Lumai23 and the derived F2 population suggests that a single recessive gene, designated as pmXMM, confers the resistance in this germplasm. A genetic linkage map was constructed using the newly developed SNP markers and pmXMM was mapped to the distal end of chromosome 2AL. The two flanking markers 2AL15 and 2AL34 were closely linked to pmXMM at the genetic distance of 3.9 cM and 1.4 cM, respectively. Using the diagnostic primers of Pm4, we confirmed that Xiaomaomai carries a Pm4 allele and the gene function was further validated by the virus-induced gene silencing (VIGS). In addition, we systematically analyzed pmXMM in comparison with the other Pm4 alleles. The results suggest that pmXMM is identical to Pm4d and Pm4e at sequence level. Pm4b is also not different from Pm4c according to their genome/amino acid sequences. Only a few nucleotide variances were detected between pmXMM and Pm4a/b, which indicate the haplotype variation of the Pm4 gene.


Subject(s)
Ascomycota/physiology , Chromosomes, Plant/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant , Plant Diseases/genetics , Plant Proteins/genetics , Triticum/genetics , Chromosome Mapping , Disease Resistance/immunology , Genetic Linkage , Plant Diseases/immunology , Plant Diseases/microbiology , Triticum/immunology , Triticum/microbiology
13.
Sci Rep ; 12(1): 15, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34996967

ABSTRACT

The nutritional integrity of wheat is jeopardized by rapidly rising atmospheric carbon dioxide (CO2) and the associated emergence and enhanced virulence of plant pathogens. To evaluate how disease resistance traits may impact wheat climate resilience, 15 wheat cultivars with varying levels of resistance to Fusarium Head Blight (FHB) were grown at ambient and elevated CO2. Although all wheat cultivars had increased yield when grown at elevated CO2, the nutritional contents of FHB moderately resistant (MR) cultivars were impacted more than susceptible cultivars. At elevated CO2, the MR cultivars had more significant differences in plant growth, grain protein, starch, fructan, and macro and micro-nutrient content compared with susceptible wheat. Furthermore, changes in protein, starch, phosphorus, and magnesium content were correlated with the cultivar FHB resistance rating, with more FHB resistant cultivars having greater changes in nutrient content. This is the first report of a correlation between the degree of plant pathogen resistance and grain nutritional content loss in response to elevated CO2. Our results demonstrate the importance of identifying wheat cultivars that can maintain nutritional integrity and FHB resistance in future atmospheric CO2 conditions.


Subject(s)
Carbon Dioxide/metabolism , Ecosystem , Fusarium/physiology , Plant Diseases/microbiology , Triticum/chemistry , Triticum/immunology , Disease Resistance , Magnesium/analysis , Magnesium/metabolism , Nutritive Value , Phosphorus/analysis , Phosphorus/metabolism , Plant Diseases/immunology , Plant Proteins/analysis , Plant Proteins/metabolism , Seeds/chemistry , Seeds/classification , Seeds/immunology , Seeds/metabolism , Triticum/classification , Triticum/metabolism
14.
Theor Appl Genet ; 135(1): 351-365, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34665265

ABSTRACT

KEY MESSAGE: YrFDC12 and PbcFDC, co-segregated in chromosome 4BL, and significantly interacted with Yr30/Pbc1 to enhance stripe rust resistance and to promote pseudo-black chaff development. Cultivars with durable resistance are the most popular means to control wheat stripe rust. Durable resistance can be achieved by stacking multiple adult plant resistance (APR) genes that individually have relatively small effect. Chinese wheat cultivars Ruihua 520 (RH520) and Fengdecun 12 (FDC12) confer partial APR to stripe rust across environments. One hundred and seventy recombinant inbred lines from the cross RH520 × FDC12 were used to determine the genetic basis of resistance and identify genomic regions associated with stripe rust resistance. Genotyping was carried out using 55 K SNP array, and eight quantitative trait loci (QTL) were detected on chromosome arms 2AL, 2DS, 3BS, 4BL, 5BL (2), and 7BL (2) by inclusive composite interval mapping. Only QYr.nwafu-3BS from RH520 and QYr.nwafu-4BL.2 (named YrFDC12 for convenience) from FDC12 were consistent across the four testing environments. QYr.nwafu-3BS is likely the pleiotropic resistance gene Sr2/Yr30. YrFDC12 was mapped in a 2.1-cM interval corresponding to 12 Mb and flanked by SNP markers AX-111121224 and AX-89518393. Lines harboring both Yr30 and YrFDC12 displayed higher resistance than the parents and expressed pseudo-black chaff (PBC) controlled by loci Pbc1 and PbcFDC12, which co-segregated with Yr30 and YrFDC12, respectively. Both marker-based and pedigree-based kinship analyses revealed that YrFDC12 was inherited from founder parent Zhou 8425B. Fifty-four other wheat cultivars shared the YrFDC12 haplotype. These results suggest an effective pyramiding strategy to acquire highly effective, durable stripe rust resistance in breeding.


Subject(s)
Chromosomes, Plant , Disease Resistance/genetics , Genes, Plant , Plant Diseases/genetics , Puccinia/physiology , Triticum/genetics , Chromosome Mapping , Genotyping Techniques , Plant Diseases/immunology , Plant Diseases/microbiology , Puccinia/immunology , Quantitative Trait Loci , Triticum/immunology , Triticum/microbiology
15.
Theor Appl Genet ; 135(1): 301-319, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34837509

ABSTRACT

KEY MESSAGE: Analysis of a wheat multi-founder population identified 14 yellow rust resistance QTL. For three of the four most significant QTL, haplotype analysis indicated resistance alleles were rare in European wheat. Stripe rust, or yellow rust (YR), is a major fungal disease of wheat (Triticum aestivum) caused by Puccinia striiformis Westend f. sp. tritici (Pst). Since 2011, the historically clonal European Pst races have been superseded by the rapid incursion of genetically diverse lineages, reducing the resistance of varieties previously showing durable resistance. Identification of sources of genetic resistance to such races is a high priority for wheat breeding. Here we use a wheat eight-founder multi-parent population genotyped with a 90,000 feature single nucleotide polymorphism array to genetically map YR resistance to such new Pst races. Genetic analysis of five field trials at three UK sites identified 14 quantitative trait loci (QTL) conferring resistance. Of these, four highly significant loci were consistently identified across all test environments, located on chromosomes 1A (QYr.niab-1A.1), 2A (QYr.niab-2A.1), 2B (QYr.niab-2B.1) and 2D (QYr.niab-2D.1), together explaining ~ 50% of the phenotypic variation. Analysis of these four QTL in two-way and three-way combinations showed combinations conferred greater resistance than single QTL, and genetic markers were developed that distinguished resistant and susceptible alleles. Haplotype analysis in a collection of wheat varieties found that the haplotypes associated with YR resistance at three of these four major loci were rare (≤ 7%) in European wheat, highlighting their potential utility for future targeted improvement of disease resistance. Notably, the physical interval for QTL QYr.niab-2B.1 contained five nucleotide-binding leucine-rich repeat candidate genes with integrated BED domains, of which two corresponded to the cloned resistance genes Yr7 and Yr5/YrSp.


Subject(s)
Disease Resistance/genetics , Plant Diseases/microbiology , Puccinia/physiology , Triticum/genetics , Genotype , Plant Diseases/genetics , Plant Diseases/immunology , Polymorphism, Single Nucleotide , Puccinia/immunology , Quantitative Trait Loci , Triticum/immunology , Triticum/microbiology
16.
Plant Physiol ; 187(4): 2530-2543, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34890460

ABSTRACT

Several effectors from phytopathogens usually target various cell organelles to interfere with plant defenses, and they generally contain sequences that direct their translocation into organelles, such as chloroplasts. In this study, we characterized a different mechanism for effectors to attack chloroplasts in wheat (Triticum aestivum). Two effectors from Puccinia striiformis f. sp. tritici (Pst), Pst_4, and Pst_5, inhibit Bax-mediated cell death and plant immune responses, such as callose deposition and reactive oxygen species (ROS) accumulation. Gene silencing of the two effectors induced significant resistance to Pst, demonstrating that both effectors function as virulence factors of Pst. Although these two effectors have low sequence similarities and lack chloroplast transit peptides, they both interact with TaISP (wheat cytochrome b6-f complex iron-sulfur subunit, a chloroplast protein encoded by nuclear gene) in the cytoplasm. Silencing of TaISP impaired wheat resistance to avirulent Pst and resulted in less accumulation of ROS. Heterogeneous expression of TaISP enhanced chloroplast-derived ROS accumulation in Nicotiana benthamiana. Co-localization in N. benthamiana and western blot assay of TaISP content in wheat chloroplasts show that both effectors suppressed TaISP from entering chloroplasts. We conclude that these biotrophic fungal effectors suppress plant defenses by disrupting the sorting of chloroplast protein, thereby limiting host ROS accumulation and promoting fungal pathogenicity.


Subject(s)
Basidiomycota/physiology , Chloroplasts/metabolism , Plant Diseases/microbiology , Plant Immunity , Plant Proteins/metabolism , Triticum/immunology , Biological Transport , Disease Resistance , Triticum/microbiology
17.
Nutrients ; 13(12)2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34960101

ABSTRACT

Celiac disease (CD) is a genetically predisposed, T cell-mediated and autoimmune-like disorder caused by dietary exposure to the storage proteins of wheat and related cereals. A gluten-free diet (GFD) is the only treatment available for CD. The celiac immune response mediated by CD4+ T-cells can be assessed with a short-term oral gluten challenge. This study aimed to determine whether the consumption of bread made using flour from a low-gluten RNAi wheat line (named E82) can activate the immune response in DQ2.5-positive patients with CD after a blind crossover challenge. The experimental protocol included assessing IFN-γ production by peripheral blood mononuclear cells (PBMCs), evaluating gastrointestinal symptoms, and measuring gluten immunogenic peptides (GIP) in stool samples. The response of PBMCs was not significant to gliadin and the 33-mer peptide after E82 bread consumption. In contrast, PBMCs reacted significantly to Standard bread. This lack of immune response is correlated with the fact that, after E82 bread consumption, stool samples from patients with CD showed very low levels of GIP, and the symptoms were comparable to those of the GFD. This pilot study provides evidence that bread from RNAi E82 flour does not elicit an immune response after a short-term oral challenge and could help manage GFD in patients with CD.


Subject(s)
Bread , Celiac Disease/immunology , Diet, Gluten-Free , Gliadin/genetics , Gliadin/immunology , Glutens/immunology , RNA Interference , Triticum/genetics , Triticum/immunology , Adult , Celiac Disease/genetics , Female , Humans , Leukocytes, Mononuclear/immunology , Male , Middle Aged , Pilot Projects , RNA Interference/immunology , Triticum/chemistry , Young Adult
18.
Int J Mol Sci ; 22(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34768928

ABSTRACT

The Hessian fly is a destructive pest of wheat. Employing additional molecular strategies can complement wheat's native insect resistance. However, this requires functional characterization of Hessian-fly-responsive genes, which is challenging because of wheat genome complexity. The diploid Brachypodium distachyon (Bd) exhibits nonhost resistance to Hessian fly and displays phenotypic/molecular responses intermediate between resistant and susceptible host wheat, offering a surrogate genome for gene characterization. Here, we compared the transcriptomes of Biotype L larvae residing on resistant/susceptible wheat, and nonhost Bd plants. Larvae from susceptible wheat and nonhost Bd plants revealed similar molecular responses that were distinct from avirulent larval responses on resistant wheat. Secreted salivary gland proteins were strongly up-regulated in all larvae. Genes from various biological pathways and molecular processes were up-regulated in larvae from both susceptible wheat and nonhost Bd plants. However, Bd larval expression levels were intermediate between larvae from susceptible and resistant wheat. Most genes were down-regulated or unchanged in avirulent larvae, correlating with their inability to establish feeding sites and dying within 4-5 days after egg-hatch. Decreased gene expression in Bd larvae, compared to ones on susceptible wheat, potentially led to developmentally delayed 2nd-instars, followed by eventually succumbing to nonhost resistance defense mechanisms.


Subject(s)
Brachypodium/immunology , Disease Resistance/genetics , Nematocera/genetics , Triticum/immunology , Animals , Gene Expression Profiling , Genome/genetics , Larva/genetics , Nematocera/embryology , RNA-Seq , Transcriptome/genetics , Virulence/genetics
19.
Int J Mol Sci ; 22(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34830231

ABSTRACT

Food insecurity and malnutrition have reached critical levels with increased human population, climate fluctuations, water shortage; therefore, higher-yielding crops are in the spotlight of numerous studies. Abiotic factors affect the yield of staple food crops; among all, wheat stem sawfly (Cephus cinctus Norton) and orange wheat blossom midge (Sitodiplosis mosellana) are two of the most economically and agronomically harmful insect pests which cause yield loss in cereals, especially in wheat in North America. There is no effective strategy for suppressing this pest damage yet, and only the plants with intrinsic tolerance mechanisms such as solid stem phenotypes for WSS and antixenosis and/or antibiosis mechanisms for OWBM can limit damage. A major QTL and a causal gene for WSS resistance were previously identified in wheat, and 3 major QTLs and a causal gene for OWBM resistance. Here, we present a comparative analysis of coding and non-coding features of these loci of wheat across important cereal crops, barley, rye, oat, and rice. This research paves the way for our cloning and editing of additional WSS and OWBM tolerance gene(s), proteins, and metabolites.


Subject(s)
Diptera/pathogenicity , Disease Resistance/genetics , Genome, Plant , Hymenoptera/pathogenicity , Plant Diseases/genetics , Quantitative Trait Loci , Triticum/genetics , Animals , Avena/genetics , Avena/immunology , Avena/parasitology , Chromosome Mapping/methods , Diptera/physiology , Edible Grain , Genetic Code , Hordeum/genetics , Hordeum/immunology , Hordeum/parasitology , Humans , Hymenoptera/physiology , Oryza/genetics , Oryza/immunology , Oryza/parasitology , Plant Diseases/immunology , Plant Diseases/parasitology , Quantitative Trait, Heritable , Secale/genetics , Secale/immunology , Secale/parasitology , Species Specificity , Triticum/immunology , Triticum/parasitology
20.
Int J Mol Sci ; 22(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34638559

ABSTRACT

Although peroxisomes play an essential role in viral pathogenesis, and viruses are known to change peroxisome morphology, the role of genotype in the peroxisomal response to viruses remains poorly understood. Here, we analyzed the impact of wheat streak mosaic virus (WSMV) on the peroxisome proliferation in the context of pathogen response, redox homeostasis, and yield in two wheat cultivars, Patras and Pamir, in the field trials. We observed greater virus content and yield losses in Pamir than in Patras. Leaf chlorophyll and protein content measured at the beginning of flowering were also more sensitive to WSMV infection in Pamir. Patras responded to the WSMV infection by transcriptional up-regulation of the peroxisome fission genes PEROXIN 11C (PEX11C), DYNAMIN RELATED PROTEIN 5B (DRP5B), and FISSION1A (FIS1A), greater peroxisome abundance, and activation of pathogenesis-related proteins chitinase, and ß-1,3-glucanase. Oppositely, in Pamir, WMSV infection suppressed transcription of peroxisome biogenesis genes and activity of chitinase and ß-1,3-glucanase, and did not affect peroxisome abundance. Activity of ROS scavenging enzymes was higher in Patras than in Pamir. Thus, the impact of WMSV on peroxisome proliferation is genotype-specific and peroxisome abundance can be used as a proxy for the magnitude of plant immune response.


Subject(s)
Disease Resistance/immunology , Peroxisomes/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Potyviridae , Triticum/immunology , Triticum/virology , Chitinases/metabolism , Chlorophyll/metabolism , Glucan 1,3-beta-Glucosidase/metabolism , Oxidation-Reduction , Peroxidases/metabolism , Peroxisomes/genetics , Peroxisomes/virology , Phenotype , Plant Leaves/immunology , Plant Leaves/virology , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...