Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 268
Filter
1.
Ecotoxicol Environ Saf ; 279: 116450, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38768540

ABSTRACT

The purpose of this study is to evaluate the decolorization ability and detoxification effect of LAC-4 laccase on various types of single and mixed dyes, and lay a good foundation for better application of laccase in the efficient treatment of dye pollutants. The reaction system of the LAC-4 decolorizing single dyes (azo, anthraquinone, triphenylmethane, and indigo dyes, 17 dyes in total) were established. To explore the decolorization effect of the dye mixture by LAC-4, two dyes of the same type or different types were mixed at the same concentration (100 mg/L) in the reaction system containing 0.5 U laccase, and time-course decolorization were performed on the dye mixture. The combined dye mixtures consisted of azo + azo, azo + anthraquinone, azo + indigo, azo + triphenylmethane, indigo + triphenylmethane, and triphenylmethane + triphenylmethane. The results obtained in this study were as follows. Under optimal conditions of 30 °C and pH 5.0, LAC-4 (0.5 U) can efficiently decolorize four different types of dyes. The 24-hour decolorization efficiencies of LAC-4 for 800 mg/L Orange G and Acid Orange 7 (azo), Remazol Brilliant Blue R (anthraquinone), Bromophenol Blue and Methyl Green (triphenylmethane), and Indigo Carmine (indigo) were 75.94%, 93.30%, 96.56%, 99.94%, 96.37%, and 37.23%, respectively. LAC-4 could also efficiently decolorize mixed dyes with different structures. LAC-4 can achieve a decolorization efficiency of over 80% for various dye mixtures such as Orange G + Indigo Carmine (100 mg/L+100 mg/L), Reactive Orange 16 + Methyl Green (100 mg/L+100 mg/L), and Remazol Brilliant Blue R + Methyl Green (100 mg/L+100 mg/L). During the decolorization process of the mixed dyes by laccase, four different interaction relationships were observed between the dyes. Decolorization efficiencies and rates of the dyes that were difficult to be degraded by laccase could be greatly improved when mixed with other dyes. Degradable dyes could greatly enhance the ability of LAC-4 to decolorize extremely difficult-to-degrade dyes. It was also found that the decolorization efficiencies of the two dyes significantly increased after mixing. The possible mechanisms underlying the different interaction relationships were further discussed. Free, but not immobilized, LAC-4 showed a strong continuous batch decolorization ability for single dyes, two-dye mixtures, and four-dye mixtures with different structures. LAC-4 exhibited high stability, sustainable degradability, and good reusability in the continuous batch decolorization. The LAC-4-catalyzed decolorization markedly reduced or fully abolished the toxic effects of single dyes (azo, anthraquinone, and indigo dye) and mix dyes (nine dye mixtures containing four structural types of dyes) on plants. Our findings indicated that LAC-4 laccase had significant potential for use in bioremediation due to its efficient degradation and detoxification of single and mixed dyes with different structural types.


Subject(s)
Azo Compounds , Coloring Agents , Laccase , Reishi , Trityl Compounds , Coloring Agents/chemistry , Coloring Agents/toxicity , Coloring Agents/metabolism , Laccase/metabolism , Azo Compounds/toxicity , Azo Compounds/metabolism , Trityl Compounds/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Biodegradation, Environmental , Anthraquinones/chemistry , Anthraquinones/metabolism , Indigo Carmine/metabolism , Hydrogen-Ion Concentration , Water Decolorization , White
2.
ACS Chem Neurosci ; 15(11): 2233-2242, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38753435

ABSTRACT

Detection of amyloid ß (Aß) oligomers, regarded as the most toxic aggregated forms of Aß, can contribute to the diagnosis and treatment of Alzheimer's disease (AD). Thus, the development of imaging probes for in vivo visualization of Aß oligomers is crucial. However, the structural uncertainty regarding Aß oligomers makes it difficult to design imaging probes with high sensitivity to Aß oligomers against highly aggregated Aß fibrils. In this study, we developed Aß oligomer-selective fluorescent probes based on triphenylmethane dyes through screening of commercially available compounds followed by structure-activity relationship (SAR) studies on cyclic or acyclic 4-dialkylamino groups. We synthesized 11 triarylmethane-based Aß oligomer probe (TAMAOP) derivatives. In vitro evaluation of fluorescence properties, TAMAOP-9, which had bulky 4-diisobutylamino groups introduced into three benzenes of a twisted triphenylmethane backbone, showed marked fluorescence enhancement in the presence of Aß oligomers and demonstrated high selectivity for Aß oligomers against Aß fibrils. In docking studies using the Aß trimer model, TAMAOP-9 bound to the hydrophobic surface and interacted with the side chain of Phe20. In vitro section staining revealed that TAMAOP-9 could visualize Aß oligomers in the brains of AD model mice. An in vivo fluorescence imaging study using TAMAOP-9 showed significantly higher fluorescence signals from the brains of AD model mice than those of age-matched wild-type mice, confirmed by ex vivo section observation. These results suggest that TAMAOP-9 is a promising Aß oligomer-targeting fluorescent probe applicable to in vivo imaging.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Fluorescent Dyes , Optical Imaging , Trityl Compounds , Amyloid beta-Peptides/metabolism , Animals , Fluorescent Dyes/chemistry , Mice , Trityl Compounds/chemistry , Trityl Compounds/pharmacology , Optical Imaging/methods , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Methane/analogs & derivatives , Methane/chemistry , Humans , Structure-Activity Relationship , Brain/metabolism , Brain/diagnostic imaging , Mice, Transgenic
3.
Analyst ; 149(10): 2988-2995, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38602359

ABSTRACT

The use of formalin to preserve raw food items such as fish, meat, vegetables etc. is very commonly practiced in the present day. Also, formaldehyde (FA), which is the main constituent of formalin solution, is known to cause serious health issues on exposure. Considering the ill effects of formaldehyde, herein we report synthesis of highly sensitive triphenylmethane based formaldehyde (FA) sensors from a single step reaction of inexpensive reagents namely 4-hydroxy benzaldehyde and 2,6-dimethyl phenol. The synthetic method also provides highly pure product in bulk quantity. The analytical activity of the triphenylmethane sensor 1 with a limit of detection (LOD) value of 2.31 × 10-6 M for FA was significantly enhanced through induced deprotonation and thereafter a LOD value of 1.82 × 10-8 M could be achieved. To the best of our knowledge, the LOD value of the deprotonated form (sensor 2) for FA was superior to those of all the FA optical sensors reported so far. The mechanism of sensing was demonstrated by 1H-NMR titration and recording mass spectra before and after addition of FA to a solution of sensor 2. Both sensor 1 and sensor 2 exhibit quenching in emission upon addition of FA. A fluorescence study also demonstrates enhancement in analytical activity of the sensor upon induced deprotonation. Then the sensor was effectively immobilized into a hydrophilic and biocompatible starch-PVA polymer matrix which enabled detection of FA in a 100% aqueous system reversibly. Again, quick and effective sensing of FA in real food samples (stored fish) with the help of a computational application was demonstrated. The sensors have significant practical applicability as they effectively detect FA in real food samples qualitatively and quantitatively.


Subject(s)
Fishes , Formaldehyde , Limit of Detection , Trityl Compounds , Formaldehyde/analysis , Formaldehyde/chemistry , Animals , Trityl Compounds/chemistry , Trityl Compounds/analysis , Gases/chemistry , Gases/analysis , Seafood/analysis , Food Contamination/analysis , Solutions , Food Analysis/methods , Food Analysis/instrumentation , Spectrometry, Fluorescence/methods
4.
Anal Chem ; 95(2): 946-954, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36537829

ABSTRACT

Hypoxia, acidosis, and elevated inorganic phosphate concentration are characteristics of the tumor microenvironment in solid tumors. There are a number of methods for measuring each parameter individually in vivo, but the only method to date for noninvasive measurement of all three variables simultaneously in vivo is electron paramagnetic spectroscopy paired with a monophosphonated trityl radical, pTAM/HOPE. While HOPE has been successfully used for in vivo studies upon intratissue injection, it cannot be delivered intravenously due to systemic toxicity and albumin binding, which causes significant signal loss. Therefore, we present HOPE71, a monophosphonated trityl radical derived from the very biocompatible trityl probe, Ox071. Here, we describe a straightforward synthesis of HOPE71 starting with Ox071 and report its EPR sensitivities to pO2, pH, and [Pi] with X-band and L-band EPR spectroscopy. We also confirm that HOPE71 lacks albumin binding, shows low cytotoxicity, and has systemic tolerance. Finally, we demonstrate its ability to profile the tumor microenvironment in vivo in a mouse model of breast cancer.


Subject(s)
Electron Spin Resonance Spectroscopy , Neoplasms , Oxygen , Trityl Compounds , Animals , Mice , Electron Spin Resonance Spectroscopy/methods , Hydrogen-Ion Concentration , Hypoxia , Oxygen/chemistry , Tumor Microenvironment , Trityl Compounds/chemistry , Biosensing Techniques
5.
Amino Acids ; 53(9): 1455-1466, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34410506

ABSTRACT

Solid-phase synthesis of cyclic, branched or side-chain-modified peptides typically involves introduction of a residue carrying a temporary side-chain protecting group that undergoes selective on-resin removal. In particular, Nα-Fmoc-Nε-(4-methyltriphenylmethyl) (Mtt)-protected lysine and its shorter analogues are commercially available and extensively used in this context. Nevertheless, rapid reliable methods for on-resin removal of Mtt groups in the presence of tert-butyloxycarbonyl (Boc) groups are needed. Current commonly used conditions involve low concentrations (1-3%) of trifluoroacetic acid (TFA) in dichloromethane, albeit adjustment to each specific application is required to avoid premature removal of Boc groups or cleavage from the linker. Hence, a head-to-head comparison of several deprotection conditions was performed. The selected acids represent a wide range of acidity from TFA to trifluoroethanol. Also, on-resin removal of the N-(4-methoxytriphenylmethyl) (Mmt) and O-trityl groups (on serine) was investigated under similar conditions. The mildest conditions identified for Mtt deprotection involve successive treatments with 30% hexafluoroisopropanol (HFIP) or 30% perfluoro-tert-butanol [(CF3)3COH] in dichloromethane (3 × 5 or 3 × 15 min, respectively), while 30% HFIP, 30% (CF3)3COH, or 10% AcOH-20% trifluoroethanol (TFE) in CH2Cl2 (3 × 5 min) as well as 5% trichloroacetic acid in CH2Cl2 (3 × 2 min) enabled Mmt removal. Treatment with 1% TFA with/without 2% triisopropylsilane added (3 × 5 min), but also prolonged treatment with 30% (CF3)3COH (5 × 15 min), led to selective deprotection of an O-Trt group on a serine residue. In all cases, the sequences also contained N-Boc or O-tBu protecting groups, which were not affected by 30% HFIP or 30% (CF3)3COH even after a prolonged reaction time of 4 h. Finally, the optimized conditions involving HFIP or (CF3)3COH proved applicable also for selective deprotection of a longer resin-bound peptide [i.e., Ac-Gly-Leu-Leu-Lys(Mtt)-Arg(Pbf)-Ile-Lys(Boc)-Ser(tBu)-Leu-Leu-RAM-PS] as well as allowed for an almost complete deprotection of a Dab(Mtt) residue.


Subject(s)
Peptides/chemical synthesis , Resins, Synthetic/chemistry , Solid-Phase Synthesis Techniques/methods , Trifluoroacetic Acid/chemistry , Trityl Compounds/chemistry , tert-Butyl Alcohol/chemistry , Molecular Structure
6.
Molecules ; 26(9)2021 May 08.
Article in English | MEDLINE | ID: mdl-34066858

ABSTRACT

Alterations in viscosity of biological fluids and tissues play an important role in health and diseases. It has been demonstrated that the electron paramagnetic resonance (EPR) spectrum of a 13C-labeled trityl spin probe (13C-dFT) is highly sensitive to the local viscosity of its microenvironment. In the present study, we demonstrate that X-band (9.5 GHz) EPR viscometry using 13C-dFT provides a simple tool to accurately measure the microviscosity of human blood in microliter volumes obtained from healthy volunteers. An application of low-field L-band (1.2 GHz) EPR with a penetration depth of 1-2 cm allowed for microviscosity measurements using 13C-dFT in the living tissues from isolated organs and in vivo in anesthetized mice. In summary, this study demonstrates that EPR viscometry using a 13C-dFT probe can be used to noninvasively and rapidly measure the microviscosity of blood and interstitial fluids in living tissues and potentially to evaluate this biophysical marker of microenvironment under various physiological and pathological conditions in preclinical and clinical settings.


Subject(s)
Blood Viscosity , Carbon Isotopes/chemistry , Extracellular Fluid/chemistry , Spin Labels , Trityl Compounds/chemistry , Animals , Electron Spin Resonance Spectroscopy , Female , Healthy Volunteers , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Viscosity
7.
Biochim Biophys Acta Biomembr ; 1863(1): 183483, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33002452

ABSTRACT

To clarify the contribution of charge delocalization in a lipophilic ion to the efficacy of its permeation through a lipid membrane, we compared the behavior of alkyl derivatives of triphenylphosphonium, tricyclohexylphosphonium and trihexylphosphonium both in natural and artificial membranes. Exploring accumulation of the lipophilic cations in response to inside-negative membrane potential generation in mitochondria by using an ion-selective electrode revealed similar mitochondrial uptake of butyltricyclohexylphosphonium (C4TCHP) and butyltriphenylphosphonium (C4TPP). Fluorescence correlation spectroscopy also demonstrated similar membrane potential-dependent accumulation of fluorescein derivatives of tricyclohexyldecylphosphonium and decyltriphenylphosphonium in mitochondria. The rate constant of lipophilic cation translocation across the bilayer lipid membrane (BLM), measured by the current relaxation method, moderately increased in the following sequence: trihexyltetradecylphosphonium ([P6,6,6,14]) < triphenyltetradecylphosphonium (C14TPP) < tricyclohexyldodecylphosphonium (C12TCHP). In line with these results, measurements of the BLM stationary conductance indicated that membrane permeability for C4TCHP is 2.5 times higher than that for C4TPP. Values of the difference in the free energy of ion solvation in water and octane calculated using the density functional theory and the polarizable continuum solvent model were similar for methyltriphenylphosphonium, tricyclohexylmethylphosphonium and trihexylmethylphosphonium. Our results prove that both cyclic and aromatic moieties are not necessary for lipophilic ions to effectively permeate through lipid membranes.


Subject(s)
Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Onium Compounds/chemistry , Organophosphorus Compounds/chemistry , Trityl Compounds/chemistry , Permeability
8.
Molecules ; 25(24)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371407

ABSTRACT

The identification of aroma composition and key odorants contributing to aroma characteristics of white tea is urgently needed, owing to white tea's charming flavors and significant health benefits. In this study, a total of 238 volatile components were identified in the three subtypes of white teas using headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS). The multivariate statistical analysis demonstrated that the contents of 103 volatile compounds showed extremely significant differences, of which 44 compounds presented higher contents in Baihaoyinzhen and Baimudan, while the other 59 compounds exhibited higher contents in Shoumei. The sensory evaluation experiment carried out by gas chromatography-olfactometry/mass spectrometry (GC-O/MS) revealed 44 aroma-active compounds, of which 25 compounds were identified, including 9 alcohols, 6 aldehydes, 5 ketones, and 5 other compounds. These odorants mostly presented green, fresh, floral, fruity, or sweet odors. Multivariate analyses of chemical characterization and sensory evaluation results showed that high proportions of alcohols and aldehydes form the basis of green and fresh aroma characteristic of white teas, and phenylethyl alcohol, γ-Nonalactone, trans-ß-ionone, trans-linalool oxide (furanoid), α-ionone, and cis-3-hexenyl butyrate were considered as the key odorants accounting for the different aroma characteristics of the three subtypes of white tea. The results will contribute to in-depth understand chemical and sensory markers associated with different subtypes of white tea, and provide a solid foundation for tea aroma quality control and improvement.


Subject(s)
Flavoring Agents/chemistry , Odorants/analysis , Tea/chemistry , Acyclic Monoterpenes/chemistry , Aldehydes/chemistry , Cyclohexanols/chemistry , Fruit/chemistry , Gas Chromatography-Mass Spectrometry/methods , Norisoprenoids/chemistry , Solid Phase Microextraction/methods , Trityl Compounds/chemistry , Volatile Organic Compounds/chemistry
9.
Molecules ; 25(23)2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33291596

ABSTRACT

The unprecedented Nazarov cyclization of a model divinyl ketone using phosphonium-based Deep Eutectic Solvents as sustainable non-innocent reaction media is described. A two-level full factorial Design of Experiments was conducted for elucidating the effect of the components of the eutectic mixture and optimizing the reaction conditions in terms of temperature, time, and substrate concentration. In the presence of the Deep Eutectic Solvent (DES) triphenylmethylphosphonium bromide/ethylene glycol, it was possible to convert more than 80% of the 2,4-dimethyl-1,5-diphenylpenta-1,4-dien-3-one, with a specific conversion, into the cyclopentenone Nazarov derivative of 62% (16 h, 60 °C). For the reactions conducted in the DES triphenylmethylphosphonium bromide/acetic acid, quantitative conversions were obtained with percentages of the Nazarov product above 95% even at 25 °C. Surface Responding Analysis of the optimized data furnished a useful tool to determine the best operating conditions leading to quantitative conversion of the starting material, with complete suppression of undesired side-reactions, high yields and selectivity. After optimization, it was possible to convert more than 90% of the model substrate into the desired cyclopentenone with cis percentages up to 77%. Experimental validation of the implemented model confirmed the robustness and the suitability of the procedure, leading to possible further extension to this specific combination of experimental designs to other substrates or even to other synthetic processes of industrial interest.


Subject(s)
Solvents/chemistry , Acetic Acid/chemistry , Cyclization , Cyclopentanes/chemistry , Onium Compounds/chemistry , Temperature , Trityl Compounds/chemistry
10.
Bioconjug Chem ; 31(12): 2685-2690, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33274932

ABSTRACT

Antibody-drug conjugates (ADCs) constitute an emerging class of anticancer agents that deliver potent payloads selectively to tumors while avoiding systemic toxicity associated with conventional chemotherapeutics. Critical to ADC development is a serum-stable linker designed to decompose inside targeted cells thereby releasing the toxic payload. A protease-cleavable linker comprising a valine-citrulline (Val-Cit) motif has been successfully incorporated into three FDA-approved ADCs and is found in numerous preclinical candidates. Herein, we present a high-yielding and facile synthetic strategy for a Val-Cit linker that avoids extensive protecting group manipulation and laborious chromatography associated with previous syntheses and provides yields that are up to 10-fold higher than by standard methods. This method is easily scalable and takes advantage of cost-effective coupling reagents and high loading 2-chlorotrityl chloride (2-CTC) resin. Modularity allows for introduction of various conjugation handles in final stages of the synthesis. Facile access to such analogues serves to expand the repertoire of available enzymatically cleavable linkers for ADC generation. This methodology empowers a robust and facile library generation and future exploration into linker analogues containing unnatural amino acids as a selectivity tuning tool.


Subject(s)
Cathepsin B/metabolism , Immunoconjugates/chemistry , Immunoconjugates/metabolism , Molecular Targeted Therapy , Cell Line, Tumor , Humans , Immunoconjugates/therapeutic use , Kinetics , Solid Phase Extraction , Trityl Compounds/chemistry
11.
J Phys Chem Lett ; 11(15): 6286-6290, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32667797

ABSTRACT

We demonstrate a series of multitrityl radical compounds where accurate spin-counting by pulsed electron paramagnetic resonance (EPR) can be achieved at X-band (9 GHz) frequencies, even for molecules with very short and flexible linkers. Multiquantum filter experiments, well-known from NMR, were used to count the number of coupled electron spins in these compounds. The six pulse double quantum filter sequence used in EPR for distance determinations in biradicals was used. Precise phase settings to separate higher quantum coherences were achieved by an arbitrary waveform generator. The trityl radicals have narrow spectral width so that homogeneous excitation of all spins by the pulses is possible. The transversal relaxation times of higher quantum coherences of trityl radicals are sufficiently long to allow their detection. Our results on model compounds show the potential of this approach to determine oligomeric states in protein complexes in their native environment using functionalized trityl spin labels.


Subject(s)
Free Radicals/chemistry , Trityl Compounds/chemistry , Electron Spin Resonance Spectroscopy , Kinetics , Lipid Bilayers/chemistry , Mitochondrial Proteins/chemistry , Models, Molecular , Structure-Activity Relationship
12.
Angew Chem Int Ed Engl ; 59(24): 9767-9772, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32329172

ABSTRACT

The understanding of biomolecular function is coupled to knowledge about the structure and dynamics of these biomolecules, preferably acquired under native conditions. In this regard, pulsed dipolar EPR spectroscopy (PDS) in conjunction with site-directed spin labeling (SDSL) is an important method in the toolbox of biophysical chemistry. However, the currently available spin labels have diverse deficiencies for in-cell applications, for example, low radical stability or long bioconjugation linkers. In this work, a synthesis strategy is introduced for the derivatization of trityl radicals with a maleimide-functionalized methylene group. The resulting trityl spin label, called SLIM, yields narrow distance distributions, enables highly sensitive distance measurements down to concentrations of 90 nm, and shows high stability against reduction. Using this label, the guanine-nucleotide dissociation inhibitor (GDI) domain of Yersinia outer protein O (YopO) is shown to change its conformation within eukaryotic cells.


Subject(s)
Electron Spin Resonance Spectroscopy , Spin Labels , Trityl Compounds/chemistry , Oxidation-Reduction
13.
Molecules ; 25(7)2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32218347

ABSTRACT

UV-VIS spectroscopy analysis of six mixtures containing choline chloride or triphenylmethylphosphonium bromide as the hydrogen bond acceptor (HBA) and different hydrogen bond donors (HBDs, nickel sulphate, imidazole, d-glucose, ethylene glycol, and glycerol) allowed to determine the indirect and direct band-gap energies through the Tauc plot method. Band-gap energies were compared to those relative to known choline chloride-containing deep band-gap systems. The measurements reported here confirmed the tendency of alcohols or Lewis acids to increment band-gap energy when employed as HBDs. Indirect band-gap energy of 3.74 eV was obtained in the case of the triphenylmethylphosphonium bromide/ethylene glycol system, which represents the smallest transition energy ever reported to date for such kind of systems.


Subject(s)
Choline/chemistry , Onium Compounds/chemistry , Trityl Compounds/chemistry , Spectrophotometry, Ultraviolet , Thermodynamics
14.
Macromol Biosci ; 20(4): e2000005, 2020 04.
Article in English | MEDLINE | ID: mdl-32104975

ABSTRACT

The pathogenic yeast Candida auris has received increasing attention due to its ability to cause fatal infections, its resistance toward important fungicides, and its ability to persist on surfaces including medical devices in hospitals. To brace health care systems for this considerable risk, alternative therapeutic approaches such as antifungal peptides are urgently needed. In clinical wound care, a significant focus has been directed toward novel surgical (wound) dressings as first defense lines against C. auris. Inspired by Cerberus the Greek mythological "hound of Hades" that prevents the living from entering and the dead from leaving hell, the preparation of a gatekeeper hybrid hydrogel is reported featuring lectin-mediated high-affinity immobilization of C. auris cells from a collagen gel as a model substratum in combination with a release of an antifungal peptide drug to kill the trapped cells. The vision is an efficient and safe two-layer medical composite hydrogel for the treatment of severe wound infections that typically occur in hospitals. Providing this new armament to the repertoire of possibilities for wound care in critical (intensive care) units may open new routes to shield and defend patients from infections and clinical facilities from spreading and invasion of C. auris and probably other fungal pathogens.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Drug Resistance, Multiple, Fungal/drug effects , Hydrogels/pharmacology , Peptides/pharmacology , Animals , Antifungal Agents/chemical synthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bandages , Candida/growth & development , Candida/pathogenicity , Collagen/chemistry , Gene Expression , Humans , Hydrogels/chemistry , Lectins/genetics , Lectins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Methionine/chemistry , Microbial Sensitivity Tests , Organophosphorus Compounds/chemistry , Peptides/chemical synthesis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Serum Albumin, Bovine/chemistry , Skin/drug effects , Swine , Trityl Compounds/chemistry
15.
J Phys Chem Lett ; 11(3): 1141-1147, 2020 Feb 06.
Article in English | MEDLINE | ID: mdl-31951412

ABSTRACT

Double-electron electron resonance (DEER) can be used to track the structural dynamics of proteins in their native environment, the cell. This method provides the distance distribution between two spin labels attached at specific, well-defined positions in a protein. For the method to be viable under in-cell conditions, the spin label and its attachment to the protein should exhibit high chemical stability in the cell. Here we present low-temperature, trityl-trityl DEER distance measurements on two model proteins, PpiB (prolyl cis-trans isomerase from E. coli) and GB1 (immunoglobulin G-binding protein), doubly labeled with the trityl spin label, CT02MA. Both proteins gave in-cell distance distributions similar to those observed in vitro, with maxima at 4.5-5 nm, and the data were further compared with in-cell Gd(III)-Gd(III) DEER obtained for PpiB labeled with BrPSPy-DO3A-Gd(III) at the same positions. These results highlight the challenges of designing trityl tags suitable for in-cell distance determination at ambient temperatures on live cells.


Subject(s)
Bacterial Proteins/chemistry , Carrier Proteins/chemistry , Cyclophilins/chemistry , Electron Spin Resonance Spectroscopy , Trityl Compounds/chemistry , Gadolinium/chemistry , Spin Labels
16.
Molecules ; 24(24)2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31817626

ABSTRACT

The unpleasant stale note is a negative factor hindering the consumption of instant ripened Pu-erh tea products. This study focused on investigating volatile chemicals in instant ripened Pu-erh tea that could mask the stale note via sensory evaluation, gas chromatography-mass spectrometry (GC-MS), and gas chromatography-olfactometry (GC-O) analyses. GC-MS and GC-O analyses showed that linalool, linalool oxides, trans-ß-ionone, benzeneacetaldehyde, and methoxybenzenes were the major aroma contributors to the simultaneous distillation and extraction (SDE) extract of instant ripened Pu-erh tea. Sensory evaluation showed that the SDE extract had a strong stale note, which was due to methoxybenzenes. By investigating suppressive interaction among flavour components, the stale note from methoxybenzenes was shown to have reciprocal masking interactions with sweet, floral, and green notes. Moreover, the validation experiment showed that the addition of 40 µg/mL of trans-ß-ionone in the instant ripened Pu-erh tea completely masked the stale note and improved the overall aromatic acceptance. These results elucidate the volatile chemicals that could mask the stale note of instant ripened Pu-erh tea products, which might help to develop high quality products made from instant ripened Pu-erh tea.


Subject(s)
Plant Extracts/chemistry , Tea/chemistry , Acyclic Monoterpenes/chemistry , Anisoles/chemistry , Cyclohexanols/chemistry , Gas Chromatography-Mass Spectrometry , Trityl Compounds/chemistry
17.
Biophys J ; 117(9): 1751-1763, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31587826

ABSTRACT

Obstructing conductive pathways of the channel-forming toxins with targeted blockers is a promising drug design approach. Nearly all tested positively charged ligands have been shown to reversibly block the cation-selective channel-forming protective antigen (PA63) component of the binary anthrax toxin. The cationic ligands with more hydrophobic surfaces, particularly those carrying aromatic moieties, inhibited PA63 more effectively. To understand the physical basis of PA63 selectivity for a particular ligand, detailed information is required on how the blocker structural elements (e.g., positively charged and aromatic groups) influence the molecular kinetics of the blocker/channel binding reactions. In this study, we address this problem using the high-resolution single-channel planar lipid bilayer technique. Several structurally distinct cationic blockers, namely per-6-S-(3-amino) propyl-ß-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-α-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-ß-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-γ-cyclodextrin, methyltriphenylphosphonium ion, and G0 polyamidoamine dendrimer are tested for their ability to inhibit the heptameric and octameric PA63 variants and PA63F427A mutant. The F427 residues form a hydrophobic constriction region inside the channel, known as the "ϕ-clamp." We show that the cationic blockers interact with PA63 through a combination of forces. Analysis of the binding reaction kinetics suggests the involvement of cation-π, Coulomb, and salt-concentration-independent π-π or hydrophobic interactions in the cationic cyclodextrin binding. It is possible that these blockers bind to the ϕ-clamp and are also stabilized by the Coulomb interactions of their terminal amino groups with the water-exposed negatively charged channel residues. In PA63F427A, only the suggested Coulomb component of the cyclodextrin interaction remains. Methyltriphenylphosphonium ion and G0 polyamidoamine dendrimer, despite being positively charged, interact primarily with the ϕ-clamp. We also show that seven- and eightfold symmetric cyclodextrins effectively block the heptameric and octameric forms of PA63 interchangeably, adding flexibility to the earlier formulated blocker/target symmetry match requirement.


Subject(s)
Antigens, Bacterial/chemistry , Bacterial Toxins/chemistry , Cations , Dendrimers/chemistry , Kinetics , Onium Compounds/chemistry , Time Factors , Trityl Compounds/chemistry , beta-Cyclodextrins/chemistry
18.
Molecules ; 24(18)2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31510043

ABSTRACT

S-trityl-l-cysteine (STLC) is a well-recognized lead compound known for its anticancer activity owing to its potent inhibitory effect on human mitotic kinesin Eg5. STLC contains two free terminal amino and carboxyl groups that play pivotal roles in binding to the Eg5 pocket. On the other hand, such a zwitterion structure complicates the clinical development of STLC because of the solubility issues. Masking either of these radicals reduces or abolishes STLC activity against Eg5. We recently identified and characterized a new class of nicotinamide adenine dinucleotide-dependent deacetylase isoform 2 of sirtuin protein (SIRT2) inhibitors that can be utilized as cytotoxic agents based on an S-trityl-l-histidine scaffold. Herein, we propose new STLC-derived compounds that possess pronounced SIRT2 inhibition effects. These derivatives contain modified amino and carboxyl groups, which conferred STLC with SIRT2 bioactivity, representing an explicit repurposing approach. Compounds STC4 and STC11 exhibited half maximal inhibitory concentration values of 10.8 ± 1.9 and 9.5 ± 1.2 µM, respectively, against SIRT2. Additionally, introduction of the derivatizations in this study addressed the solubility limitations of free STLC, presumably due to interruption of the zwitterion structure. Therefore, we could obtain drug-like STLC derivatives that work by a new mechanism of action. The new derivatives were designed, synthesized, and their structure was confirmed using different spectroscopic approaches. In vitro and cellular bioassays with various cancer cell lines and in silico molecular docking and solubility calculations of the synthesized compounds demonstrated that they warrant attention for further refinement of their bioactivity.


Subject(s)
Neoplasms/drug therapy , Sirtuin 2/antagonists & inhibitors , Trityl Compounds/pharmacology , Cell Line, Tumor , Computer Simulation , Cysteine/chemistry , Gene Expression Regulation, Neoplastic/drug effects , Humans , Kinesins/chemistry , Kinesins/genetics , Neoplasms/genetics , Neoplasms/pathology , Sirtuin 2/genetics , Solubility , Trityl Compounds/chemistry
19.
Molecules ; 24(15)2019 Jul 27.
Article in English | MEDLINE | ID: mdl-31357628

ABSTRACT

Pulsed dipolar electron paramagnetic resonance spectroscopy (PDS) in combination with site-directed spin labeling (SDSL) of proteins and oligonucleotides is a powerful tool in structural biology. Instead of using the commonly employed gem-dimethyl-nitroxide labels, triarylmethyl (trityl) spin labels enable such studies at room temperature, within the cells and with single-frequency electron paramagnetic resonance (EPR) experiments. However, it has been repeatedly reported that labeling of proteins with trityl radicals led to low labeling efficiencies, unspecific labeling and label aggregation. Therefore, this work introduces the synthesis and characterization of a maleimide-functionalized trityl spin label and its corresponding labeling protocol for cysteine residues in proteins. The label is highly cysteine-selective, provides high labeling efficiencies and outperforms the previously employed methanethiosulfonate-functionalized trityl label. Finally, the new label is successfully tested in PDS measurements on a set of doubly labeled Yersinia outer protein O (YopO) mutants.


Subject(s)
Electron Spin Resonance Spectroscopy , Maleimides/chemistry , Proteins/chemistry , Spin Labels , Trityl Compounds/chemistry , Chemistry Techniques, Synthetic , Electron Spin Resonance Spectroscopy/methods , Models, Molecular , Molecular Conformation , Molecular Structure , Spectrum Analysis
20.
Mol Pharm ; 16(9): 3985-3995, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31356752

ABSTRACT

Folate-based small molecule drug conjugates (SMDCs) are currently under development and have shown promising preclinical and clinical results against various cancers and polycystic kidney disease. Two requisites for response to a folate-based SMDC are (i) folate receptor alpha (FRα) protein is expressed in the diseased tissues, and (ii) FRα in those tissues is accessible and functionally competent to bind systemically administered SMDCs. Here we report on the development of a small molecule reporter conjugate (SMRC), called EC2220, which is composed of a folate ligand for FRα binding, a multilysine containing linker that can cross-link to FRα in the presence of formaldehyde fixation, and a small hapten (fluorescein) used for immunohistochemical detection. Data show that EC2220 produces a far greater IHC signal in FRα-positive tissues over that produced with EC17, a folate-fluorescein SMRC that is released from the formaldehyde-denatured FRα protein. Furthermore, the extent of the EC2220 IHC signal was proportional to the level of FRα expression. This EC2220-based assay was qualified both in vitro and in vivo using normal tissue, cancer tissue, and polycystic kidneys. Overall, EC2220 is a sensitive and effective reagent for evaluating functional and accessible receptor expression in vitro and in vivo.


Subject(s)
Folate Receptor 1/metabolism , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Polycystic Kidney Diseases/drug therapy , A549 Cells , Animals , Doxycycline/pharmacology , Fluorescein-5-isothiocyanate/chemistry , Fluorescein-5-isothiocyanate/metabolism , Folate Receptor 1/analysis , Folic Acid/analogs & derivatives , Folic Acid/chemistry , Folic Acid/metabolism , HeLa Cells , Humans , Lysine/analogs & derivatives , Lysine/chemistry , Lysine/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Mice, Transgenic , Neoplasms/metabolism , Oligopeptides/chemistry , Oligopeptides/metabolism , Polycystic Kidney Diseases/chemically induced , Polycystic Kidney Diseases/metabolism , Protein Kinase C/genetics , Tissue Distribution , Trityl Compounds/chemistry , Trityl Compounds/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...