Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.836
Filter
1.
Sci Rep ; 14(1): 11312, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760496

ABSTRACT

The syncytiotrophoblast is a multinucleated structure that arises from fusion of mononucleated cytotrophoblasts, to sheath the placental villi and regulate transport across the maternal-fetal interface. Here, we ask whether the dynamic mechanical forces that must arise during villous development might influence fusion, and explore this question using in vitro choriocarcinoma trophoblast models. We demonstrate that mechanical stress patterns arise around sites of localized fusion in cell monolayers, in patterns that match computational predictions of villous morphogenesis. We then externally apply these mechanical stress patterns to cell monolayers and demonstrate that equibiaxial compressive stresses (but not uniaxial or equibiaxial tensile stresses) enhance expression of the syndecan-1 and loss of E-cadherin as markers of fusion. These findings suggest that the mechanical stresses that contribute towards sculpting the placental villi may also impact fusion in the developing tissue. We then extend this concept towards 3D cultures and demonstrate that fusion can be enhanced by applying low isometric compressive stresses to spheroid models, even in the absence of an inducing agent. These results indicate that mechanical stimulation is a potent activator of cellular fusion, suggesting novel avenues to improve experimental reproductive modelling, placental tissue engineering, and understanding disorders of pregnancy development.


Subject(s)
Cell Fusion , Stress, Mechanical , Trophoblasts , Trophoblasts/metabolism , Trophoblasts/cytology , Trophoblasts/physiology , Humans , Female , Pregnancy , Biomechanical Phenomena , Placenta/metabolism , Placenta/cytology , Cadherins/metabolism , Models, Biological
2.
Cell Mol Life Sci ; 81(1): 246, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819479

ABSTRACT

The glycosylphosphatidylinositol (GPI) biosynthetic pathway in the endoplasmic reticulum (ER) is crucial for generating GPI-anchored proteins (GPI-APs), which are translocated to the cell surface and play a vital role in cell signaling and adhesion. This study focuses on two integral components of the GPI pathway, the PIGL and PIGF proteins, and their significance in trophoblast biology. We show that GPI pathway mutations impact on placental development impairing the differentiation of the syncytiotrophoblast (SynT), and especially the SynT-II layer, which is essential for the establishment of the definitive nutrient exchange area within the placental labyrinth. CRISPR/Cas9 knockout of Pigl and Pigf in mouse trophoblast stem cells (mTSCs) confirms the role of these GPI enzymes in syncytiotrophoblast differentiation. Mechanistically, impaired GPI-AP generation induces an excessive unfolded protein response (UPR) in the ER in mTSCs growing in stem cell conditions, akin to what is observed in human preeclampsia. Upon differentiation, the impairment of the GPI pathway hinders the induction of WNT signaling for early SynT-II development. Remarkably, the transcriptomic profile of Pigl- and Pigf-deficient cells separates human patient placental samples into preeclampsia and control groups, suggesting an involvement of Pigl and Pigf in establishing a preeclamptic gene signature. Our study unveils the pivotal role of GPI biosynthesis in early placentation and uncovers a new preeclampsia gene expression profile associated with mutations in the GPI biosynthesis pathway, providing novel molecular insights into placental development with implications for enhanced patient stratification and timely interventions.


Subject(s)
Cell Differentiation , Glycosylphosphatidylinositols , Placentation , Trophoblasts , Trophoblasts/metabolism , Trophoblasts/cytology , Female , Pregnancy , Animals , Humans , Mice , Placentation/genetics , Glycosylphosphatidylinositols/metabolism , Glycosylphosphatidylinositols/biosynthesis , Placenta/metabolism , Placenta/cytology , Wnt Signaling Pathway , Pre-Eclampsia/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Endoplasmic Reticulum/metabolism , Biosynthetic Pathways/genetics , Unfolded Protein Response , CRISPR-Cas Systems
3.
Cell Rep ; 43(5): 114232, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38761378

ABSTRACT

The advent of novel 2D and 3D models for human development, including trophoblast stem cells and blastoids, has expanded opportunities for investigating early developmental events, gradually illuminating the enigmatic realm of human development. While these innovations have ushered in new prospects, it has become essential to establish well-defined benchmarks for the cell sources of these models. We aimed to propose a comprehensive characterization of pluripotent and trophoblastic stem cell models by employing a combination of transcriptomic, proteomic, epigenetic, and metabolic approaches. Our findings reveal that extended pluripotent stem cells share many characteristics with primed pluripotent stem cells, with the exception of metabolic activity. Furthermore, our research demonstrates that DNA hypomethylation and high metabolic activity define trophoblast stem cells. These results underscore the necessity of considering multiple hallmarks of pluripotency rather than relying on a single criterion. Multiplying hallmarks alleviate stage-matching bias.


Subject(s)
Trophoblasts , Humans , Trophoblasts/metabolism , Trophoblasts/cytology , DNA Methylation , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Models, Biological , Embryo Implantation , Cell Differentiation , Epigenesis, Genetic , Transcriptome/genetics , Proteomics/methods
4.
Cell Mol Life Sci ; 81(1): 208, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710919

ABSTRACT

Trophoblast stem cells (TSCs) can be chemically converted from embryonic stem cells (ESCs) in vitro. Although several transcription factors (TFs) have been recognized as essential for TSC formation, it remains unclear how differentiation cues link elimination of stemness with the establishment of TSC identity. Here, we show that PRDM14, a critical pluripotent circuitry component, is reduced during the formation of TSCs. The reduction is further shown to be due to the activation of Wnt/ß-catenin signaling. The extinction of PRDM14 results in the erasure of H3K27me3 marks and chromatin opening in the gene loci of TSC TFs, including GATA3 and TFAP2C, which enables their expression and thus the initiation of the TSC formation process. Accordingly, PRDM14 reduction is proposed here as a critical event that couples elimination of stemness with the initiation of TSC formation. The present study provides novel insights into how induction signals initiate TSC formation.


Subject(s)
Cell Differentiation , DNA-Binding Proteins , Transcription Factors , Trophoblasts , Wnt Signaling Pathway , Trophoblasts/metabolism , Trophoblasts/cytology , Animals , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Differentiation/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Transcription Factor AP-2/metabolism , Transcription Factor AP-2/genetics , Stem Cells/metabolism , Stem Cells/cytology , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Histones/metabolism , Histones/genetics
5.
Dev Cell ; 59(8): 941-960, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38653193

ABSTRACT

In recent years, the pursuit of inducing the trophoblast stem cell (TSC) state has gained prominence as a compelling research objective, illuminating the establishment of the trophoblast lineage and unlocking insights into early embryogenesis. In this review, we examine how advancements in diverse technologies, including in vivo time course transcriptomics, cellular reprogramming to TSC state, chemical induction of totipotent stem-cell-like state, and stem-cell-based embryo-like structures, have enriched our insights into the intricate molecular mechanisms and signaling pathways that define the mouse and human trophectoderm/TSC states. We delve into disparities between mouse and human trophectoderm/TSC fate establishment, with a special emphasis on the intriguing role of pluripotency in this context. Additionally, we re-evaluate recent findings concerning the potential of totipotent-stem-like cells and embryo-like structures to fully manifest the trophectoderm/trophoblast lineage's capabilities. Lastly, we briefly discuss the potential applications of induced TSCs in pregnancy-related disease modeling.


Subject(s)
Cell Differentiation , Cell Lineage , Trophoblasts , Trophoblasts/cytology , Trophoblasts/metabolism , Animals , Humans , Mice , Female , Pregnancy , Ectoderm/metabolism , Ectoderm/cytology , Embryonic Development , Cellular Reprogramming
6.
Cell Tissue Res ; 396(2): 231-243, 2024 May.
Article in English | MEDLINE | ID: mdl-38438567

ABSTRACT

C-C motif chemokine ligand 2 (CCL2) has been reported to be expressed in the bovine endometrium during pregnancy. However, the details of its functions involved in the implantation mechanism are still not clear. The purpose of this study is to analyze the functional properties of CCL2 in the bovine endometrium and embryos. The expression of CCR2 was not different between the luteal phase and implantation phase of their endometrial tissues, but was significantly high in IFNa treated bovine endometrial stromal (BES) cells in vitro. The expressions of PGES1, PGES2, AKR1C4, and AKR1C4 were high at the implantation stage compared with the luteal stage. On the other hand, PGES2 and AKR1B1 in BEE and PGES3 and AKR1A1 in BES were significantly increased by CCL2 treatment, respectively. The expressions of PCNA and IFNt were found significantly high in the bovine trophoblastic cells (BT) treated with CCL2 compared to the control. CCL2 significantly increased the attachment rate of BT vesicles to BEE in in vitro co-culture system. The expression of OPN and ICAM-1 increased in BEE, and ICAM-1 increased in BT by CCL2 treatment, respectively. The present results indicate that CCL2 has the potential to regulate the synthesis of PGs in the endometrium and the embryo growth. In addition, CCL2 has the possibility to regulate the process of bovine embryo attachment to the endometrium by modulation of binding molecules expression.


Subject(s)
Chemokine CCL2 , Embryo Implantation , Endometrium , Prostaglandins , Animals , Cattle , Female , Pregnancy , Chemokine CCL2/metabolism , Embryo Implantation/genetics , Endometrium/metabolism , Intercellular Adhesion Molecule-1/metabolism , Interferon Type I , Pregnancy Proteins , Prostaglandins/metabolism , Receptors, CCR2/metabolism , Stromal Cells/metabolism , Trophoblasts/metabolism , Trophoblasts/cytology
7.
J Virol ; 98(4): e0193523, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38451085

ABSTRACT

Placental infection plays a central role in the pathogenesis of congenital human cytomegalovirus (HCMV) infections and is a cause of fetal growth restriction and pregnancy loss. HCMV can replicate in some trophoblast cell types, but it remains unclear how the virus evades antiviral immunity in the placenta and how infection compromises placental development and function. Human trophoblast stem cells (TSCs) can be differentiated into extravillous trophoblasts (EVTs), syncytiotrophoblasts (STBs), and organoids, and this study assessed the utility of TSCs as a model of HCMV infection in the first-trimester placenta. HCMV was found to non-productively infect TSCs, EVTs, and STBs. Immunofluorescence assays and flow cytometry experiments further revealed that infected TSCs frequently only express immediate early viral gene products. Similarly, RNA sequencing found that viral gene expression in TSCs does not follow the kinetic patterns observed during lytic infection in fibroblasts. Canonical antiviral responses were largely not observed in HCMV-infected TSCs and TSC-derived trophoblasts. Rather, infection dysregulated factors involved in cell identity, differentiation, and Wingless/Integrated signaling. Thus, while HCMV does not replicate in TSCs, infection may perturb trophoblast differentiation in ways that could interfere with placental function. IMPORTANCE: Placental infection plays a central role in human cytomegalovirus (HCMV) pathogenesis during pregnancy, but the species specificity of HCMV and the limited availability and lifespan of primary trophoblasts have been persistent barriers to understanding how infection impacts this vital organ. Human trophoblast stem cells (TSCs) represent a new approach to modeling viral infection early in placental development. This study reveals that TSCs, like other stem cell types, restrict HCMV replication. However, infection perturbs the expression of genes involved in differentiation and cell fate determination, pointing to a mechanism by which HCMV could cause placental injury.


Subject(s)
Cytomegalovirus , Stem Cells , Trophoblasts , Virus Replication , Female , Humans , Pregnancy , Cell Differentiation/genetics , Cell Lineage/genetics , Cytomegalovirus/growth & development , Cytomegalovirus/pathogenicity , Cytomegalovirus/physiology , Cytomegalovirus Infections/pathology , Cytomegalovirus Infections/physiopathology , Cytomegalovirus Infections/virology , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Placenta/cytology , Placenta/pathology , Placenta/physiopathology , Placenta/virology , Pregnancy Trimester, First , Stem Cells/cytology , Stem Cells/virology , Trophoblasts/cytology , Trophoblasts/virology
8.
Biol Reprod ; 110(5): 950-970, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38330185

ABSTRACT

Research on the biology of fetal-maternal barriers has been limited by access to physiologically relevant cells, including trophoblast cells. In this study, we describe the development of a human term placenta-derived cytotrophoblast immortalized cell line (hPTCCTB) derived from the basal plate. Human-term placenta-derived cytotrophoblast immortalized cell line cells are comparable to their primary cells of origin in terms of morphology, marker expression, and functional responses. We demonstrate that these can transform into syncytiotrophoblast and extravillous trophoblasts. We also compared the hPTCCTB cells to immortalized chorionic trophoblasts (hFM-CTC), trophoblasts of the chorionic plate, and BeWo cells, choriocarcinoma cell lines of conventional use. Human-term placenta-derived cytotrophoblast immortalized cell line and hFM-CTCs displayed more similarity to each other than to BeWos, but these differ in syncytialization ability. Overall, this study (1) demonstrates that the immortalized hPTCCTB generated are cells of higher physiological relevance and (2) provides a look into the distinction between the spatially distinct placental and fetal barrier trophoblasts cells, hPTCCTB and hFM-CTC, respectively.


Subject(s)
Placenta , Trophoblasts , Humans , Trophoblasts/cytology , Trophoblasts/physiology , Female , Pregnancy , Placenta/cytology , Placenta/physiology , Cell Line
9.
Proteomics ; 24(11): e2200145, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38214697

ABSTRACT

The ability of trophectodermal cells (outer layer of the embryo) to attach to the endometrial cells and subsequently invade the underlying matrix are critical stages of embryo implantation during successful pregnancy establishment. Extracellular vesicles (EVs) have been implicated in embryo-maternal crosstalk, capable of reprogramming endometrial cells towards a pro-implantation signature and phenotype. However, challenges associated with EV yield and direct loading of biomolecules limit their therapeutic potential. We have previously established generation of cell-derived nanovesicles (NVs) from human trophectodermal cells (hTSCs) and their capacity to reprogram endometrial cells to enhance adhesion and blastocyst outgrowth. Here, we employed a rapid NV loading strategy to encapsulate potent implantation molecules such as HB-EGF (NVHBEGF). We show these loaded NVs elicit EGFR-mediated effects in recipient endometrial cells, activating kinase phosphorylation sites that modulate their activity (AKT S124/129, MAPK1 T185/Y187), and downstream signalling pathways and processes (AKT signal transduction, GTPase activity). Importantly, they enhanced target cell attachment and invasion. The phosphoproteomics and proteomics approach highlight NVHBEGF-mediated short-term signalling patterns and long-term reprogramming capabilities on endometrial cells which functionally enhance trophectodermal-endometrial interactions. This proof-of-concept study demonstrates feasibility in enhancing the functional potency of NVs in the context of embryo implantation.


Subject(s)
Extracellular Vesicles , Heparin-binding EGF-like Growth Factor , Humans , Heparin-binding EGF-like Growth Factor/metabolism , Female , Extracellular Vesicles/metabolism , Endometrium/metabolism , Endometrium/cytology , Spheroids, Cellular/metabolism , Spheroids, Cellular/cytology , Trophoblasts/metabolism , Trophoblasts/cytology , Embryo Implantation , Cell Adhesion , Signal Transduction , Proteomics/methods , Pregnancy
10.
Nature ; 622(7983): 562-573, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37673118

ABSTRACT

The ability to study human post-implantation development remains limited owing to ethical and technical challenges associated with intrauterine development after implantation1. Embryo-like models with spatially organized morphogenesis and structure of all defining embryonic and extra-embryonic tissues of the post-implantation human conceptus (that is, the embryonic disc, the bilaminar disc, the yolk sac, the chorionic sac and the surrounding trophoblast layer) remain lacking1,2. Mouse naive embryonic stem cells have recently been shown to give rise to embryonic and extra-embryonic stem cells capable of self-assembling into post-gastrulation structured stem-cell-based embryo models with spatially organized morphogenesis (called SEMs)3. Here we extend those findings to humans using only genetically unmodified human naive embryonic stem cells (cultured in human enhanced naive stem cell medium conditions)4. Such human fully integrated and complete SEMs recapitulate the organization of nearly all known lineages and compartments of post-implantation human embryos, including the epiblast, the hypoblast, the extra-embryonic mesoderm and the trophoblast layer surrounding the latter compartments. These human complete SEMs demonstrated developmental growth dynamics that resemble key hallmarks of post-implantation stage embryogenesis up to 13-14 days after fertilization (Carnegie stage 6a). These include embryonic disc and bilaminar disc formation, epiblast lumenogenesis, polarized amniogenesis, anterior-posterior symmetry breaking, primordial germ-cell specification, polarized yolk sac with visceral and parietal endoderm formation, extra-embryonic mesoderm expansion that defines a chorionic cavity and a connecting stalk, and a trophoblast-surrounding compartment demonstrating syncytium and lacunae formation. This SEM platform will probably enable the experimental investigation of previously inaccessible windows of human early post implantation up to peri-gastrulation development.


Subject(s)
Embryo Implantation , Embryo, Mammalian , Embryonic Development , Human Embryonic Stem Cells , Humans , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Fertilization , Gastrulation , Germ Layers/cytology , Germ Layers/embryology , Human Embryonic Stem Cells/cytology , Trophoblasts/cytology , Yolk Sac/cytology , Yolk Sac/embryology , Giant Cells/cytology
11.
Am J Reprod Immunol ; 90(2): e13752, 2023 08.
Article in English | MEDLINE | ID: mdl-37491922

ABSTRACT

PROBLEM: In the cell column of anchoring villi, the cytotrophoblast differentiates into extravillous trophoblast (EVT) and invades the endometrium in contact with maternal immune cells. Recently, chemokines were proposed to regulate the decidual immune response. To investigate the roles of chemokines around the anchoring villi, we examined the expression profiles of chemokines in the first-trimester trophoblast-derived Swan71 cells using a three-dimensional culture model. METHOD OF STUDY: The gene expressions in the spheroid-formed Swan71 cells were examined by microarray and qPCR analyses. The protein expressions were examined by immunochemical staining. The chemoattractant effects of spheroid-formed Swan71 cells were examined by migration assay using monocyte-derived THP-1 cells. RESULTS: The expressions of an EVT marker, laeverin, and matrix metalloproteases, MMP2 and MMP9, were increased in the spheroid-cultured Swan71 cells. Microarray and qPCR analysis revealed that mRNA expressions of various chemokines, CCL2, CCL7, CCL20, CXCL1, CXCL2, CXCL5, CXCL6, CXCL8, and CXCL10, in the spheroid-cultured Swan71 cells were up-regulated as compared with those in the monolayer-cultured Swan71 cells. These expressions were significantly suppressed by hypoxia. Migration assay showed that culture media derived from the spheroid-formed Swan71 cells promoted THP-1 cell migration. CONCLUSION: This study indicated that chemokine expressions in Swan71 cells increase under a spheroid-forming culture and the culture media have chemoattractant effects. Since three-dimensional cell assembling in the spheroid resembles the structure of the cell column, this study also suggests that chemokines play important roles in the interaction between EVT and immune cells in their early differentiation stage.


Subject(s)
Trophoblasts , Humans , Cell Line , Chemokines/biosynthesis , Trophoblasts/cytology , Trophoblasts/immunology , Cell Differentiation , Gene Expression Regulation , RNA, Messenger/genetics , Cell Movement , Oxygen/metabolism
12.
Development ; 150(15)2023 08 01.
Article in English | MEDLINE | ID: mdl-37417811

ABSTRACT

The invasive trophoblast cell lineages in rat and human share crucial responsibilities in establishing the uterine-placental interface of the hemochorial placenta. These observations have led to the rat becoming an especially useful animal model for studying hemochorial placentation. However, our understanding of similarities or differences between regulatory mechanisms governing rat and human invasive trophoblast cell populations is limited. In this study, we generated single-nucleus ATAC-seq data from gestation day 15.5 and 19.5 rat uterine-placental interface tissues, and integrated the data with single-cell RNA-seq data generated at the same stages. We determined the chromatin accessibility profiles of invasive trophoblast, natural killer, macrophage, endothelial and smooth muscle cells, and compared invasive trophoblast chromatin accessibility with extravillous trophoblast cell accessibility. In comparing chromatin accessibility profiles between species, we found similarities in patterns of gene regulation and groups of motifs enriched in accessible regions. Finally, we identified a conserved gene regulatory network in invasive trophoblast cells. Our data, findings and analysis will facilitate future studies investigating regulatory mechanisms essential for the invasive trophoblast cell lineage.


Subject(s)
Gene Regulatory Networks , Trophoblasts , Animals , Pregnancy , Rats , Cell Nucleus , Chromatin , Placenta/cytology , Single-Cell Gene Expression Analysis , Transcription Factors/metabolism , Trophoblasts/cytology , Trophoblasts/metabolism , Uterus/cytology , Female
13.
Nature ; 619(7970): 595-605, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37468587

ABSTRACT

Beginning in the first trimester, fetally derived extravillous trophoblasts (EVTs) invade the uterus and remodel its spiral arteries, transforming them into large, dilated blood vessels. Several mechanisms have been proposed to explain how EVTs coordinate with the maternal decidua to promote a tissue microenvironment conducive to spiral artery remodelling (SAR)1-3. However, it remains a matter of debate regarding which immune and stromal cells participate in these interactions and how this evolves with respect to gestational age. Here we used a multiomics approach, combining the strengths of spatial proteomics and transcriptomics, to construct a spatiotemporal atlas of the human maternal-fetal interface in the first half of pregnancy. We used multiplexed ion beam imaging by time-of-flight and a 37-plex antibody panel to analyse around 500,000 cells and 588 arteries within intact decidua from 66 individuals between 6 and 20 weeks of gestation, integrating this dataset with co-registered transcriptomics profiles. Gestational age substantially influenced the frequency of maternal immune and stromal cells, with tolerogenic subsets expressing CD206, CD163, TIM-3, galectin-9 and IDO-1 becoming increasingly enriched and colocalized at later time points. By contrast, SAR progression preferentially correlated with EVT invasion and was transcriptionally defined by 78 gene ontology pathways exhibiting distinct monotonic and biphasic trends. Last, we developed an integrated model of SAR whereby invasion is accompanied by the upregulation of pro-angiogenic, immunoregulatory EVT programmes that promote interactions with the vascular endothelium while avoiding the activation of maternal immune cells.


Subject(s)
Maternal-Fetal Exchange , Trophoblasts , Uterus , Female , Humans , Pregnancy , Arteries/physiology , Decidua/blood supply , Decidua/cytology , Decidua/immunology , Decidua/physiology , Pregnancy Trimester, First/genetics , Pregnancy Trimester, First/metabolism , Pregnancy Trimester, First/physiology , Trophoblasts/cytology , Trophoblasts/immunology , Trophoblasts/physiology , Uterus/blood supply , Uterus/cytology , Uterus/immunology , Uterus/physiology , Maternal-Fetal Exchange/genetics , Maternal-Fetal Exchange/immunology , Maternal-Fetal Exchange/physiology , Time Factors , Proteomics , Gene Expression Profiling , Datasets as Topic , Gestational Age
14.
Nature ; 616(7955): 143-151, 2023 04.
Article in English | MEDLINE | ID: mdl-36991123

ABSTRACT

The relationship between the human placenta-the extraembryonic organ made by the fetus, and the decidua-the mucosal layer of the uterus, is essential to nurture and protect the fetus during pregnancy. Extravillous trophoblast cells (EVTs) derived from placental villi infiltrate the decidua, transforming the maternal arteries into high-conductance vessels1. Defects in trophoblast invasion and arterial transformation established during early pregnancy underlie common pregnancy disorders such as pre-eclampsia2. Here we have generated a spatially resolved multiomics single-cell atlas of the entire human maternal-fetal interface including the myometrium, which enables us to resolve the full trajectory of trophoblast differentiation. We have used this cellular map to infer the possible transcription factors mediating EVT invasion and show that they are preserved in in vitro models of EVT differentiation from primary trophoblast organoids3,4 and trophoblast stem cells5. We define the transcriptomes of the final cell states of trophoblast invasion: placental bed giant cells (fused multinucleated EVTs) and endovascular EVTs (which form plugs inside the maternal arteries). We predict the cell-cell communication events contributing to trophoblast invasion and placental bed giant cell formation, and model the dual role of interstitial EVTs and endovascular EVTs in mediating arterial transformation during early pregnancy. Together, our data provide a comprehensive analysis of postimplantation trophoblast differentiation that can be used to inform the design of experimental models of the human placenta in early pregnancy.


Subject(s)
Multiomics , Pregnancy Trimester, First , Trophoblasts , Female , Humans , Pregnancy , Cell Movement , Placenta/blood supply , Placenta/cytology , Placenta/physiology , Pregnancy Trimester, First/physiology , Trophoblasts/cytology , Trophoblasts/metabolism , Trophoblasts/physiology , Decidua/blood supply , Decidua/cytology , Maternal-Fetal Relations/physiology , Single-Cell Analysis , Myometrium/cytology , Myometrium/physiology , Cell Differentiation , Organoids/cytology , Organoids/physiology , Stem Cells/cytology , Transcriptome , Transcription Factors/metabolism , Cell Communication
15.
J Biol Chem ; 299(5): 104650, 2023 05.
Article in English | MEDLINE | ID: mdl-36972789

ABSTRACT

Human trophoblast stem cells (hTSCs) have emerged as a powerful tool to model early placental development in vitro. Analogous to the epithelial cytotrophoblast in the placenta, hTSCs can differentiate into cells of the extravillous trophoblast (EVT) lineage or the multinucleate syncytiotrophoblast (STB). Here we present a chemically defined culture system for STB and EVT differentiation of hTSCs. Notably, in contrast to current approaches, we neither utilize forskolin for STB formation nor transforming growth factor-beta (TGFß) inhibitors or a passage step for EVT differentiation. Strikingly, the presence of a single additional extracellular cue-laminin-111-switched the terminal differentiation of hTSCs from STB to the EVT lineage under these conditions. In the absence of laminin-111, STB formation occurred, with cell fusion comparable to that obtained with differentiation mediated by forskolin; however, in the presence of laminin-111, hTSCs differentiated to the EVT lineage. Protein expression of nuclear hypoxia-inducible factors (HIF1α and HIF2α) was upregulated during EVT differentiation mediated by laminin-111 exposure. A heterogeneous mixture of Notch1+ EVTs in colonies and HLA-G+ single-cell EVTs were obtained without a passage step, reminiscent of heterogeneity in vivo. Further analysis showed that inhibition of TGFß signaling affected both STB and EVT differentiation mediated by laminin-111 exposure. TGFß inhibition during EVT differentiation resulted in decreased HLA-G expression and increased Notch1 expression. On the other hand, TGFß inhibition prevented STB formation. The chemically defined culture system for hTSC differentiation established herein facilitates quantitative analysis of heterogeneity that arises during hTSC differentiation and will enable mechanistic studies in vitro.


Subject(s)
Cell Differentiation , Cytological Techniques , Laminin , Stem Cells , Trophoblasts , Humans , Cell Differentiation/drug effects , Colforsin/pharmacology , Colforsin/metabolism , HLA-G Antigens/genetics , HLA-G Antigens/metabolism , Laminin/pharmacology , Stem Cells/cytology , Stem Cells/drug effects , Transforming Growth Factor beta/metabolism , Trophoblasts/cytology , Trophoblasts/metabolism , Culture Media/chemistry , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Gene Expression Regulation, Developmental/drug effects , Cytological Techniques/methods
16.
Am J Reprod Immunol ; 89(5): e13682, 2023 05.
Article in English | MEDLINE | ID: mdl-36670490

ABSTRACT

PROBLEM: Preeclampsia (PE) is an obstetric disease involving multiple systems, which account for maternal and fetal complications and increased mortality. Circular RNAs (circRNAs) were recently deemed to associate with the pathogenesis of PE. This study aims to clarify the correlation between circRNA hsa_circ_0001326 and PE and explore its biological function in PE. METHOD OF STUDY: The expression of hsa_circ_0001326 in PE placentas was detected by real-time quantitative PCR (qRT-PCR). After overexpressing or inhibiting hsa_circ_0001326 in trophoblast cells, the cell growth, migration, and invasion were evaluated by Cell Counting Kit-8 (CCK-8) and transwell assays. Western blot assay was applied to detect the epithelial-mesenchymal transition (EMT) proteins, E-cadherin and Vimentin. Furthermore, a dual-luciferase reporter assay was applied to verify the binding sites of hsa_circ_0001326, miR-145-5p, and transforming growth factor beta 2 (TGFB2). RESULTS: Hsa_circ_0001326 was found to be higher expressed in PE placentas than in normal placentas. Furthermore, hsa_circ_0001326 played a negative regulating role in trophoblast cell viability, migration, and invasion. Overexpression of hsa_circ_0001326 inhibited the viability, migration, and invasion of trophoblast cells, while inhibition of hsa_circ_0001326 showed opposite effects. Mechanistically, hsa_circ_0001326 sponged miR-145-5p to elevate TGFB2 expression in trophoblast cells. CONCLUSION: This study provided evidence that the up-regulated hsa_circ_0001326 in PE restrained trophoblast cells proliferation, migration, and invasion by sponging miR-145-5p to elevate TGFB2 expression. Our results might provide a novel insight into the role of hsa_circ_0001326 in the pathogenesis of PE.


Subject(s)
MicroRNAs , RNA, Circular , Transforming Growth Factor beta2 , Trophoblasts , Female , Humans , Pregnancy , Blotting, Western , Cell Movement , Cell Proliferation , MicroRNAs/genetics , Placenta/metabolism , Placenta/physiology , RNA, Circular/genetics , RNA, Circular/physiology , Transforming Growth Factor beta2/genetics , Trophoblasts/cytology , Trophoblasts/metabolism , Trophoblasts/physiology
17.
Proc Natl Acad Sci U S A ; 119(38): e2200252119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36095212

ABSTRACT

In humans, the uterus undergoes a dramatic transformation to form an endometrial stroma-derived secretory tissue, termed decidua, during early pregnancy. The decidua secretes various factors that act in an autocrine/paracrine manner to promote stromal differentiation, facilitate maternal angiogenesis, and influence trophoblast differentiation and development, which are critical for the formation of a functional placenta. Here, we investigated the mechanisms by which decidual cells communicate with each other and with other cell types within the uterine milieu. We discovered that primary human endometrial stromal cells (HESCs) secrete extracellular vesicles (EVs) during decidualization and that this process is controlled by a conserved HIF2α-RAB27B pathway. Mass spectrometry revealed that the decidual EVs harbor a variety of protein cargo, including cell signaling molecules, growth modulators, metabolic regulators, and factors controlling endothelial cell expansion and remodeling. We tested the hypothesis that EVs secreted by the decidual cells mediate functional communications between various cell types within the uterus. We demonstrated that the internalization of EVs, specifically those carrying the glucose transporter 1 (GLUT1), promotes glucose uptake in recipient HESCs, supporting and advancing the decidualization program. Additionally, delivery of HESC-derived EVs into human endothelial cells stimulated their proliferation and led to enhanced vascular network formation. Strikingly, stromal EVs also promoted the differentiation of trophoblast stem cells into the extravillous trophoblast lineage. Collectively, these findings provide a deeper understanding of the pleiotropic roles played by EVs secreted by the decidual cells to ensure coordination of endometrial differentiation and angiogenesis with trophoblast function during the progressive phases of decidualization and placentation.


Subject(s)
Decidua , Extracellular Vesicles , Trophoblasts , Cell Differentiation , Decidua/cytology , Decidua/physiology , Endothelial Cells/cytology , Endothelial Cells/physiology , Extracellular Vesicles/physiology , Female , Humans , Neovascularization, Physiologic , Pregnancy , Stromal Cells/cytology , Stromal Cells/physiology , Trophoblasts/cytology , Trophoblasts/physiology
18.
Proc Natl Acad Sci U S A ; 119(36): e2204069119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037374

ABSTRACT

Healthy progression of human pregnancy relies on cytotrophoblast (CTB) progenitor self-renewal and its differentiation toward multinucleated syncytiotrophoblasts (STBs) and invasive extravillous trophoblasts (EVTs). However, the underlying molecular mechanisms that fine-tune CTB self-renewal or direct its differentiation toward STBs or EVTs during human placentation are poorly defined. Here, we show that Hippo signaling cofactor WW domain containing transcription regulator 1 (WWTR1) is a master regulator of trophoblast fate choice during human placentation. Using human trophoblast stem cells (human TSCs), primary CTBs, and human placental explants, we demonstrate that WWTR1 promotes self-renewal in human CTBs and is essential for their differentiation to EVTs. In contrast, WWTR1 prevents induction of the STB fate in undifferentiated CTBs. Our single-cell RNA sequencing analyses in first-trimester human placenta, along with mechanistic analyses in human TSCs revealed that WWTR1 fine-tunes trophoblast fate by directly regulating WNT signaling components. Importantly, our analyses of placentae from pathological pregnancies show that extreme preterm births (gestational time ≤28 wk) are often associated with loss of WWTR1 expression in CTBs. In summary, our findings establish the critical importance of WWTR1 at the crossroads of human trophoblast progenitor self-renewal versus differentiation. It plays positive instructive roles in promoting CTB self-renewal and EVT differentiation and safeguards undifferentiated CTBs from attaining the STB fate.


Subject(s)
Placenta , Placentation , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Trophoblasts , Cell Differentiation , Female , Hippo Signaling Pathway , Humans , Infant, Newborn , Placenta/metabolism , Placentation/physiology , Pregnancy , Premature Birth/physiopathology , Transcriptional Coactivator with PDZ-Binding Motif Proteins/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Trophoblasts/cytology , Trophoblasts/metabolism
19.
Horm Metab Res ; 54(9): 633-640, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35981547

ABSTRACT

Preeclampsia (PE) may pose significant adverse effects on pregnant women. Dysregulation of angiogenesis, trophoblast invasion, and proliferation are known to be associated with PE development and progression. Fms related tyrosine kinase 1 (FLT1), an anti-angiogenic factor, is consistently upregulated in PE patients. Recent papers highlight that aberrant miR-30a-3p expression contributes to PE development. More effects are needed to assess the biological function of placental miR-30a-3p in PE. The soluble FLT1 (sFLT1) and FLT1 levels were tested by ELISA assay and Western blotting assay. mRNA levels were measured by RT-qPCR assay. Colony formation and MTT assays were applied to assess the effect of miR-30a-3p on trophoblast cell proliferation. The serum sFLT1 and placental FLT1 levels were substantially high in patients with PE. Using miRNA microarray assay, we identified miR-30a-3p upregulation in PE patients' placenta tissues. We further confirmed that miR-30a-3p binds to the 3'-UTR of FLT1 gene and positively regulate its expression. Forcing miR-30a-3p expression inhibited trophoblast cell proliferation and vice versa. In conclusion, persistent high levels of FLT1 and miR-30a-3p may pose adverse effects on angiogenesis and trophoblast proliferation in placenta of PE patients. Therefore, targeting FLT1 and miR-30a-3p may serve as ideal strategies for managing patients with PE.


Subject(s)
MicroRNAs , Pre-Eclampsia , Trophoblasts/cytology , 3' Untranslated Regions/genetics , Cell Movement , Cell Proliferation , Female , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Placenta/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Pregnancy , Trophoblasts/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism
20.
Proc Natl Acad Sci U S A ; 119(28): e2120667119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35867736

ABSTRACT

Abnormal placentation has been noticed in a variety of pregnancy complications such as miscarriage, early-onset preeclampsia, and fetal growth restriction. Defects in the developmental program of extravillous trophoblasts (EVTs), migrating from placental anchoring villi into the maternal decidua and its vessels, is thought to be an underlying cause. Yet, key regulatory mechanisms controlling commitment and differentiation of the invasive trophoblast lineage remain largely elusive. Herein, comparative gene expression analyses of HLA-G-purified EVTs, isolated from donor-matched placenta, decidua, and trophoblast organoids (TB-ORGs), revealed biological processes and signaling pathways governing EVT development. In particular, bioinformatics analyses and manipulations in different versatile trophoblast cell models unraveled transforming growth factor-ß (TGF-ß) signaling as a crucial pathway driving differentiation of placental EVTs into decidual EVTs, the latter showing enrichment of a secretory gene signature. Removal of Wingless signaling and subsequent activation of the TGF-ß pathway were required for the formation of human leukocyte antigen-G+ (HLA-G+) EVTs in TB-ORGs that resemble in situ EVTs at the level of global gene expression. Accordingly, TGF-ß-treated EVTs secreted enzymes, such as DAO and PAPPA2, which were predominantly expressed by decidual EVTs. Their genes were controlled by EVT-specific induction and genomic binding of the TGF-ß downstream effector SMAD3. In summary, TGF-ß signaling plays a key role in human placental development governing the differentiation program of EVTs.


Subject(s)
Placentation , Transforming Growth Factor beta , Trophoblasts , Female , HLA-G Antigens/metabolism , Humans , Pregnancy , Transforming Growth Factor beta/metabolism , Trophoblasts/cytology , Trophoblasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...