Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Parasitology ; 147(14): 1678-1688, 2020 12.
Article in English | MEDLINE | ID: mdl-32951614

ABSTRACT

Free-living amoeba of the genus Acanthamoeba are ubiquitous protozoa involved in opportunistic and non-opportunistic infection in humans, such as granulomatous amoebic encephalitis and amoebic keratitis. Both infections have challenging characteristics such as the formation of the resistant cysts in infected tissues, hampering the treatment and most usual diagnosis depending on time-consuming and/or low sensitivity techniques. The use of monoclonal antibodies presents itself as an opportunity for the development of more effective alternative diagnostic methods, as well as an important and useful tool in the search for new therapeutic targets. This study investigated the possibility of using a previously produced monoclonal antibody (mAb3), as a diagnostic tool for the detection of Acanthamoeba trophozoites by direct and indirect flow cytometry and immunofluorescence. Immunoprecipitation assay and mass spectrometry allowed the isolation of the antibody's target and suggested it is a transporter part of the CPA (cation: proton antiporter) superfamily. In vitro tests indicate an important role of this target in Acanthamoeba's encystment physiology. Our results support the importance of studying the role of CPA2 transporters in the context of acanthamoebiasis, as this may be a way to identify new therapeutic candidates.


Subject(s)
Acanthamoeba/immunology , Amebiasis/diagnosis , Protozoan Proteins/genetics , Sodium-Hydrogen Exchangers/genetics , Acanthamoeba/genetics , Amebiasis/parasitology , Amino Acid Sequence , Antibodies, Monoclonal , Antibodies, Protozoan , Flow Cytometry , Fluorescent Antibody Technique , Protein Structure, Secondary , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Sequence Alignment , Sodium-Hydrogen Exchangers/chemistry , Sodium-Hydrogen Exchangers/metabolism , Trophozoites/genetics , Trophozoites/immunology
2.
Nature ; 582(7810): 104-108, 2020 06.
Article in English | MEDLINE | ID: mdl-32427965

ABSTRACT

Malaria caused by Plasmodium falciparum remains the leading single-agent cause of mortality in children1, yet the promise of an effective vaccine has not been fulfilled. Here, using our previously described differential screening method to analyse the proteome of blood-stage P. falciparum parasites2, we identify P. falciparum glutamic-acid-rich protein (PfGARP) as a parasite antigen that is recognized by antibodies in the plasma of children who are relatively resistant-but not those who are susceptible-to malaria caused by P. falciparum. PfGARP is a parasite antigen of 80 kDa that is expressed on the exofacial surface of erythrocytes infected by early-to-late-trophozoite-stage parasites. We demonstrate that antibodies against PfGARP kill trophozoite-infected erythrocytes in culture by inducing programmed cell death in the parasites, and that vaccinating non-human primates with PfGARP partially protects against a challenge with P. falciparum. Furthermore, our longitudinal cohort studies showed that, compared to individuals who had naturally occurring anti-PfGARP antibodies, Tanzanian children without anti-PfGARP antibodies had a 2.5-fold-higher risk of severe malaria and Kenyan adolescents and adults without these antibodies had a twofold-higher parasite density. By killing trophozoite-infected erythrocytes, PfGARP could synergize with other vaccines that target parasite invasion of hepatocytes or the invasion of and egress from erythrocytes.


Subject(s)
Apoptosis/immunology , Intercellular Signaling Peptides and Proteins/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Parasites/immunology , Plasmodium falciparum/cytology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adolescent , Adult , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/chemistry , Antigens, Protozoan/immunology , Aotidae/immunology , Aotidae/parasitology , Caspases/metabolism , Child , Cohort Studies , DNA, Protozoan/chemistry , DNA, Protozoan/metabolism , Enzyme Activation , Erythrocytes/parasitology , Female , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Kenya , Malaria Vaccines/immunology , Malaria, Falciparum/parasitology , Male , Mice , Parasites/cytology , Parasites/growth & development , Plasmodium falciparum/growth & development , Protozoan Proteins/chemistry , Tanzania , Trophozoites/cytology , Trophozoites/growth & development , Trophozoites/immunology , Vacuoles/immunology
3.
J Infect Chemother ; 25(12): 955-964, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31189504

ABSTRACT

Trichomonas vaginalis (T. vaginalis) is a common sexually transmitted infection, affecting the urogenital tract. Trichomoniasis is customarily treated with metronidazole (MTZ). MTZ is known to cause undesirable side effects and there is several reports on MTZ resistant T. vaginalis. Thus, the present study aimed to in-vitro evaluate the activity of DNA minor groove binder drug ''Netropsin dihydrochloride'' against metronidazole-sensitive T. vaginalis isolates (G and U isolates) and resistant T. vaginalis isolate (ATCC50138) (R isolate). Netropsin was tested at concentrations ranging from 3.5 to 200 µg/ml. It showed effectiveness against all isolates with MLC of 12.5 µg/ml for G and U isolates and of 25 µg/ml for R isolate. Cytotoxicity assay of isolates exposed to the respective MLC of netropsin for 42 h showed a highly significant reduction in the death percentage of MCDK cell line as compared to the effect elicited by drug free controls. The hemolytic activity was evaluated by hemolytic assay and by monitoring the interaction of T. vaginalis isolates with human erythrocytes by inverted microscopy and scanning electron microscopy. The hemolytic assay showed (0%) hemolysis of RBCs incubated with T. vaginalis isolates treated with the corresponding MLC of netropsin for 24 h. Scanning electron microscopy revealed cytoskeletal deformities of netropsin treated isolates. Taken together, these observations suggest that netropsin is a promising therapy for T. vaginalis infection affecting its viability, virulence, cytopathogenic and hemolytic activity with a mechanism of action that might overcome T. vaginalis resistance to metronidazole.


Subject(s)
Anti-Bacterial Agents/pharmacology , Netropsin/pharmacology , Trichomonas Vaginitis/drug therapy , Trichomonas vaginalis/drug effects , Animals , Anti-Bacterial Agents/therapeutic use , Dogs , Drug Resistance , Female , Hemolysis/immunology , Humans , Madin Darby Canine Kidney Cells , Metronidazole/pharmacology , Metronidazole/therapeutic use , Netropsin/therapeutic use , Parasitic Sensitivity Tests , Trichomonas Vaginitis/parasitology , Trichomonas vaginalis/immunology , Trichomonas vaginalis/isolation & purification , Trichomonas vaginalis/pathogenicity , Trophozoites/drug effects , Trophozoites/immunology , Vagina/parasitology
4.
J Leukoc Biol ; 105(6): 1167-1181, 2019 06.
Article in English | MEDLINE | ID: mdl-30913315

ABSTRACT

Amoebiasis is an infection of global importance, caused by the eukaryotic parasite Entamoeba histolytica. Pathogenic E. histolytica is associated worldwide with over a million cases of amoebic dysentery, colitis, and amoebic liver abscess. In contrast, the nonpathogenic Entamoeba dispar does not cause these diseases, although it is commonly found in the same areas as pathogenic amoeba. Entamoeba histolytica infection is usually associated with infiltrating neutrophils. These neutrophils appear to play a defensive role against this parasite, by mechanisms not completely understood. Recently, our group reported that neutrophil extracellular traps (NET) are produced in response to E. histolytica trophozoites. But, there is no information on whether nonpathogenic E. dispar can also induce NET formation. In this report, we explored the possibility that E. dispar leads to NET formation. Neutrophils were stimulated by E. histolytica trophozoites or by E. dispar trophozoites, and NET formation was assessed by video microscopy. NET induced by E. histolytica were important for trapping and killing amoebas. In contrast, E. dispar did not induce NET formation in any condition. Also E. dispar did not induce neutrophil degranulation or reactive oxygen species production. In addition, E. histolytica-induced NET formation required alive amoebas and it was inhibited by galactose, N-acetylgalactosamine, and lactose. These data show that only alive pathogenic E. histolytica activates neutrophils to produce NET, and suggest that recognition of the parasite involves a carbohydrate with an axial HO- group at carbon 4 of a hexose.


Subject(s)
Cell Degranulation/immunology , Entamoeba histolytica/immunology , Extracellular Traps/immunology , Neutrophil Activation , Neutrophils/immunology , Trophozoites/immunology , Adult , Female , Humans , Male , Reactive Oxygen Species/immunology
5.
Parasite Immunol ; 41(2): e12610, 2019 02.
Article in English | MEDLINE | ID: mdl-30525201

ABSTRACT

Naegleria fowleri is a free-living amoeba, which is able to infect humans through the nasal mucosa causing a disease in the central nervous system known as primary amoebic meningoencephalitis (PAM). Polymorphonuclear cells (PMNs) play a critical role in the early phase of N fowleri infection. Recently, a new biological defence mechanism called neutrophil extracellular traps (NETs) has been attracting attention. These structures represent an important strategy to immobilize and kill invading microorganisms. In this work, we evaluate the capacity of N fowleri to induce the NETs release by PMNs cells in mice in vitro and in vivo. In vitro: Neutrophils from bone marrow were cocultured with N fowleri trophozoites. In vivo: we employed a mouse model of PAM. We evaluated DNA, histone and myeloperoxidase (MPO) and the formation of NETs by confocal microscopy. Our results showed N fowleri induce both NETs and MPO release by PMNs cells in mice after trophozoite exposure, which increased through time, in vitro and in vivo. These results demonstrate that NETs are somehow associated with the amoebas. We suggest PMNs release their traps trying to avoid N fowleri attachment at the apical side of the nasal epithelium.


Subject(s)
Extracellular Traps , Naegleria fowleri/immunology , Neutrophils/immunology , Amebiasis , Animals , Cells, Cultured , Central Nervous System Protozoal Infections/immunology , Coculture Techniques , DNA, Protozoan/analysis , Histones/analysis , Humans , Male , Mice , Mice, Inbred BALB C , Microscopy, Confocal , Nasal Mucosa/immunology , Peroxidase/analysis , Trophozoites/immunology
6.
Article in English | MEDLINE | ID: mdl-30023352

ABSTRACT

Amoebiasis, the disease caused by Entamoeba histolytica is the third leading cause of human deaths among parasite infections. E. histolytica was reported associated with around 100 million cases of amoebic dysentery, colitis and amoebic liver abscess that lead to almost 50,000 fatalities worldwide in 2010. E. histolytica infection is associated with the induction of inflammation characterized by a large number of infiltrating neutrophils. These neutrophils have been implicated in defense against this parasite, by mechanisms not completely described. The neutrophil antimicrobial mechanisms include phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs). Recently, our group reported that NETs are also produced in response to E. histolytica trophozoites. But, the mechanism for NETs induction remains unknown. In this report we explored the possibility that E. histolytica leads to NETs formation via a signaling pathway similar to the pathways activated by PMA or the Fc receptor FcγRIIIb. Neutrophils were stimulated by E. histolytica trophozoites and the effect of various pharmacological inhibitors on amoeba-induced NETs formation was assessed. Selective inhibitors of Raf, MEK, and NF-κB prevented E. histolytica-induced NET formation. In contrast, inhibitors of PKC, TAK1, and NADPH-oxidase did not block E. histolytica-induced NETs formation. E. histolytica induced phosphorylation of ERK in a Raf and MEK dependent manner. These data show that E. histolytica activates a signaling pathway to induce NETs formation, that involves Raf/MEK/ERK, but it is independent of PKC, TAK1, and reactive oxygen species (ROS). Thus, amoebas activate neutrophils via a different pathway from the pathways activated by PMA or the IgG receptor FcγRIIIb.


Subject(s)
Entamoeba histolytica/immunology , Extracellular Signal-Regulated MAP Kinases/metabolism , Extracellular Traps/metabolism , Host-Pathogen Interactions , Mitogen-Activated Protein Kinase Kinases/metabolism , Signal Transduction , raf Kinases/metabolism , Humans , Trophozoites/immunology
7.
Elife ; 72018 06 19.
Article in English | MEDLINE | ID: mdl-29914622

ABSTRACT

Anti-malarial pre-erythrocytic vaccines (PEV) target transmission by inhibiting human infection but are currently partially protective. It has been posited, but never demonstrated, that co-administering transmission-blocking vaccines (TBV) would enhance malaria control. We hypothesized a mechanism that TBV could reduce parasite density in the mosquito salivary glands, thereby enhancing PEV efficacy. This was tested using a multigenerational population assay, passaging Plasmodium berghei to Anopheles stephensi mosquitoes. A combined efficacy of 90.8% (86.7-94.2%) was observed in the PEV +TBV antibody group, higher than the estimated efficacy of 83.3% (95% CrI 79.1-87.0%) if the two antibodies acted independently. Higher PEV efficacy at lower mosquito parasite loads was observed, comprising the first direct evidence that co-administering anti-sporozoite and anti-transmission interventions act synergistically, enhancing PEV efficacy across a range of TBV doses and transmission intensities. Combining partially effective vaccines of differing anti-parasitic classes is a pragmatic, powerful way to accelerate malaria elimination efforts.


Subject(s)
Antibodies, Blocking/administration & dosage , Antibodies, Monoclonal/administration & dosage , Antibodies, Protozoan/administration & dosage , Malaria Vaccines/administration & dosage , Malaria/prevention & control , Plasmodium berghei/immunology , Sporozoites/immunology , Animals , Anopheles/parasitology , Drug Synergism , Female , Humans , Malaria/immunology , Malaria/parasitology , Mice , Mosquito Vectors/parasitology , Parasite Load , Plasmodium berghei/drug effects , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Salivary Glands/parasitology , Sporozoites/chemistry , Trophozoites/chemistry , Trophozoites/immunology
8.
Parasitol Res ; 117(8): 2555-2567, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29860573

ABSTRACT

Mast cells play a central role in the early clearance of the intestinal parasite Giardia lamblia. In a previous study, we reported that G. lamblia live trophozoites or trophozoite-derived total soluble extract induced direct activation (IgE-independent) of mast cells and release of IL-6 and TNF-α. To identify the Giardia molecules and the mast cell receptors involved in this activation, trophozoite-derived total soluble proteins separated into three fractions (F1-F3) were evaluated for its ability to activate mast cells in vitro. F2 activated mast cells in a greater extent than F1 and F3. Furthermore, F2 induced the release of IL-6 and TNF-α by mast cells. TLR2 and TLR4 expression increased slightly after mast cell stimulation with either F2 or total soluble extract; however, these receptors were not involved in F2 or total soluble extract-induced proinflammatory cytokine production. Proteins present in F2 as unique and high-intensity bands identified by liquid chromatography coupled with tandem mass spectrometry, include molecules with important biological activities such as enolase and arginine deiminase (ADI). Recombinant ADI and enolase were tested for their ability to activate mast cells, but only ADI induced a significant release of IL-6 and TNF-α. ADI product, citrulline but not ammonium, also induced mast cell release of TNF-α. Interestingly, recombinant ADI still stimulated the secretion of TNF-α by mast cells in a arginine-free medium, although in a lower extend that in the presence of arginine, indicating that either ADI itself can stimulate mast cells or through its metabolic product, citrulline.


Subject(s)
Cell Extracts/immunology , Citrulline/immunology , Giardia lamblia/immunology , Hydrolases/immunology , Mast Cells/immunology , Animals , Arginine , Cell Line , Giardiasis/immunology , Giardiasis/parasitology , Interleukin-6/immunology , Interleukin-6/metabolism , Phosphopyruvate Hydratase/metabolism , Rats , Rats, Sprague-Dawley , Toll-Like Receptor 2/immunology , Toll-Like Receptor 4/immunology , Trophozoites/immunology , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
10.
Pathog Glob Health ; 112(1): 1-12, 2018 02.
Article in English | MEDLINE | ID: mdl-29376476

ABSTRACT

Malaria infection caused by Plasmodium parasites remains a major health burden worldwide especially in the tropics and subtropics. Plasmodium exhibits a complex life cycle whereby it undergoes a series of developmental stages in the Anopheles mosquito vector and the vertebrate human host. Malaria severity is mainly attributed to the genetic complexity of the parasite which is reflected in the sophisticated mechanisms of invasion and evasion that allow it to overcome the immune responses of both its invertebrate and vertebrate hosts. In this review, we aim to provide an updated, clear and concise summary of the literature focusing on the interactions of the vertebrate innate immune system with Plasmodium parasites, namely sporozoites, merozoites, and trophozoites. The roles of innate immune factors, both humoral and cellular, in anti-Plasmodium defense are described with particular emphasis on the contribution of key innate players including neutrophils, macrophages, and natural killer cells to the clearance of liver and blood stage parasites. A comprehensive understanding of the innate immune responses to malaria parasites remains an important goal that would dramatically help improve the design of original treatment strategies and vaccines, both of which are urgently needed to relieve the burden of malaria especially in endemic countries.


Subject(s)
Host-Pathogen Interactions , Immunity, Innate , Malaria/immunology , Plasmodium/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Merozoites/immunology , Sporozoites/immunology , Trophozoites/immunology
11.
Parasitol Res ; 117(1): 75-87, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29128927

ABSTRACT

Naegleria fowleri is a protozoan that invades the central nervous system and causes primary amoebic meningoencephalitis. It has been reported that N. fowleri induces an important inflammatory response during the infection. In the present study, we evaluated the roles of Toll-like receptors in the recognition of N. fowleri trophozoites by human mucoepithelial cells, analyzing the expression and production of innate immune response mediators. After amoebic interactions with NCI-H292 cells, the expression and production levels of IL-8, TNF-α, IL-1ß, and human beta defensin-2 were evaluated by RT-PCR, ELISA, immunofluorescence, and dot blot assays, respectively. To determine whether the canonical signaling pathways were engaged, we used different inhibitors, namely, IMG-2005 for MyD88 and BAY 11-7085 for the nuclear factor NFkB. Our results showed that the expression and production of the pro-inflammatory cytokines and beta defensin-2 were induced by N. fowleri mainly through the canonical TLR4 pathway in a time-dependent manner.


Subject(s)
Naegleria fowleri/immunology , Naegleria fowleri/metabolism , Toll-Like Receptors/metabolism , Amebiasis , Animals , Cell Line , Cytokines/metabolism , Defensins/metabolism , Epithelial Cells/immunology , Humans , Immunity, Innate , Interleukin-1beta/metabolism , NF-kappa B/metabolism , Nitriles/pharmacology , Signal Transduction/drug effects , Sulfones/pharmacology , Trophozoites/immunology , Trophozoites/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
Parasitol Int ; 66(3): 324-330, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28110081

ABSTRACT

Humoral and cellular immune responses play an important role during Giardia lamblia infection. Several Giardia proteins have been identified as immunogenic antigens based on their elicited humoral immune response. Poorly is known about Giardia antigens that stimulate a cellular immune response. The main purpose of this study was to isolate and partial characterize an immunogenic antigen (5G8) of G. lamblia. The 5G8 protein was isolated from G. lamblia trophozoite lysates by affinity chromatography using moAb 5G8-coupled CNBr-Sepharose. The isolated protein was analysed by electrospray tandem mass spectrometry (ESI-MS/MS), and by diverse bioinformatics tools (GiardiaDB, BLASTn, BLASTp and ExPASy). Additionally, several biochemical and immunological characteristics of the isolated protein were analysed. By ESI-MS/MS the amino acidic 5G8 sequence was deduced. The 5G8 antigen belongs to the VSP family proteins of G. lamblia. This protein is composed by one polypeptide chain (±71kDa). Using the algorithm SYFPHEITI, we identified candidate CD4+ T-cell epitopes from the 5G8 antigen, which can elicit cell-mediated immune responses. In this study, we have identified a G. lamblia protein that induces a strong immune response in infected mice. The biochemical and immunological characterization of the immunogenic 5G8 antigen may contribute to the rational design of a Giardia vaccine.


Subject(s)
Antigens, Protozoan/chemistry , Antigens, Protozoan/immunology , Giardia lamblia/immunology , Amino Acid Sequence , Animals , Antigens, Protozoan/administration & dosage , Antigens, Protozoan/genetics , Antigens, Protozoan/isolation & purification , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/isolation & purification , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/isolation & purification , Immunity, Cellular , Immunity, Humoral , Membrane Proteins/genetics , Mice , Protozoan Proteins/administration & dosage , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Protozoan Proteins/isolation & purification , Protozoan Proteins/metabolism , Tandem Mass Spectrometry , Trophozoites/immunology
13.
Mediators Inflamm ; 2016: 7987686, 2016.
Article in English | MEDLINE | ID: mdl-27433028

ABSTRACT

Background. The most prominent variant surface antigens (VSAs) of Plasmodium falciparum are the var gene-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family, which serves as a parasite-sequestering ligand to endothelial cells. In this study we have examined the antibody reactivity of autologous plasma from symptomatic and asymptomatic malaria infected children against the infected erythrocytes' surface antigens using flow cytometry. Methods. Ethidium-bromide-labelled erythrocytic mature forms of P. falciparum parasites obtained from symptomatic and asymptomatic children were sequentially incubated with autologous plasma and fluorescein isothiocyanate-conjugated (FITC) antihuman IgG. Plasma antibody reactivity was detected by flow cytometry. Results. Asymptomatic children had more prevalence of trophozoites in peripheral blood (66%) compared to symptomatic children (16%), p = 0.002. The mean percentage of infected RBCs reacting with autologous sera was 89.78 among symptomatic children compared to 79.62 among asymptomatic children (p = 0.09). Moreover, the mean fluorescence intensity (MFI) in the asymptomatic was significantly higher compared to symptomatic children (p value = 0.040). Conclusion. Variant surface antigens on Plasmodium falciparum infected RBCs from symptomatic malaria children tend to be better recognized by IgG antibodies. This may suggest a role of some IgG antibodies in severity of malaria.


Subject(s)
Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Plasmodium falciparum/pathogenicity , Trophozoites/immunology , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Child , Erythrocytes/immunology , Erythrocytes/parasitology , Female , Flow Cytometry , Humans , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Male , Protozoan Proteins
14.
PLoS One ; 11(6): e0157872, 2016.
Article in English | MEDLINE | ID: mdl-27332547

ABSTRACT

BACKGROUND: Giardia lamblia is one of the most common infectious protozoans in human that may cause diarrhea in travelers. Searching for antigens that induced effectively protective immunity has become a key point in the development of vaccine against giardiasis. METHODOLOGY/PRINCIPAL FINDINGS: Mice vaccinated with G. lamblia trophozozite-specific α1-giardin DNA vaccine delivered orally by attenuated Salmonella typhimurium SL7027 elicited 74.2% trophozoite reduction, but only 28% reduction in cyst shedding compared with PBS buffer control. Oral vaccination with Salmonella-delivered cyst-specific CWP2 DNA produced 89% reduction in cysts shedding in feces of vaccinated mice. Significantly, the mice vaccinated with Salmonella-delivered bivalent α1-giardin and CWP2 DNA vaccines produced significant reduction in both trophozoite (79%) and cyst (93%) in feces of vaccinated mice. This parasite reduction is associated with the strong local mucosal IgA secretion and the IgG2a-dominant systemic immune responses in vaccinated mice. CONCLUSIONS: The results demonstrate that bivalent vaccines targeting α1-giardin and CWP2 can protect mice against the colonization of Giardia trophozoite and block the transformation of cyst in host at the same time, and can be used to prevent Giardia infection and block the transmission of giardiasis.


Subject(s)
Feces/microbiology , Giardia lamblia/immunology , Giardiasis/immunology , Protozoan Proteins/immunology , Salmonella typhimurium/metabolism , Trophozoites/immunology , Vaccination , Vaccines, DNA/immunology , Animals , Antibody Formation/immunology , Cytoskeletal Proteins/immunology , Feces/parasitology , Female , Fluorescent Antibody Technique , Giardiasis/blood , Giardiasis/parasitology , Immunity , Immunoglobulin G/immunology , Intestinal Mucosa/parasitology , Intestinal Mucosa/pathology , Lymph Nodes/pathology , Mice, Inbred BALB C , Plasmids/metabolism
15.
Parasite Immunol ; 38(8): 503-9, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27138813

ABSTRACT

Entamoeba histolytica invades the intestine and other organs during the pathogenesis of amoebiasis. In the early stages, the host organism responds with an inflammatory infiltrate composed mostly of neutrophils. It has been reported that these immune cells, activated by E. histolytica, exert a protective role by releasing proteolytic enzymes and generating reactive oxygen/nitrogen species (ROS/RNS) and antimicrobial peptides. It is now known that neutrophils also produce neutrophil extracellular traps (NETs), which are able to damage and kill pathogens. Studies have shown that intracellular protozoan pathogens, including Toxoplasma gondi, Plasmodium falciparum and Leishmania spp, induce neutrophils to release NETs and are damaged by them. However, the action of this mechanism has not been explored in relation to E. histolytica trophozoites. Through scanning electron, epifluorescence microscopy and viability assays, we show for first time that during in vitro interaction with E. histolytica trophozoites, human neutrophils released NETs that covered amoebas and reduced amoebic viability. These NETs presented histones, myeloperoxidase and decondensed chromatin. The results suggest that NETs participate in the elimination of the parasite.


Subject(s)
Entamoeba histolytica/immunology , Extracellular Traps/immunology , Host-Parasite Interactions/immunology , Neutrophils/immunology , Trophozoites/immunology , Amebiasis/immunology , Amebiasis/parasitology , Cells, Cultured , Chromatin/metabolism , Histones/metabolism , Humans , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Peroxidase/metabolism , Phagocytosis/immunology
16.
Parasite Immunol ; 38(8): 481-95, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27189133

ABSTRACT

Naegleria fowleri infects humans through the nasal mucosa causing a disease in the central nervous system known as primary amoebic meningoencephalitis (PAM). Polymorphonuclear cells (PMNs) play a critical role in the early phase of N. fowleri infection. Recently, a new biological defence mechanism called neutrophil extracellular traps (NETs) has been attracting attention. NETs are composed of nuclear DNA combined with histones and antibacterial proteins, and these structures are released from the cell to direct its antimicrobial attack. In this work, we evaluate the capacity of N. fowleri to induce the liberation of NETs by human PMN cells. Neutrophils were cocultured with unopsonized or IgG-opsonized N. fowleri trophozoites. DNA, histone, myeloperoxidase (MPO) and neutrophil elastase (NE) were stained, and the formation of NETs was evaluated by confocal microscopy and by quantifying the levels of extracellular DNA. Our results showed N. fowleri induce the liberation of NETs including release of MPO and NE by human PMN cells as exposure interaction time is increased, but N. fowleri trophozoites evaded killing. However, when trophozoites were opsonized, they were susceptible to the neutrophils activity. Therefore, our study suggests that antibody-mediated PMNs activation through NET formation may be crucial for antimicrobial responses against N. fowleri.


Subject(s)
Antibodies, Protozoan/immunology , Extracellular Traps/immunology , Immunoglobulin G/immunology , Naegleria fowleri/immunology , Neutrophil Activation/immunology , Neutrophils/immunology , Trophozoites/immunology , Animals , Coculture Techniques , DNA/metabolism , Histones/metabolism , Humans , Leukocyte Elastase/metabolism , Meningoencephalitis/immunology , Meningoencephalitis/parasitology , Microscopy, Confocal , Nasal Mucosa/parasitology , Peroxidase/metabolism , Phagocytosis/immunology
17.
Sci Rep ; 5: 15168, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26470844

ABSTRACT

Giardiasis is a neglected parasitic disease that affects primarily children, in whom it delays physical and mental development. The pathophysiology of giardiasis in not well understood, and most reports have identified Giardia intestinalis trophozoites only in the lumen and on the brush border of the small intestine. We identified Giardia trophozoites within the epithelium of the small intestine of a lactose intolerance patient. The Giardia trophozoites were obtained and cultured in vitro. In addition, we demonstrated Giardia trophozoite invasion in an animal model. Giardia trophozoites invaded the intestinal mucosa and submucosa of infected gerbils. The invasive trophozoites were observed at 21, 30 and 60 days age, and the average numbers of invaded sites were 17 ± 5, 15 ± 4, and 9 ± 3, respectively. We found trophozoites between epithelial cells, at the base of empty goblet cells, in lacteal vessels and within the submucosa. The morphological integrity of the invasive trophozoites was demonstrated via electron microscopy. The analysis of the gerbils infected with the trophozoites of the WB reference strain did not show intraepithelial trophozoites. These results demonstrate another Giardia pathogenic mechanism, opening the door to numerous future studies.


Subject(s)
Giardia lamblia/physiology , Animals , Antibodies/immunology , Child , Disease Models, Animal , Duodenum/parasitology , Gerbillinae/parasitology , Giardia lamblia/growth & development , Giardiasis/metabolism , Giardiasis/pathology , Humans , Immunohistochemistry , Intestinal Mucosa/parasitology , Microscopy, Electron , Trophozoites/immunology , Trophozoites/physiology
18.
Salvador; s.n; 2014. 98 p. ilus.
Thesis in Portuguese | LILACS | ID: biblio-1000952

ABSTRACT

A giardíase é uma doença causada pelo protozoário flagelado Giardia lamblia, e sua sintomatologia é caracterizada pela eliminação de fezes esteatorréicas, dores abdominais e náuseas. Segundo o CDC estima-se que há cerca 1,2 milhões de casos por ano de giardíase, acometendo principalmente crianças em idade escolar. Atualmente, o tratamento da giardíase é realizado principalmente pelo uso do fármaco da família dos 5-nitromidazóis, metronidazol (Flagyl®), secnidazol e tinidazol em particular. Estes são confrontados em casos de resistência clínica causada pelo frequente uso inadequado do medicamento e/ou abandono do tratamento. Além disso, o metronidazol pode apresentar efeito carcinogênico em longo prazo em humanos. Desta forma, novos estudos com análogos e/ou inibidores de poliaminas podem levar à elucidação dos mecanismos de ação envolvidos, favorecendo o estabelecimento de novos regimes terapêuticos mais seguros e eficazes. Em nosso trabalho, foram testadas as substâncias ciclohexilamina (CHA) e o metronidazol que são produtos sintéticos, com o objetivo de avaliar os seus efeitos na proliferação celular, caracterização dos moduladores do metabolismo de poliaminas, avaliação nas mudanças no potencial redox e elucidação de seus possíveis mecanismos de ação nos trofozoítos de Giardia lamblia. Foi realizada uma avaliação da proliferação celular na presença de CHA para trofozoítos de Giardia lamblia, onde observamos que a substância demonstrou ter ação siginficativa apresentando um efeito dosedependente. Observamos que os trofozoítos de G. lamblia apresentam uma inibição significativa do crescimento em presença de concentrações milimolares do CHA, cujo IC50 em 72 horas foi de 1,646 mM...


Giardiasis is a disease caused by the flagellate protozoan Giardia lamblia, and its symptomatology is characterized by steatorrhea, abdominal pain and nausea. According to the CDC, an estimate number of 1.2 million cases of giardiasis happen every year, affecting especially schoolchildren.Nowadays, giardiasis treatment is based on drugs from the 5-nitroimidazole family, particularly metronidazole (Flagyl), secnidazole and tinidazole. Those drugs are indiscriminately used by the population, and it's not uncommon to find them causing clinical resistance due to inappropriate utilization and/or tratment abandon. Besides that, metronidazole can present longterm carcinogenic effect in humans. Thus, new studies with analogs and/or polyamines inhibitors can lead to the clarification of the drugs action mechanis, favouring the establishment of new, safer and more efficient therapeutic regimens.Our work tested cyclohexylamine (CHA) and metronidazole, wich are synthetic products, in order to evaluate their effects on cell proliferation and on changes in redox potential, characterize polyamines metabolism modulator and describe their possible action mechanisms on Giardia lamblia trophozoites. We evaluated Giardia lamblia trophozoites cell proliferation in the presence of CHA; it was observe that the substance shows significant action, presenting dose-dependent effect. We also observed that G. lamblia trophozoites presented significant growth inhibition when exposed to millimolar concentrations of CHA - its IC50 in 72 hours was 1,646mM...


Subject(s)
Humans , Giardia/immunology , Giardia/parasitology , Trophozoites/growth & development , Trophozoites/physiology , Trophozoites/immunology , Trophozoites/parasitology , Trophozoites/pathology
19.
Parasitol Res ; 112(9): 3251-7, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23857298

ABSTRACT

In the present study, we evaluated the effect of an albendazole (ABZ) derivative JVG9 on cultured Giardia intestinalis. To assess the JVG9 effects, we evaluated the tubulin cytoskeleton by confocal microscopy, and we found that the characteristic staining was modified. The scanning electron microscopy images revealed extremely damaged trophozoites and cyst-like cells. The confocal images revealed that this drug triggered the expression of cyst wall protein 1 and encystation. We also found that at low doses, AL triggered the encystation process too.


Subject(s)
Albendazole/pharmacology , Anthelmintics/pharmacology , Giardia/drug effects , Albendazole/analogs & derivatives , Animals , Antibodies, Protozoan/immunology , Gene Expression Regulation , Giardia/growth & development , Giardia/immunology , Giardia/ultrastructure , Mice , Mice, Inbred BALB C , Microscopy, Confocal , Microscopy, Electron, Scanning , Protozoan Proteins/immunology , Protozoan Proteins/metabolism , Rats , Rats, Wistar , Recombinant Proteins , Trophozoites/drug effects , Trophozoites/growth & development , Trophozoites/immunology , Trophozoites/ultrastructure , Tubulin/metabolism
20.
Immunobiology ; 217(8): 795-807, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22633147

ABSTRACT

Analysis of the mechanisms underlying the inflammatory response in amoebiasis is important to understand the immunopathology of the disease. Mucosal associated effector and regulatory T cells may play a role in regulating the inflammatory immune response associated to Entamoeba histolytica infection in the colon. A subpopulation of regulatory T cells has recently been identified and is characterized by the expression of the chemokine receptor CCR9. In this report, we used CCR9 deficient (CCR9(-/-)) mice to investigate the role of the CCR9(+) T cells in a murine model of E. histolytica intestinal infection. Intracecal infection of CCR9(+/+), CCR9(+/-) and CCR9(-/-) mice with E. histolytica trophozoites, revealed striking differences in the development and nature of the intestinal inflammatory response observed between these strains. While CCR9(+/+) and CCR9(+/-) mice were resistant to the infection and resolved the pathogen-induced inflammatory response, CCR9(-/-) mice developed a chronic inflammatory response, which was associated with over-expression of the cytokines IFN-γ, TNF-α, IL-4, IL-6 and IL-17, while IL-10 was not present. In addition, increased levels of CCL11, CCL20 and CCL28 chemokines were detected by qRT-PCR in CCR9(-/-) mice. E. histolytica trophozoites were identified in the lumen of the cecum of CCR9(-/-) mice at seven days post infection (pi), whereas in CCR9(+/+) mice trophozoites disappeared by day 1 pi. Interestingly, the inflammation observed in CCR9(-/-) mice, was associated with a delayed recruitment of CD4(+)CD25(+)FoxP3(+) T cells to the cecal epithelium and lamina propria, suggesting that this population may play a role in the early regulation of the inflammatory response against E. histolytica, likely through IL-10 production. In support of these data, CCR9(+) T cells were also identified in colon tissue sections obtained from patients with amoebic colitis. Our data suggest that a population of CCR9(+)CD4(+)CD25(+)FoxP3(+) T cells may participate in the control and resolution of the inflammatory immune response to E. histolytica infection.


Subject(s)
Disease Models, Animal , Dysentery, Amebic/immunology , Entamoeba histolytica/immunology , Receptors, CCR/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Chemokine CCL11/genetics , Chemokine CCL11/immunology , Chemokine CCL11/metabolism , Chemokine CCL20/genetics , Chemokine CCL20/immunology , Chemokine CCL20/metabolism , Chemokines, CC/genetics , Chemokines, CC/immunology , Chemokines, CC/metabolism , Dysentery, Amebic/metabolism , Dysentery, Amebic/parasitology , Entamoeba histolytica/physiology , Flow Cytometry , Forkhead Transcription Factors/immunology , Forkhead Transcription Factors/metabolism , Gene Expression , Humans , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-17/immunology , Interleukin-17/metabolism , Interleukin-2 Receptor alpha Subunit/immunology , Interleukin-2 Receptor alpha Subunit/metabolism , Interleukin-4/immunology , Interleukin-4/metabolism , Interleukin-6/immunology , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CCR/genetics , Receptors, CCR/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Trophozoites/immunology , Trophozoites/physiology , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...