Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Microbiol ; 31: 9-15, 2016 06.
Article in English | MEDLINE | ID: mdl-26820447

ABSTRACT

Acanthamoeba are natural hosts for giant viruses and their life cycle comprises two stages: a trophozoite and a cryptobiotic cyst. Encystment involves a massive turnover of cellular components under molecular regulation. Giant viruses are able to infect only the trophozoite, while cysts are resistant to infection. Otherwise, upon infection, mimiviruses are able to prevent encystment. This review highlights the important points of Acanthamoeba and giant virus interactions regarding the encystment process. The existence of an acanthamoebal non-permissive cell for Acanthamoeba polyphaga mimivirus, the prototype member of the Mimivirus genus, is analyzed at the molecular and ecological levels, and compared to a similar phenomenon previously described for Emiliana huxleyi and its associated phycodnaviruses: the 'Cheshire Cat' escape strategy.


Subject(s)
Acanthamoeba/virology , Giant Viruses/genetics , Host-Pathogen Interactions/genetics , Mimiviridae/genetics , Parasite Encystment/genetics , Signal Transduction/genetics , Trophozoites/virology
2.
Appl Environ Microbiol ; 81(12): 4005-13, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25841006

ABSTRACT

Human noroviruses (HuNoVs) are the most common cause of food-borne disease outbreaks, as well as virus-related waterborne disease outbreaks in the United States. Here, we hypothesize that common free-living amoebae (FLA)-ubiquitous in the environment, known to interact with pathogens, and frequently isolated from water and fresh produce-could potentially act as reservoirs of HuNoV and facilitate the environmental transmission of HuNoVs. To investigate FLA as reservoirs for HuNoV, the interactions between two Acanthamoeba species, A. castellanii and A. polyphaga, as well as two HuNoV surrogates, murine norovirus type 1 (MNV-1) and feline calicivirus (FCV), were evaluated. The results showed that after 1 h of amoeba-virus incubation at 25°C, 490 and 337 PFU of MNV-1/ml were recovered from A. castellanii and A. polyphaga, respectively, while only few or no FCVs were detected. In addition, prolonged interaction of MNV-1 with amoebae was investigated for a period of 8 days, and MNV-1 was demonstrated to remain stable at around 200 PFU/ml from day 2 to day 8 after virus inoculation in A. castellanii. Moreover, after a complete amoeba life cycle (i.e., encystment and excystment), infectious viruses could still be detected. To determine the location of virus associated with amoebae, immunofluorescence experiments were performed and showed MNV-1 transitioning from the amoeba surface to inside the amoeba over a 24-h period. These results are significant to the understanding of how HuNoVs may interact with other microorganisms in the environment in order to aid in its persistence and survival, as well as potential transmission in water and to vulnerable food products such as fresh produce.


Subject(s)
Acanthamoeba/physiology , Acanthamoeba/virology , Calicivirus, Feline/physiology , Norovirus/physiology , Acanthamoeba/growth & development , Acanthamoeba/ultrastructure , Calicivirus, Feline/growth & development , Calicivirus, Feline/pathogenicity , Disease Reservoirs , Norovirus/growth & development , Norovirus/pathogenicity , Trophozoites/ultrastructure , Trophozoites/virology , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...