Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.127
Filter
1.
J Cell Mol Med ; 28(11): e18410, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38853457

ABSTRACT

Troponin T1 (TNNT1) plays a crucial role in muscle contraction but its role in cancer, particularly in kidney renal clear cell carcinoma (KIRC), is not well-understood. This study explores the expression, clinical significance and biological functions of TNNT1 in various cancers, with an emphasis on its involvement in KIRC. We analysed TNNT1 expression in cancers using databases like TCGA and GTEx, assessing its prognostic value, mutation patterns, methylation status and functional implications. The study also examined TNNT1's effect on the tumour microenvironment and drug sensitivity in KIRC, complemented by in vitro TNNT1 knockdown experiments in KIRC cells. TNNT1 is overexpressed in several cancers and linked to adverse outcomes, showing frequent upregulation mutations and abnormal methylation. Functionally, TNNT1 connects to muscle and cancer pathways, affects immune infiltration and drug responses, and its overexpression in KIRC is associated with advanced disease and reduced survival. Knocking down TNNT1 curbed KIRC cell growth. TNNT1's aberrant expression plays a significant role in tumorigenesis and immune modulation, highlighting its value as a prognostic biomarker and a potential therapeutic target in KIRC and other cancers. Further studies are essential to understand TNNT1's oncogenic mechanisms in KIRC.


Subject(s)
Carcinogenesis , Carcinoma, Renal Cell , Gene Expression Regulation, Neoplastic , Kidney Neoplasms , Troponin T , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Troponin T/metabolism , Troponin T/genetics , Prognosis , Carcinogenesis/genetics , Carcinogenesis/immunology , Carcinogenesis/pathology , Cell Line, Tumor , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Tumor Microenvironment/immunology , Cell Proliferation , Mutation/genetics , DNA Methylation , Immunomodulation/genetics
2.
Biosensors (Basel) ; 14(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38785693

ABSTRACT

Zebrafish larvae have emerged as a valuable model for studying heart physiology and pathophysiology, as well as for drug discovery, in part thanks to its transparency, which simplifies microscopy. However, in fluorescence-based optical mapping, the beating of the heart results in motion artifacts. Two approaches have been employed to eliminate heart motion during calcium or voltage mapping in zebrafish larvae: the knockdown of cardiac troponin T2A and the use of myosin inhibitors. However, these methods disrupt the mechano-electric and mechano-mechanic coupling mechanisms. We have used ratiometric genetically encoded biosensors to image calcium in the beating heart of intact zebrafish larvae because ratiometric quantification corrects for motion artifacts. In this study, we found that halting heart motion by genetic means (injection of tnnt2a morpholino) or chemical tools (incubation with para-aminoblebbistatin) leads to bradycardia, and increases calcium levels and the size of the calcium transients, likely by abolishing a feedback mechanism that connects contraction with calcium regulation. These outcomes were not influenced by the calcium-binding domain of the gene-encoded biosensors employed, as biosensors with a modified troponin C (Twitch-4), calmodulin (mCyRFP1-GCaMP6f), or the photoprotein aequorin (GFP-aequorin) all yielded similar results. Cardiac contraction appears to be an important regulator of systolic and diastolic Ca2+ levels, and of the heart rate.


Subject(s)
Biosensing Techniques , Calcium , Larva , Myocardial Contraction , Zebrafish , Animals , Calcium/metabolism , Myocardial Contraction/physiology , Heart/physiology , Troponin T/metabolism , Zebrafish Proteins/metabolism , Troponin C/metabolism
3.
Sci Rep ; 14(1): 11081, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38744867

ABSTRACT

Despite progress in generating cardiomyocytes from pluripotent stem cells, these populations often include non-contractile cells, necessitating cardiomyocyte selection for experimental purpose. This study explores a novel cardiomyocyte enrichment mechanism: low-adhesion culture selection. The cardiac cells derived from human induced pluripotent stem cells were subjected to a coating-free low-adhesion culture using bovine serum albumin and high molecular weight dextran sulfate. This approach effectively increased the population of cardiac troponin T-positive cardiomyocytes. Similar results were obtained with commercially available low-adhesion culture dishes. Subsequently, we accessed the practicality of selection of cardiomyocytes using this phenomenon by comparing it with established methods such as glucose-free culture and selection based on puromycin resistance genes. The cardiomyocytes enriched through low-adhesion culture selection maintained autonomous pulsation and responsiveness to beta-stimuli. Moreover, no significant differences were observed in the expression of genes related to subtype commitment and maturation when compared to other selection methods. In conclusion, cardiomyocytes derived from pluripotent stem cells were more low-adhesion culture resistant than their accompanying non-contractile cells, and low-adhesion culture is an alternative method for selection of pluripotent stem cell-derived cardiomyocytes.


Subject(s)
Cell Adhesion , Cell Culture Techniques , Cell Differentiation , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Cell Culture Techniques/methods , Cells, Cultured , Troponin T/metabolism , Troponin T/genetics
4.
JAMA Cardiol ; 9(6): 497-506, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38598228

ABSTRACT

Importance: Clonal hematopoiesis of indeterminate potential (CHIP) may contribute to the risk of atrial fibrillation (AF) through its association with inflammation and cardiac remodeling. Objective: To determine whether CHIP was associated with AF, inflammatory and cardiac biomarkers, and cardiac structural changes. Design, Setting, and Participants: This was a population-based, prospective cohort study in participants of the Atherosclerosis Risk in Communities (ARIC) study and UK Biobank (UKB) cohort. Samples were collected and echocardiography was performed from 2011 to 2013 in the ARIC cohort, and samples were collected from 2006 to 2010 in the UKB cohort. Included in this study were adults without hematologic malignancies, mitral valve stenosis, or previous mitral valve procedure from both the ARIC and UKB cohorts; additionally, participants without hypertrophic cardiomyopathy and congenital heart disease from the UKB cohort were also included. Data analysis was completed in 2023. Exposures: CHIP (variant allele frequency [VAF] ≥2%), common gene-specific CHIP subtypes (DNMT3A, TET2, ASXL1), large CHIP (VAF ≥10%), inflammatory and cardiac biomarkers (high-sensitivity C-reactive protein, interleukin 6 [IL-6], IL-18, high-sensitivity troponin T [hs-TnT] and hs-TnI, N-terminal pro-B-type natriuretic peptide), and echocardiographic indices. Main Outcome Measure: Incident AF. Results: A total of 199 982 adults were included in this study. In ARIC participants (4131 [2.1%]; mean [SD] age, 76 [5] years; 2449 female [59%]; 1682 male [41%]; 935 Black [23%] and 3196 White [77%]), 1019 had any CHIP (24.7%), and 478 had large CHIP (11.6%). In UKB participants (195 851 [97.9%]; mean [SD] age, 56 [8] years; 108 370 female [55%]; 87 481 male [45%]; 3154 Black [2%], 183 747 White [94%], and 7971 other race [4%]), 11 328 had any CHIP (5.8%), and 5189 had large CHIP (2.6%). ARIC participants were followed up for a median (IQR) period of 7.0 (5.3-7.7) years, and UKB participants were followed up for a median (IQR) period of 12.2 (11.3-13.0) years. Meta-analyzed hazard ratios for AF were 1.12 (95% CI, 1.01-1.25; P = .04) for participants with vs without large CHIP, 1.29 (95% CI, 1.05-1.59; P = .02) for those with vs without large TET2 CHIP (seen in 1340 of 197 209 [0.67%]), and 1.45 (95% CI, 1.02-2.07; P = .04) for those with vs without large ASXL1 CHIP (seen in 314 of 197 209 [0.16%]). Large TET2 CHIP was associated with higher IL-6 levels. Additionally, large ASXL1 was associated with higher hs-TnT level and increased left ventricular mass index. Conclusions and Relevance: Large TET2 and ASXL1, but not DNMT3A, CHIP was associated with higher IL-6 level, indices of cardiac remodeling, and increased risk for AF. Future research is needed to elaborate on the mechanisms driving the associations and to investigate potential interventions to reduce the risk.


Subject(s)
Atrial Fibrillation , Clonal Hematopoiesis , DNA-Binding Proteins , Dioxygenases , Proto-Oncogene Proteins , Repressor Proteins , Humans , Female , Male , Atrial Fibrillation/genetics , Clonal Hematopoiesis/genetics , Repressor Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Middle Aged , Proto-Oncogene Proteins/genetics , Prospective Studies , Aged , DNA Methyltransferase 3A , DNA (Cytosine-5-)-Methyltransferases/genetics , Biomarkers/blood , Biomarkers/metabolism , C-Reactive Protein/metabolism , C-Reactive Protein/genetics , Interleukin-6/genetics , Interleukin-6/metabolism , Troponin T/genetics , Troponin T/blood , Troponin T/metabolism , Echocardiography , United Kingdom/epidemiology
5.
Biol Chem ; 405(6): 427-439, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38651266

ABSTRACT

Integration of multiple data sources presents a challenge for accurate prediction of molecular patho-phenotypic features in automated analysis of data from human model systems. Here, we applied a machine learning-based data integration to distinguish patho-phenotypic features at the subcellular level for dilated cardiomyopathy (DCM). We employed a human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) model of a DCM mutation in the sarcomere protein troponin T (TnT), TnT-R141W, compared to isogenic healthy (WT) control iPSC-CMs. We established a multimodal data fusion (MDF)-based analysis to integrate source datasets for Ca2+ transients, force measurements, and contractility recordings. Data were acquired for three additional layer types, single cells, cell monolayers, and 3D spheroid iPSC-CM models. For data analysis, numerical conversion as well as fusion of data from Ca2+ transients, force measurements, and contractility recordings, a non-negative blind deconvolution (NNBD)-based method was applied. Using an XGBoost algorithm, we found a high prediction accuracy for fused single cell, monolayer, and 3D spheroid iPSC-CM models (≥92 ± 0.08 %), as well as for fused Ca2+ transient, beating force, and contractility models (>96 ± 0.04 %). Integrating MDF and XGBoost provides a highly effective analysis tool for prediction of patho-phenotypic features in complex human disease models such as DCM iPSC-CMs.


Subject(s)
Cardiomyopathy, Dilated , Induced Pluripotent Stem Cells , Machine Learning , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/pathology , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/metabolism , Humans , Phenotype , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Troponin T/metabolism , Calcium/metabolism
6.
Med ; 5(4): 335-347.e3, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38521068

ABSTRACT

BACKGROUND: Vaccine-related acute myocarditis is recognized as a rare and specific vaccine complication following mRNA-based COVID-19 vaccinations. The precise mechanisms remain unclear. We hypothesized that natural killer (NK) cells play a central role in its pathogenesis. METHODS: Samples from 60 adolescents with vaccine-related myocarditis were analyzed, including pro-inflammatory cytokines, cardiac troponin T, genotyping, and immunophenotyping of the corresponding activation subsets of NK cells, monocytes, and T cells. Results were compared with samples from 10 vaccinated individuals without myocarditis and 10 healthy controls. FINDINGS: Phenotypically, high levels of serum cytokines pivotal for NK cells, including interleukin-1ß (IL-1ß), interferon α2 (IFN-α2), IL-12, and IFN-γ, were observed in post-vaccination patients with myocarditis, who also had high percentage of CD57+ NK cells in blood, which in turn correlated positively with elevated levels of cardiac troponin T. Abundance of the CD57+ NK subset was particularly prominent in males and in those after the second dose of vaccination. Genotypically, killer cell immunoglobulin-like receptor (KIR) KIR2DL5B(-)/KIR2DS3(+)/KIR2DS5(-)/KIR2DS4del(+) was a risk haplotype, in addition to single-nucleotide polymorphisms related to the NK cell-specific expression quantitative trait loci DNAM-1 and FuT11, which also correlated with cardiac troponin T levels in post-vaccination patients with myocarditis. CONCLUSION: Collectively, these data suggest that NK cell activation by mRNA COVID-19 vaccine contributed to the pathogenesis of acute myocarditis in genetically and epidemiologically vulnerable subjects. FUNDING: This work was funded by the Hong Kong Collaborative Research Fund (CRF) 2020/21 and the CRF Coronavirus and Novel Infectious Diseases Research Exercises (reference no. C7149-20G).


Subject(s)
COVID-19 , Myocarditis , Male , Adolescent , Humans , Myocarditis/etiology , Myocarditis/metabolism , COVID-19 Vaccines/adverse effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Troponin T/metabolism , Interferon-gamma/metabolism , COVID-19/prevention & control , Killer Cells, Natural/metabolism , Cytokines/metabolism , Vaccination/adverse effects , Receptors, KIR2DL5/metabolism
7.
Environ Toxicol ; 39(4): 2064-2076, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38095131

ABSTRACT

OBJECTIVE: We aimed to determine the role of Troponin T1 (TNNT1) in paclitaxel (PTX) resistance and tumor progression in breast cancer (BC). METHODS: Differentially expressed genes were obtained from the GSE4298 and GSE90564 datasets. Hub genes were isolated from protein-protein interaction networks and further validated by real-time quantitative polymerase chain reaction. The effect of TNNT1 on PTX resistance was determined using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, transwell, flow cytometry assays, and subcutaneous xenografted tumor model. Western blotting was used to detect proteins associated with PTX resistance, apoptosis, migration, invasion, and other key pathways. Hematoxylin-eosin and immunohistochemical staining were used to evaluate the role of TNNT1 in tumors. RESULTS: After comprehensive bioinformatic analysis, we identified CCND1, IGF1, SFN, INHBA, TNNT1, and TNFSF11 as hub genes for PTX resistance in BC. TNNT1 plays a key role in BC and is upregulated in PTX-resistant BC cells. TNNT1 silencing inhibited PTX resistance, proliferation, migration, and invasion while promoting apoptosis of PTX-resistant BC cells. Tumor xenograft experiments revealed that TNNT1 silencing suppresses PTX resistance and tumor development in vivo. In addition, TNNT1 silencing inhibited the expression of proteins in the rat sarcoma virus (RAS)/rapidly accelerated fibrosarcoma1 (RAF1) pathway in vivo. Treatment with a RAS/RAF1 pathway activator reversed the inhibitory effect of TNNT1 silencing on proliferation, migration, and invasion while promoting apoptosis of PTX resistance BC cells. CONCLUSION: Silencing of TNNT1 suppresses PTX resistance and BC progression by inhibiting the RAS/RAF1 pathway, which is a promising biomarker and therapeutic target for drug resistance in BC.


Subject(s)
Breast Neoplasms , Fibrosarcoma , MicroRNAs , Humans , Female , Paclitaxel/pharmacology , Breast Neoplasms/pathology , Troponin T/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/pharmacology , Proto-Oncogene Proteins p21(ras)/therapeutic use , Drug Resistance, Neoplasm/genetics , Apoptosis/genetics , Cell Line, Tumor , Fibrosarcoma/genetics , Fibrosarcoma/drug therapy , Cell Proliferation , MicroRNAs/genetics
8.
Free Radic Biol Med ; 211: 145-157, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38043869

ABSTRACT

It is generally accepted that oxidative stress plays a key role in the development of ischemia-reperfusion injury in ischemic heart disease. However, the mechanisms how reactive oxygen species trigger cellular damage are not fully understood. Our study investigates redox state and highly reactive substances within neonatal and adult cardiomyocytes under hypoxia conditions. We have found that hypoxia induced an increase in H2O2 production in adult cardiomyocytes, while neonatal cardiomyocytes experienced a decrease in H2O2 levels. This finding correlates with our observation of the difference between the electron transport chain (ETC) properties and mitochondria amount in adult and neonatal cells. We demonstrated that in adult cardiomyocytes hypoxia caused the significant increase in the ETC loading with electrons compared to normoxia. On the contrary, in neonatal cardiomyocytes ETC loading with electrons was similar under both normoxic and hypoxic conditions that could be due to ETC non-functional state and the absence of the electrons transfer to O2 under normoxia. In addition to the variations in H2O2 production, we also noted consistent pH dynamics under hypoxic conditions. Notably, the pH levels exhibited a similar decrease in both cell types, thus, acidosis is a more universal cellular response to hypoxia. We also demonstrated that the amount of mitochondria and the levels of cardiac isoforms of troponin I, troponin T, myoglobin and GAPDH were significantly higher in adult cardiomyocytes compared to neonatal ones. Remarkably, we found out that under hypoxia, the levels of cardiac isoforms of troponin T, myoglobin, and GAPDH were elevated in adult cardiomyocytes, while their level in neonatal cells remained unchanged. Obtained data contribute to the understanding of the mechanisms of neonatal cardiomyocytes' resistance to hypoxia and the ability to maintain the metabolic homeostasis in contrast to adult ones.


Subject(s)
Hydrogen Peroxide , Myocytes, Cardiac , Rats , Animals , Myocytes, Cardiac/metabolism , Hydrogen Peroxide/metabolism , Myoglobin , Troponin T/metabolism , Cell Hypoxia , Hypoxia/metabolism , Oxidation-Reduction , Protein Isoforms/metabolism
9.
Cardiology ; 148(6): 506-516, 2023.
Article in English | MEDLINE | ID: mdl-37544298

ABSTRACT

INTRODUCTION: N-terminal pro-B-type natriuretic peptide (NT-proBNP) and cardiac troponin T (cTnT) measurements are recommended in patients with acute dyspnea. We aimed to assess the prognostic merit of cTnT compared to NT-proBNP for 30-day readmission or death in patients hospitalized with acute dyspnea. METHODS: We measured cTnT and NT-proBNP within 24 h in 314 patients hospitalized with acute dyspnea and adjudicated the cause of the index admission. Time to first event of readmission or death ≤30 days after hospital discharge was recorded, and cTnT and NT-proBNP measurements were compared head-to-head. RESULTS: Patients who died (12/314) or were readmitted (71/314) within 30 days had higher cTnT concentrations (median: 32.6, Q1-Q3: 18.4-74.2 ng/L vs. median: 19.4, Q1-Q3: 8.4-36.1 ng/L; p for comparison <0.001) and NT-proBNP concentrations (median: 1,753.6, Q1-Q3: 464.2-6,862.0 ng/L vs. median 984, Q1-Q3 201-3,600 ng/L; for comparison p = 0.027) compared to patients who survived and were not readmitted. cTnT concentrations were associated with readmission or death within 30 days after discharge both in the total cohort (adjusted hazard ratio [aHR]: 1.64, 95% confidence interval [CI]: 1.30-2.05) and in patients with heart failure (HF) (aHR: 1.58, 95% CI: 1.14-2.18). In contrast, NT-proBNP concentrations were not associated with short-term events, neither in the total cohort (aHR: 1.10, 95% CI: 0.94-1.30) nor in patients with adjudicated HF (aHR: 1.06, 95% CI: 0.80-1.40). CONCLUSION: cTnT concentrations are associated with 30-day readmission or death in patients hospitalized with acute dyspnea, as well as in patients adjudicated HF.


Subject(s)
Dyspnea , Natriuretic Peptide, Brain , Patient Readmission , Troponin T , Troponin T/blood , Troponin T/metabolism , Natriuretic Peptide, Brain/blood , Natriuretic Peptide, Brain/metabolism , Patient Readmission/statistics & numerical data , Dyspnea/blood , Dyspnea/diagnosis , Dyspnea/mortality , Predictive Value of Tests , Humans , Male , Female , Middle Aged , Aged , Aged, 80 and over , Biomarkers/blood , Biomarkers/metabolism , Kaplan-Meier Estimate
10.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220176, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37122209

ABSTRACT

In this perspective, we discussed emerging data indicating a role for Notch signalling in inherited disorders of the heart failure with focus on hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) linked to variants of genes encoding mutant proteins of the sarcomere. We recently reported an upregulation of elements in the Notch signalling cascade in cardiomyocytes derived from human inducible pluripotent stem cells expressing a TNNT2 variant encoding cardiac troponin T (cTnT-I79N+/-), which induces hypertrophy, remodelling, abnormalities in excitation-contraction coupling and electrical instabilities (Shafaattalab S et al. 2021 Front. Cell Dev. Biol. 9, 787581. (doi:10.3389/fcell.2021.787581)). Our search of the literature revealed the novelty of this finding and stimulated us to discuss potential connections between the Notch signalling pathway and familial cardiomyopathies. Our considerations focused on the potential role of these interactions in arrhythmias, microvascular ischaemia, and fibrosis. This finding underscored a need to consider the role of Notch signalling in familial cardiomyopathies which are trigged by sarcomere mutations engaging mechano-signalling pathways for which there is evidence of a role for Notch signalling with crosstalk with Hippo signalling. Our discussion included a role for both cardiac myocytes and non-cardiac myocytes in progression of HCM and DCM. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Cardiomyopathy, Hypertrophic , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Hypertrophic/genetics , Troponin T/genetics , Troponin T/metabolism , Hypertrophy , Mutation
11.
Am J Physiol Heart Circ Physiol ; 324(5): H675-H685, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36930654

ABSTRACT

Obesity and hypertension, independently and combined, are associated with increased risk of heart failure and heart failure-related morbidity and mortality. Interest in circulating endothelial cell-derived microvesicles (EMVs) has intensified because of their involvement in the development and progression of endothelial dysfunction, atherosclerosis, and cardiomyopathy. The experimental aim of this study was to determine, in vitro, the effects of EMVs isolated from obese/hypertensive adults on key proteins regulating cardiomyocyte hypertrophy [cardiac troponin T (cTnT), α-actinin, nuclear factor-kB (NF-kB)] and fibrosis [transforming growth factor (TGF)-ß, collagen1-α1], as well as endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) production. EMVs (CD144+ microvesicles) were isolated from plasma by flow cytometry in 12 normal weight/normotensive [8 males/4 females; age: 56 ± 5 yr; body mass index (BMI): 23.3 ± 2.0 kg/m2; blood pressure (BP): 117/74 ± 4/5 mmHg] and 12 obese/hypertensive (8 males/4 females; 57 ± 5 yr; 31.7 ± 1.8 kg/m2; 138/83 ± 8/7 mmHg) adults. Human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were cultured and treated with EMVs from either normal weight/normotensive or obese/hypertensive adults for 24 h. Expression of cTnT (64.1 ± 13.9 vs. 29.5 ± 7.8 AU), α-actinin (66.0 ± 14.7 vs. 36.2 ± 10.3 AU), NF-kB (166.3 ± 13.3 vs. 149.5 ± 8.8 AU), phosphorylated-NF-kB (226.1 ± 25.2 vs. 179.1 ± 25.5 AU), and TGF-ß (62.1 ± 13.3 vs. 23.5 ± 8.8 AU) were significantly higher and eNOS activation (16.4 ± 4.3 vs. 24.8 ± 3.7 AU) and nitric oxide production (6.8 ± 1.2 vs. 9.6 ± 1.3 µmol/L) were significantly lower in iPSC-CMs treated with EMVs from obese/hypertensive compared with normal weight/normotensive adults. These data indicate that EMVs from obese/hypertensive adults induce a cardiomyocyte phenotype prone to hypertrophy, fibrosis, and reduced nitric oxide production, central factors associated with heart failure risk and development.NEW & NOTEWORTHY In the present study we determined the effect of endothelial microvesicles (EMVs) isolated from obese/hypertensive adults on mediators of cardiomyocyte hypertrophy [cardiac troponin T (cTnT), α-actinin, nuclear factor-kB (NF-kB)] and fibrosis [transforming growth factor (TGF-ß), collagen1-α1] as well as endothelial nitric oxide synthase (eNOS) expression and NO production. EMVs from obese/hypertensive induced significantly higher expression of hypertrophic (cTnT, α-actinin, NF-kB) and fibrotic (TGF-ß) proteins as well as significantly lower eNOS activation and NO production in cardiomyocytes than EMVs from normal weight/normotensive adults. EMVs are a potential mediating factor in the increased risk of cardiomyopathy and heart failure with obesity/hypertension.


Subject(s)
Cell-Derived Microparticles , Heart Failure , Hypertension , Male , Female , Humans , Adult , Middle Aged , Myocytes, Cardiac/metabolism , Nitric Oxide Synthase Type III/metabolism , Troponin T/metabolism , Nitric Oxide/metabolism , Actinin/metabolism , Actinin/pharmacology , NF-kappa B/metabolism , Hypertension/metabolism , Hypertrophy/metabolism , Hypertrophy/pathology , Cell-Derived Microparticles/metabolism , Obesity/metabolism , Heart Failure/metabolism , Transforming Growth Factor beta/metabolism , Fibrosis
12.
Stem Cell Res ; 67: 103048, 2023 03.
Article in English | MEDLINE | ID: mdl-36801602

ABSTRACT

Cardiac muscle troponin T protein binds to tropomyosin and regulates the calcium-dependent actin-myosin interaction on thin filaments in cardiomyocytes. Recent genetic studies have revealed that TNNT2 mutations are strongly linked to dilated cardiomyopathy (DCM). In this study, we generated YCMi007-A, a human induced pluripotent stem cell (hiPSC) line from a DCM patient with a p. Arg205Trp mutation in the TNNT2 gene. The YCMi007-A cells show high expression of pluripotent markers, normal karyotype, and differentiation into three germ layers. Thus, YCMi007-A-an established iPSC-could be useful for the investigation of DCM.


Subject(s)
Cardiomyopathy, Dilated , Induced Pluripotent Stem Cells , Humans , Cardiomyopathy, Dilated/genetics , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Troponin T/genetics , Troponin T/metabolism , Heterozygote , Mutation
13.
Food Chem ; 404(Pt B): 134647, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36283311

ABSTRACT

In this study, the effects of different oxidation intensities on the degradation of myofibrillar protein by endogenous enzymes in iron-catalyzed oxidizing (IOS) and metmyoglobin oxidizing system (MOS) were compared. The results showed that carbonyl content and endogenous enzyme activities (caspase-3, caspase-6 and calpain-1) increased significantly and the total sulfhydryl content decreased significantly with H2O2 concentration in both oxidation systems. Meanwhile, the rate of carbonyl formation and the inhibition of endogenous enzymes activities of IOS were significantly lower than MOS for the same oxidation intensity. In addition, IOS and MOS mainly produced myosin light chains degradation products of 20-25 kDa and 20-17 kDa. At the same oxidation intensity, MOS of myofibrillar protein significantly enhanced the degradation of troponin-T and desmin by caspase-3/-6 compared with IOS, while inhibiting the degradation of troponin-T by calpain-1. In conclusion, MOS inhibited endogenous enzyme degradation in vitro more than IOS during post-slaughter maturation of yak meat.


Subject(s)
Calpain , Myofibrils , Animals , Cattle , Proteolysis , Myofibrils/metabolism , Calpain/metabolism , Caspase 3/metabolism , Methemoglobin/metabolism , Troponin T/metabolism , Iron/metabolism , Hydrogen Peroxide/metabolism , Muscle, Skeletal/metabolism , Meat/analysis , Oxidation-Reduction , Metmyoglobin/metabolism , Catalysis
14.
Biofactors ; 49(2): 351-364, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36518005

ABSTRACT

The cardiac troponins (cTns), cardiac troponin C (cTnC), cTnT, and cTnI are key elements of myocardial apparatus, fixed as protein complex on the thin filament of sarcomere and are involved in the regulation of excitation-contraction coupling of cardiomyocytes in the presence of Ca2+ . Circulating cTnT and cTnI (cTns) increase following cardiac tissue necrosis, and they are consolidated biomarkers of acute myocardial infarction (AMI). However, the use of high sensitivity (hs)-immunoassay tests for cTnT and cTnI has made it possible to identify a multitude of other clinical conditions associated with increased circulating levels of cTns. cTns can be measured also in the peripheral circulation of healthy subjects or athletes, suggesting that different mechanisms are involved in the release of cTns in the blood independently of cardiac cell necrosis. In this review, the molecular/cellular mechanisms involved in cTns release in blood and the exploitation of cTnI and cTnT as biomarkers of cardiac adverse events, in addition to cardiac necrosis, are discussed.


Subject(s)
Myocardial Infarction , Humans , Troponin T/metabolism , Troponin I/metabolism , Biomarkers , Necrosis
15.
Insect Mol Biol ; 32(1): 46-55, 2023 02.
Article in English | MEDLINE | ID: mdl-36214335

ABSTRACT

Insects are the most widely distributed and successful animals on the planet. A large number of insects are capable of flight with functional wings. Wing expansion is an important process for insects to achieve functional wings after eclosion and healthy genital morphology is crucial for adult reproduction. Myofilaments are functional units that constitute sarcomeres and trigger muscle contraction. Here, we identified four myofilament proteins, including Myosin, Paramyosin, Tropomyosin and Troponin T, from the wing pads of nymphs in the American cockroach, Periplaneta americana. RNAi-mediated knockdown of Myosin, Paramyosin, Tropomyosin and Troponin T in the early stage of final instar nymphs caused a severely curly wing phenotype in the imaginal moult, especially in the Paramyosin and Troponin T knockdown groups, indicating that these myofilament proteins are involved in controlling wing expansion behaviours during the nymph-adult transition. In addition, the knockdown resulted in abnormal external genitalia, caused ovulation failure, and affected male accessory gland development. Interestingly, the expression of myofilament genes was induced by methoprene, a juvenile hormone (JH) analogue, and decreased by the depletion of the JH receptor gene Met. Altogether, we have determined that myofilament genes play an important role in promoting wing expansion and maintaining adult genitalia morphology, and their expression is induced by JH signalling. Our data reveal a novel mechanism by which wing expansion is regulated by myofilaments and the functions of myofilaments are involved in maintaining genitalia morphology.


Subject(s)
Periplaneta , Female , Male , Animals , Periplaneta/genetics , Periplaneta/metabolism , Myofibrils , Tropomyosin/genetics , Tropomyosin/metabolism , Troponin T/metabolism , Metamorphosis, Biological , Insecta , Juvenile Hormones/metabolism , Nymph
16.
Int J Mol Sci ; 23(24)2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36555368

ABSTRACT

Tropomyosin (Tpm) mutations cause inherited cardiac diseases such as hypertrophic and dilated cardiomyopathies. We applied various approaches to investigate the role of cardiac troponin (Tn) and especially the troponin T (TnT) in the pathogenic effects of Tpm cardiomyopathy-associated mutations M8R, K15N, A277V, M281T, and I284V located in the overlap junction of neighboring Tpm dimers. Using co-sedimentation assay and viscosity measurements, we showed that TnT1 (fragment of TnT) stabilizes the overlap junction of Tpm WT and all Tpm mutants studied except Tpm M8R. However, isothermal titration calorimetry (ITC) indicated that TnT1 binds Tpm WT and all Tpm mutants similarly. By using ITC, we measured the direct KD of the Tpm overlap region, N-end, and C-end binding to TnT1. The ITC data revealed that the Tpm C-end binds to TnT1 independently from the N-end, while N-end does not bind. Therefore, we suppose that Tpm M8R binds to TnT1 without forming the overlap junction. We also demonstrated the possible role of Tn isoform composition in the cardiomyopathy development caused by M8R mutation. TnT1 dose-dependently reduced the velocity of F-actin-Tpm filaments containing Tpm WT, Tpm A277V, and Tpm M281T mutants in an in vitro motility assay. All mutations impaired the calcium regulation of the actin-myosin interaction. The M281T and I284V mutations increased the calcium sensitivity, while the K15N and A277V mutations reduced it. The Tpm M8R, M281T, and I284V mutations under-inhibited the velocity at low calcium concentrations. Our results demonstrate that Tpm mutations likely implement their pathogenic effects through Tpm interaction with Tn, cardiac myosin, or other protein partners.


Subject(s)
Cardiomyopathies , Tropomyosin , Troponin , Humans , Actins/metabolism , Calcium/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Mutation , Tropomyosin/genetics , Troponin/genetics , Troponin T/metabolism
17.
Sci Rep ; 12(1): 22501, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36577774

ABSTRACT

Cardiomyopathies have unresolved genotype-phenotype relationships and lack disease-specific treatments. Here we provide a framework to identify genotype-specific pathomechanisms and therapeutic targets to accelerate the development of precision medicine. We use human cardiac electromechanical in-silico modelling and simulation which we validate with experimental hiPSC-CM data and modelling in combination with clinical biomarkers. We select hypertrophic cardiomyopathy as a challenge for this approach and study genetic variations that mutate proteins of the thick (MYH7R403Q/+) and thin filaments (TNNT2R92Q/+, TNNI3R21C/+) of the cardiac sarcomere. Using in-silico techniques we show that the destabilisation of myosin super relaxation observed in hiPSC-CMs drives disease in virtual cells and ventricles carrying the MYH7R403Q/+ variant, and that secondary effects on thin filament activation are necessary to precipitate slowed relaxation of the cell and diastolic insufficiency in the chamber. In-silico modelling shows that Mavacamten corrects the MYH7R403Q/+ phenotype in agreement with hiPSC-CM experiments. Our in-silico model predicts that the thin filament variants TNNT2R92Q/+ and TNNI3R21C/+ display altered calcium regulation as central pathomechanism, for which Mavacamten provides incomplete salvage, which we have corroborated in TNNT2R92Q/+ and TNNI3R21C/+ hiPSC-CMs. We define the ideal characteristics of a novel thin filament-targeting compound and show its efficacy in-silico. We demonstrate that hybrid human-based hiPSC-CM and in-silico studies accelerate pathomechanism discovery and classification testing, improving clinical interpretation of genetic variants, and directing rational therapeutic targeting and design.


Subject(s)
Cardiomyopathy, Hypertrophic , Precision Medicine , Humans , Mutation , Myosin Heavy Chains/genetics , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/therapy , Cardiomyopathy, Hypertrophic/metabolism , Troponin T/metabolism , Troponin I/genetics
18.
Sci Rep ; 12(1): 17554, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266413

ABSTRACT

Myocardial injury influenced by cisplatin (Cis) is a compelling reason to hunt out a treatment modality to overcome such a threat in cisplatin-treated patients. Breast Milk mesenchymal stem cells (Br-MSCs) are a non-invasive, highly reproducible source of stem cells. Herein, we investigate Br-MSCs' role in cardiotoxicity induced by cisplatin. Rats were divided into; control, Cis-treated (received 12 mg/kg single intraperitoneal injection), BrMSCs-treated (received single intraperitoneal injection of 0.5 ml sterilized phosphate-buffered saline containing 2 × 107 cells of Br-MSCs); metformin-treated (received 250 mg/kg/day orally) and BrMSCs + metformin + Cis treated groups. At the experiment end, serum creatine kinase (CK-MB) and cardiac troponin T (cTnT) activates were estimated, cardiac malondialdehyde (MDA), superoxide dismutase (SOD), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α) levels were measured, cardiac expression of Bax and Bcl-2 and AMP-activated protein kinase (AMPK), as well as heart histopathology, were evaluated. Study results showed that Cis explored acute cardiotoxicity evidenced by deteriorated cardiac indices, induction of oxidative stress, and inflammation with myocardium histological alterations. Treatment with Br-MSCs restored heart function and structure deteriorated by Cis injection. The antioxidant/anti-inflammatory/anti-apoptotic results of Br-MSCs were supported by AMPK activation denoting their protective role against cisplatin-induced cardiac injury. These results were superior when metformin was added to the treatment protocol.


Subject(s)
Cardiotoxicity , Cisplatin , Mesenchymal Stem Cells , Metformin , Humans , Male , Rats , AMP-Activated Protein Kinases/metabolism , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Apoptosis , bcl-2-Associated X Protein/metabolism , Cardiotoxicity/therapy , Cisplatin/toxicity , Creatine Kinase, MB Form/metabolism , Malondialdehyde/metabolism , Mesenchymal Stem Cells/cytology , Metformin/pharmacology , Milk, Human/cytology , Oxidative Stress , Superoxide Dismutase/metabolism , Troponin T/metabolism , Tumor Necrosis Factor-alpha/metabolism
19.
J Food Sci ; 87(10): 4440-4452, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36102040

ABSTRACT

Control on the moisture distribution, protein structure changes, and protein degradation of Antarctic krill meat during freeze-thaw (F-T) cycles by presoaking with antifreeze protein (AFP) was investigated. The results from the thawing loss rate and cooking loss rate indicated that 0.1% was the optimal AFP concentration. Magnetic resonance imaging and low-field nuclear magnetic resonance results showed that AFP inhibited the changes in moisture distribution and maintained the moisture in Antarctic krill meat. The contents of nonprotein nitrogen and trichloroacetic acid-soluble peptides indicated that AFP reduced protein degradation. Further, SDS-PAGE showed that AFP reduced the degradation of actin, troponin T, and myosin light chain. The results of fluorescence spectra, circular dichroism, and chemical bond contents indicated that AFP reduced the damage of the protein tertiary and secondary structures of Antarctic krill meat by holding it in a weak polar environment. This study supplied basic theory for the quality control of Antarctic krill meat. PRACTICAL APPLICATION: Protein degradation, moisture distribution, and protein structure changes occurred to Antarctic krill meat during freeze-thaw cycles due to ice crystal growth and recrystallization, which leads to the decrease in quality. Antifreeze protein has been proven to avoid ice crystals' growth and inhibit ice recrystallization. During freeze-thaw cycles, the moisture distribution of Antarctic krill meat treated with antifreeze protein was more uniform, the degree of protein degradation was lower, and the protein structure was protected. This study demonstrated the potential of antifreeze protein as a water and protein protectant of Antarctic krill meat during freeze-thaw cycles.


Subject(s)
Euphausiacea , Animals , Ice , Troponin T/metabolism , Actins/metabolism , Myosin Light Chains/metabolism , Trichloroacetic Acid , alpha-Fetoproteins/metabolism , Antifreeze Proteins/metabolism , Meat/analysis , Nitrogen/metabolism
20.
Circulation ; 146(12): 934-954, 2022 09 20.
Article in English | MEDLINE | ID: mdl-35983756

ABSTRACT

BACKGROUND: Cytokines such as tumor necrosis factor-α (TNFα) have been implicated in cardiac dysfunction and toxicity associated with doxorubicin (DOX). Although TNFα can elicit different cellular responses, including survival or death, the mechanisms underlying these divergent outcomes in the heart remain cryptic. The E3 ubiquitin ligase TRAF2 (TNF receptor associated factor 2) provides a critical signaling platform for K63-linked polyubiquitination of RIPK1 (receptor interacting protein 1), crucial for nuclear factor-κB (NF-κB) activation by TNFα and survival. Here, we investigate alterations in TNFα-TRAF2-NF-κB signaling in the pathogenesis of DOX cardiotoxicity. METHODS: Using a combination of in vivo (4 weekly injections of DOX 5 mg·kg-1·wk-1) in C57/BL6J mice and in vitro approaches (rat, mouse, and human inducible pluripotent stem cell-derived cardiac myocytes), we monitored TNFα levels, lactate dehydrogenase, cardiac ultrastructure and function, mitochondrial bioenergetics, and cardiac cell viability. RESULTS: In contrast to vehicle-treated mice, ultrastructural defects, including cytoplasmic swelling, mitochondrial perturbations, and elevated TNFα levels, were observed in the hearts of mice treated with DOX. While investigating the involvement of TNFα in DOX cardiotoxicity, we discovered that NF-κB was readily activated by TNFα. However, TNFα-mediated NF-κB activation was impaired in cardiac myocytes treated with DOX. This coincided with loss of K63- linked polyubiquitination of RIPK1 from the proteasomal degradation of TRAF2. Furthermore, TRAF2 protein abundance was markedly reduced in hearts of patients with cancer treated with DOX. We further established that the reciprocal actions of the ubiquitinating and deubiquitinating enzymes cellular inhibitors of apoptosis 1 and USP19 (ubiquitin-specific peptidase 19), respectively, regulated the proteasomal degradation of TRAF2 in DOX-treated cardiac myocytes. An E3-ligase mutant of cellular inhibitors of apoptosis 1 (H588A) or gain of function of USP19 prevented proteasomal degradation of TRAF2 and DOX-induced cell death. Furthermore, wild-type TRAF2, but not a RING finger mutant defective for K63-linked polyubiquitination of RIPK1, restored NF-κB signaling and suppressed DOX-induced cardiac cell death. Last, cardiomyocyte-restricted expression of TRAF2 (cardiac troponin T-adeno-associated virus 9-TRAF2) in vivo protected against mitochondrial defects and cardiac dysfunction induced by DOX. CONCLUSIONS: Our findings reveal a novel signaling axis that functionally connects the cardiotoxic effects of DOX to proteasomal degradation of TRAF2. Disruption of the critical TRAF2 survival pathway by DOX sensitizes cardiac myocytes to TNFα-mediated necrotic cell death and DOX cardiotoxicity.


Subject(s)
Cardiomyopathies , NF-kappa B , TNF Receptor-Associated Factor 2 , Animals , Apoptosis , Cardiomyopathies/metabolism , Cardiotoxicity , Deubiquitinating Enzymes/metabolism , Doxorubicin/toxicity , Endopeptidases , Humans , Lactate Dehydrogenases/metabolism , Mice , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , NF-kappa B/metabolism , Rats , TNF Receptor-Associated Factor 2/genetics , Troponin T/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...