Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
Parasite ; 31: 13, 2024.
Article in English | MEDLINE | ID: mdl-38450719

ABSTRACT

Tsetse flies (genus Glossina) transmit deadly trypanosomes to human populations and domestic animals in sub-Saharan Africa. Some foci of Human African Trypanosomiasis due to Trypanosoma brucei gambiense (g-HAT) persist in southern Chad, where a program of tsetse control was implemented against the local vector Glossina fuscipes fuscipes in 2018 in Maro. We analyzed the population genetics of G. f. fuscipes from the Maro focus before control (T0), one year (T1), and 18 months (T2) after the beginning of control efforts. Most flies captured displayed a local genetic profile (local survivors), but a few flies displayed outlier genotypes. Moreover, disturbance of isolation by distance signature (increase of genetic distance with geographic distance) and effective population size estimates, absence of any genetic signature of a bottleneck, and an increase of genetic diversity between T0 and T2 strongly suggest gene flows from various origins, and a limited impact of the vector control efforts on this tsetse population. Continuous control and surveillance of g-HAT transmission is thus recommended in Maro. Particular attention will need to be paid to the border with the Central African Republic, a country where the entomological and epidemiological status of g-HAT is unknown.


Title: Impact limité de la lutte antivectorielle sur la structure des populations de Glossina fuscipes fuscipes dans le foyer de la maladie du sommeil de Maro, Tchad. Abstract: Les mouches tsé-tsé (genre Glossina) transmettent des trypanosomes mortels aux populations humaines ainsi qu'aux animaux domestiques en Afrique sub-saharienne. Certains foyers de la trypanosomiase humaine Africaine due à Trypanosoma brucei gambiense (THA-g) persistent au sud du Tchad, où un programme de lutte antivectorielle a été mis en place contre le vecteur local de la maladie, Glossina fuscipes fuscipes, en particulier à Maro en 2018. Nous avons analysé la structure génétique des populations de G. f. fuscipes de ce foyer à T0 (avant lutte), une année après le début de la lutte (T1), et 18 mois après (T2). La plupart des mouches capturées après le début de la lutte ont montré un profil génétique local (survivants locaux), mais quelques-unes d'entre elles présentaient des génotypes d'individus atypiques. Par ailleurs, la présence de perturbations des signatures d'isolement par la distance (augmentation de la distance génétique avec la distance géographique), l'absence de signature génétique d'un goulot d'étranglement, et un accroissement de la diversité génétique entre T0 et T2 sont des arguments forts en faveur de la recolonisation de la zone par des mouches d'origines variées, tout en témoignant des effets limités de la campagne de lutte dans ce foyer. Ces résultats conduisent à recommander une lutte et une surveillance continues dans le foyer de Maro. Une attention particulière devra par ailleurs être prêtée à l'autre côté de la rive, située côté République Centre Africaine, dont le statut épidémiologique reste inconnu concernant les tsé-tsé et la THA-g.


Subject(s)
Spiders , Trypanosomiasis, African , Tsetse Flies , Animals , Humans , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control , Tsetse Flies/genetics , Chad/epidemiology , Trypanosoma brucei gambiense/genetics , Animals, Domestic
2.
PLoS Negl Trop Dis ; 17(7): e0011528, 2023 07.
Article in English | MEDLINE | ID: mdl-37498955

ABSTRACT

Although studies on African Trypanosomiases revealed a variety of trypanosome species in the blood of various animal taxa, animal reservoirs of Trypanosoma brucei gambiense and anatomical niches such as skin have been overlooked in most epidemiological settings. This study aims to update epidemiological data on trypanosome infections in animals from human African trypanosomiasis (HAT) foci of Cameroon. Blood and skin snips were collected from 291 domestic and wild animals. DNA was extracted from blood and skin snips and molecular approaches were used to identify different trypanosomes species. Immunohistochemical analyses were used to confirm trypanosome infections in skin snips. PCR revealed 137 animals (47.1%) with at least one trypanosome species in the blood and/or in the skin. Of these 137 animals, 90 (65.7%) and 32 (23.4%) had trypanosome infections respectively in the blood and skin. Fifteen (10.9%) animals had trypanosome infections in both blood and skin snip. Animals from the Campo HAT focus (55.0%) were significantly (X2 = 17.6; P< 0.0001) more infected than those (29.7%) from Bipindi. Trypanosomes of the subgenus Trypanozoon were present in 27.8% of animals while T. vivax, T. congolense forest type and savannah type were detected in 16.5%, 10.3% and 1.4% of animals respectively. Trypanosoma b. gambiense infections were detected in the blood of 7.6% (22/291) of animals. No T. b. gambiense infection was detected in skin. This study highlights the presence of several trypanosome species in the blood and skin of various wild and domestic animals. Skin appeared as an anatomical reservoir for trypanosomes in animals. Despite methodological limitations, pigs, sheep, goats and wild animals were confirmed as potential reservoirs of T. b. gambiense. These animal reservoirs must be considered for the designing of control strategies that will lead to sustainable elimination of HAT.


Subject(s)
Trypanosoma , Trypanosomiasis, African , Tsetse Flies , Humans , Animals , Swine , Sheep , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/veterinary , Cameroon/epidemiology , Prevalence , DNA, Protozoan/genetics , DNA, Protozoan/chemistry , Trypanosoma/genetics , Trypanosoma brucei gambiense/genetics , Animals, Wild , Goats , Tsetse Flies/genetics
3.
mBio ; 13(6): e0255322, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36354333

ABSTRACT

Trypanosoma brucei gambiense is the primary causative agent of human African trypanosomiasis (HAT), a vector-borne disease endemic to West and Central Africa. The extracellular parasite evades antibody recognition within the host bloodstream by altering its variant surface glycoprotein (VSG) coat through a process of antigenic variation. The serological tests that are widely used to screen for HAT use VSG as one of the target antigens. However, the VSGs expressed during human infection have not been characterized. Here, we use VSG sequencing (VSG-seq) to analyze the VSGs expressed in the blood of patients infected with T. b. gambiense and compared them to VSG expression in Trypanosoma brucei rhodesiense infections in humans as well as Trypanosoma brucei brucei infections in mice. The 44 VSGs expressed during T. b. gambiense infection revealed a striking bias toward expression of type B N termini (82% of detected VSGs). This bias is specific to T. b. gambiense, which is unique among T. brucei subspecies in its chronic clinical presentation and anthroponotic nature. The expressed T. b. gambiense VSGs also share very little similarity to sequences from 36 T. b. gambiense whole-genome sequencing data sets, particularly in areas of the VSG protein exposed to host antibodies, suggesting the antigen repertoire is under strong selective pressure to diversify. Overall, this work demonstrates new features of antigenic variation in T. brucei gambiense and highlights the importance of understanding VSG repertoires in nature. IMPORTANCE Human African trypanosomiasis is a neglected tropical disease primarily caused by the extracellular parasite Trypanosoma brucei gambiense. To avoid elimination by the host, these parasites repeatedly replace their variant surface glycoprotein (VSG) coat. Despite the important role of VSGs in prolonging infection, VSG expression during human infections is poorly understood. A better understanding of natural VSG gene expression dynamics can clarify the mechanisms that T. brucei uses to alter its VSG coat. We analyzed the expressed VSGs detected in the blood of patients with trypanosomiasis. Our findings indicate that there are features of antigenic variation unique to human-infective T. brucei subspecies and that natural VSG repertoires may vary more than previously expected.


Subject(s)
Trypanosoma brucei brucei , Trypanosomiasis, African , Humans , Animals , Mice , Trypanosomiasis, African/parasitology , Variant Surface Glycoproteins, Trypanosoma/genetics , Trypanosoma brucei brucei/genetics , Trypanosoma brucei gambiense/genetics , Membrane Glycoproteins
4.
EBioMedicine ; 86: 104376, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36436279

ABSTRACT

BACKGROUND: Detection of spliced leader (SL)-RNA allows sensitive diagnosis of gambiense human African trypanosomiasis (HAT). We investigated its diagnostic performance for treatment outcome assessment. METHODS: Blood and cerebrospinal fluid (CSF) from a consecutive series of 97 HAT patients, originating from the Democratic Republic of the Congo, were prospectively collected before treatment with acoziborole, and during 18 months of longitudinal follow-up after treatment. For treatment outcome assessment, SL-RNA detection was compared with microscopic trypanosome detection and CSF white blood cell count. The trial was registered under NCT03112655 in clinicaltrials.gov. FINDINGS: Before treatment, respectively 94.9% (92/97; CI 88.5-97.8%) and 67.7% (65/96; CI 57.8-76.2%) HAT patients were SL-RNA positive in blood or CSF. During follow-up, one patient relapsed with trypanosomes observed at 18 months, and was SL-RNA positive in blood and CSF at 12 months, and CSF positive at 18 months. Among cured patients, one individual tested SL-RNA positive in blood at month 12 (Specificity 98.9%; 90/91; CI 94.0-99.8%) and 18 (Specificity 98.9%; 88/89; CI 93.9-99.8%). INTERPRETATION: SL-RNA detection for HAT treatment outcome assessment shows ≥98.9% specificity in blood and 100% in CSF, and may detect relapses without lumbar puncture. FUNDING: The DiTECT-HAT project is part of the EDCTP2 programme, supported by Horizon 2020, the European Union Funding for Research and Innovation (grant number DRIA-2014-306-DiTECT-HAT).


Subject(s)
Antiprotozoal Agents , Trypanosoma , Trypanosomiasis, African , Animals , Humans , Antiprotozoal Agents/therapeutic use , Follow-Up Studies , RNA, Spliced Leader , Treatment Outcome , Trypanosoma brucei gambiense/genetics , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/drug therapy
5.
Nat Commun ; 13(1): 7075, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36400774

ABSTRACT

Resistance to African trypanosomes in humans relies in part on the high affinity targeting of a trypanosome lytic factor 1 (TLF1) to a trypanosome haptoglobin-hemoglobin receptor (HpHbR). While TLF1 avoidance by the inactivation of HpHbR contributes to Trypanosoma brucei gambiense human infectivity, the evolutionary trade-off of this adaptation is unknown, as the physiological function of the receptor remains to be elucidated. Here we show that uptake of hemoglobin via HpHbR constitutes the sole heme import pathway in the trypanosome bloodstream stage. T. b. gambiense strains carrying the inactivating mutation in HpHbR, as well as genetically engineered T. b. brucei HpHbR knock-out lines show only trace levels of intracellular heme and lack hemoprotein-based enzymatic activities, thereby providing an uncommon example of aerobic parasitic proliferation in the absence of heme. We further show that HpHbR facilitates the developmental progression from proliferating long slender forms to cell cycle-arrested stumpy forms in T. b. brucei. Accordingly, T. b. gambiense was found to be poorly competent for slender-to-stumpy differentiation unless a functional HpHbR receptor derived from T. b. brucei was genetically restored. Altogether, we identify heme-deficient metabolism and disrupted cellular differentiation as two distinct HpHbR-dependent evolutionary trade-offs for T. b. gambiense human infectivity.


Subject(s)
Lipoproteins, HDL , Trypanosoma brucei gambiense , Humans , Trypanosoma brucei gambiense/genetics , Trypanosoma brucei gambiense/metabolism , Lipoproteins, HDL/metabolism , Biological Evolution , Heme/metabolism , Cell Differentiation/genetics
6.
EBioMedicine ; 85: 104308, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36374773

ABSTRACT

BACKGROUND: To achieve elimination of Human African Trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense (gHAT), the development of highly sensitive diagnostics is needed. We have developed a CRISPR based diagnostic for HAT using SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing) that is readily adaptable to a field-based setting. METHODS: We adapted SHERLOCK for the detection of T. brucei species. We targeted 7SLRNA, TgSGP and SRA genes and tested SHERLOCK against RNA from blood, buffy coat, dried blood spots (DBS), and clinical samples. FINDINGS: The pan-Trypanozoon 7SLRNA and T. b. gambiense-specific TgSGP SHERLOCK assays had a sensitivity of 0.1 parasite/µL and a limit of detection 100 molecules/µL. T. b. rhodesiense-specific SRA had a sensitivity of 0.1 parasite/µL and a limit of detection of 10 molecules/µL. TgSGP SHERLOCK and SRA SHERLOCK detected 100% of the field isolated strains. Using clinical specimens from the WHO HAT cryobank, the 7SLRNA SHERLOCK detected trypanosomes in gHAT samples with 56.1%, 95% CI [46.25-65.53] sensitivity and 98.4%, 95% CI [91.41-99.92] specificity, and rHAT samples with 100%, 95% CI [83.18-100] sensitivity and 94.1%, 95% CI [80.91-98.95] specificity. The species-specific TgSGP and SRA SHERLOCK discriminated between the gambiense/rhodesiense HAT infections with 100% accuracy. INTERPRETATION: The 7SLRNA, TgSGP and SRA SHERLOCK discriminate between gHAT and rHAT infections, and could be used for epidemiological surveillance and diagnosis of HAT in the field after further technical development. FUNDING: Institut Pasteur (PTR-175 SHERLOCK4HAT), French Government's Investissement d'Avenir program Laboratoire d'Excellence Integrative Biology of Emerging Infectious Diseases (LabEx IBEID), and Agence Nationale pour la Recherche (ANR-PRC 2021 SherPa).


Subject(s)
Trypanosomiasis, African , Humans , Animals , Trypanosomiasis, African/diagnosis , Trypanosoma brucei gambiense/genetics
7.
PLoS Negl Trop Dis ; 15(12): e0010036, 2021 12.
Article in English | MEDLINE | ID: mdl-34937054

ABSTRACT

BACKGROUND: The existence of an animal reservoir of Trypanosoma brucei gambiense (T. b. gambiense), the agent of human African trypanosomiasis (HAT), may compromise the interruption of transmission targeted by World Health Organization. The aim of this study was to investigate the presence of trypanosomes in pigs and people in the Vavoua HAT historical focus where cases were still diagnosed in the early 2010's. METHODS: For the human survey, we used the CATT, mini-anion exchange centrifugation technique and immune trypanolysis tests. For the animal survey, the buffy coat technique was also used as well as the PCR using Trypanosoma species specific, including the T. b. gambiense TgsGP detection using single round and nested PCRs, performed from animal blood samples and from strains isolated from subjects positive for parasitological investigations. RESULTS: No HAT cases were detected among 345 people tested. A total of 167 pigs were investigated. Free-ranging pigs appeared significantly more infected than pigs in pen. Over 70% of free-ranging pigs were positive for CATT and parasitological investigations and 27-43% were positive to trypanolysis depending on the antigen used. T. brucei was the most prevalent species (57%) followed by T. congolense (24%). Blood sample extracted DNA of T. brucei positive subjects were negative to single round TgsGP PCR. However, 1/22 and 6/22 isolated strains were positive with single round and nested TgsGP PCRs, respectively. DISCUSSION: Free-ranging pigs were identified as a multi-reservoir of T. brucei and/or T. congolense with mixed infections of different strains. This trypanosome diversity hinders the easy and direct detection of T. b. gambiense. We highlight the lack of tools to prove or exclude with certainty the presence of T. b. gambiense. This study once more highlights the need of technical improvements to explore the role of animals in the epidemiology of HAT.


Subject(s)
Disease Reservoirs/parasitology , Swine Diseases/parasitology , Trypanosoma brucei gambiense/isolation & purification , Trypanosoma congolense/isolation & purification , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/veterinary , Animals , Animals, Domestic/parasitology , Cote d'Ivoire/epidemiology , Humans , Polymerase Chain Reaction , Swine , Swine Diseases/epidemiology , Trypanosoma brucei gambiense/genetics , Trypanosoma brucei gambiense/physiology , Trypanosoma congolense/genetics , Trypanosoma congolense/physiology , Trypanosomiasis, African/epidemiology
8.
PLoS Negl Trop Dis ; 15(11): e0009903, 2021 11.
Article in English | MEDLINE | ID: mdl-34748572

ABSTRACT

BACKGROUND: Nifurtimox-eflornithine combination therapy (NECT) for the treatment of second stage gambiense human African trypanosomiasis (HAT) was added to the World Health Organization's Essential Medicines List in 2009 after demonstration of its non-inferior efficacy compared to eflornithine therapy. A study of NECT use in the field showed acceptable safety and high efficacy until hospital discharge in a wide population, including children, pregnant and breastfeeding women, and patients with a HAT treatment history. We present here the effectiveness results after the 24-month follow-up visit. METHODOLOGY/PRINCIPAL FINDINGS: In a multicenter, open label, single arm phase IIIb study, second stage gambiense HAT patients were treated with NECT in the Democratic Republic of Congo. Clinical cure was defined 24 months after treatment as survival without clinical and/or parasitological signs of HAT. Of the 629 included patients, 619 (98.4%) were discharged alive after treatment and were examined for the presence of trypanosomes, white blood cell count in cerebro-spinal fluid, and disease symptoms. The clinical cure rate of 94.1% was comparable for all subpopulations analyzed at the 24-month follow-up visit. Self-reported adverse events during follow-up were few and concerned mainly nervous system disorders, infections, and gastro-intestinal disorders. Overall, 28 patients (4.3%) died during the course of the trial. The death of 16 of the 18 patients who died during the follow-up period was assessed as unlikely or not related to NECT. Within 24 months, eight patients (1.3%) relapsed and received rescue treatment. Sixteen patients were completely lost to follow-up. CONCLUSIONS/SIGNIFICANCE: NECT treatment administered under field conditions was effective and sufficiently well tolerated, no major concern arose for children or pregnant or breastfeeding women. Patients with a previous HAT treatment history had the same response as those who were naïve. In conclusion, NECT was confirmed as effective and appropriate for use in a broad population, including vulnerable subpopulations. TRIAL REGISTRATION: The trial is registered at ClinicalTrials.gov, number NCT00906880.


Subject(s)
Antiprotozoal Agents/administration & dosage , Eflornithine/administration & dosage , Nifurtimox/administration & dosage , Trypanocidal Agents/administration & dosage , Trypanosomiasis, African/drug therapy , Adolescent , Adult , Aged , Antiprotozoal Agents/adverse effects , Child , Child, Preschool , Democratic Republic of the Congo , Drug Therapy, Combination , Eflornithine/adverse effects , Female , Follow-Up Studies , Humans , Infant , Male , Middle Aged , Nifurtimox/adverse effects , Pregnancy , Treatment Outcome , Trypanosoma brucei gambiense/drug effects , Trypanosoma brucei gambiense/genetics , Trypanosoma brucei gambiense/physiology , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/pathology , Young Adult
9.
Molecules ; 26(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34361781

ABSTRACT

The protozoan diseases Human African Trypanosomiasis (HAT), Chagas disease (CD), and leishmaniases span worldwide and therefore their impact is a universal concern. The present regimen against kinetoplastid protozoan infections is poor and insufficient. Target-based design expands the horizon of drug design and development and offers novel chemical entities and potential drug candidates to the therapeutic arsenal against the aforementioned neglected diseases. In this review, we report the most promising targets of the main kinetoplastid parasites, as well as their corresponding inhibitors. This overview is part of the Special Issue, entitled "Advances of Medicinal Chemistry against Kinetoplastid Protozoa (Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp.) Infections: Drug Design, Synthesis and Pharmacology".


Subject(s)
Antiprotozoal Agents/pharmacology , Chagas Disease/drug therapy , Drug Design , Leishmaniasis/drug therapy , Molecular Targeted Therapy/methods , Trypanosomiasis, African/drug therapy , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/classification , Chagas Disease/parasitology , Chagas Disease/transmission , Drug Discovery , Humans , Insect Vectors/drug effects , Insect Vectors/parasitology , Leishmania/drug effects , Leishmania/genetics , Leishmania/growth & development , Leishmania/metabolism , Leishmaniasis/parasitology , Leishmaniasis/transmission , Life Cycle Stages/drug effects , Life Cycle Stages/genetics , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Molecular Structure , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Structure-Activity Relationship , Trypanosoma brucei gambiense/drug effects , Trypanosoma brucei gambiense/genetics , Trypanosoma brucei gambiense/growth & development , Trypanosoma brucei gambiense/metabolism , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/genetics , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/metabolism , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/transmission
10.
Infect Genet Evol ; 87: 104636, 2021 01.
Article in English | MEDLINE | ID: mdl-33217546

ABSTRACT

Fighting trypanosomiasis with an anti-trypanosome vaccine is ineffective, the parasite being protected by a Variable Surface Glycoprotein (VSG) whose structure is modified at each peak of parasitaemia, which allows it to escape the host's immune defenses. However, the host immunization against an essential factor for the survival of the parasite or the expression of its pathogenicity could achieve the same objective. Here we present the results of mouse immunization against the Translationally Controlled Tumor Protein (TCTP), a protein present in the Trypanosoma brucei gambiense (Tbg) secretome, the parasite responsible for human trypanosomiasis. Mice immunization was followed by infection with Tbg parasites. The production of IgG, IgG1 and IgG2a begun after the second TCTP injection and was dose-dependant, the maximum level of anti-TCTP antibodies remained stable up to 4 days post-infection and then decreased. Regarding cytokines (IL-2, 4, 6, 10, INFγ, TNFα), the most striking result was their total suppression after immunization with the highest TCTP dose. Compared to the control group, the immunized mice displayed a reduced first peak of parasitaemia, a 100% increase in the time to onset of the second peak, and an increased time of mice survival. The effect of immunization was only transient but demonstrated the likely important role that TCTP plays in host-parasite interactions and that some key parasite proteins could reduce infection impact.


Subject(s)
Biomarkers, Tumor/genetics , Cytokines/biosynthesis , Immunoglobulins/biosynthesis , Mice/parasitology , Trypanosoma brucei gambiense/genetics , Trypanosoma brucei gambiense/pathogenicity , Trypanosomiasis, African/immunology , Animals , Cytokines/genetics , Disease Models, Animal , Gene Expression , Humans , Immunoglobulins/genetics , Tumor Protein, Translationally-Controlled 1
11.
PLoS Negl Trop Dis ; 14(11): e0008308, 2020 11.
Article in English | MEDLINE | ID: mdl-33237917

ABSTRACT

Human African Trypanosomiasis (HAT) is a potentially fatal parasitic infection caused by the trypanosome sub-species Trypanosoma brucei gambiense and T. b. rhodesiense transmitted by tsetse flies. Currently, global HAT case numbers are reaching less than 1 case per 10,000 people in many disease foci. As such, there is a need for simple screening tools and strategies to replace active screening of the human population which can be maintained post-elimination for Gambian HAT and long-term for Rhodesian HAT. Here, we describe the proof of principle application of a novel high-resolution melt assay for the xenomonitoring of Trypanosoma brucei gambiense and T. b. rhodesiense in tsetse. Both novel and previously described primers which target species-specific single copy genes were used as part of a multiplex qPCR. An additional primer set was included in the multiplex to determine if samples had sufficient genomic material for detecting genes present in low copy number. The assay was evaluated on 96 wild-caught tsetse previously identified to be positive for T. brucei s. l. of which two were known to be positive for T. b. rhodesiense. The assay was found to be highly specific with no cross-reactivity with non-target trypanosome species and the assay limit of detection was 104 tryps/mL. The qPCR successfully identified three T. b. rhodesiense positive flies, in agreement with the reference species-specific PCRs. This assay provides an alternative to running multiple PCRs when screening for pathogenic sub-species of T. brucei s. l. and produces results in less than 2 hours, avoiding gel electrophoresis and subjective analysis. This method could provide a component of a simple and efficient method of screening large numbers of tsetse flies in known HAT foci or in areas at risk of recrudescence or threatened by the changing distribution of both forms of HAT.


Subject(s)
DNA, Protozoan/analysis , Trypanosoma brucei gambiense/genetics , Trypanosoma brucei rhodesiense/genetics , Trypanosomiasis, African/diagnosis , Tsetse Flies/parasitology , Animals , DNA Primers/genetics , DNA, Protozoan/genetics , Humans , Limit of Detection , Mass Screening/methods , Nucleic Acid Denaturation/genetics , Proof of Concept Study , Real-Time Polymerase Chain Reaction , Trypanosoma brucei gambiense/isolation & purification , Trypanosoma brucei rhodesiense/isolation & purification
12.
Parasite ; 27: 63, 2020.
Article in English | MEDLINE | ID: mdl-33206595

ABSTRACT

Human African trypanosomiasis (HAT) has been targeted for zero transmission to humans by 2030. Animal reservoirs of gambiense-HAT could jeopardize these elimination goals. This study was undertaken to identify potential host reservoirs for Trypanosoma brucei gambiense by detecting its natural infections in domestic animals of Chadian HAT foci. Blood samples were collected from 267 goats, 181 sheep, 154 dogs, and 67 pigs. Rapid diagnostic test (RDT) and capillary tube centrifugation (CTC) were performed to search for trypanosomes. DNA was extracted from the buffy coat, and trypanosomes of the subgenus Trypanozoon as well as T. b. gambiense were identified by PCR. Of 669 blood samples, 19.4% were positive by RDT and 9.0% by CTC. PCR revealed 150 animals (22.4%) with trypanosomes belonging to Trypanozoon, including 18 (12%) T. b. gambiense. This trypanosome was found in all investigated animal species and all HAT foci. Between animal species or villages, no significant differences were observed in the number of animals harboring T. b. gambiense DNA. Pigs, dogs, sheep and goats appeared to be potential reservoir hosts for T. b. gambiense in Chad. The identification of T. b. gambiense in all animal species of all HAT foci suggests that these animals should be considered when designing new control strategies for sustainable elimination of HAT. Investigations aiming to decrypt their specific role in each epidemiological setting are important to achieve zero transmission of HAT.


TITLE: L'identification moléculaire de Trypanosoma brucei gambiense chez les porcs, les chiens et les petits ruminants naturellement infectés confirme les animaux domestiques comme réservoirs potentiels de la maladie du sommeil au Tchad. ABSTRACT: La trypanosomiase humaine africaine (THA) a été ciblée pour une interruption de sa transmission en 2030. Le réservoir animal de la THA à Trypanosoma brucei gambiense pourrait compromettre ces objectifs d'élimination. Cette étude a été entreprise pour identifier des potentiels hôtes réservoirs de Trypanosoma brucei gambiense en détectant ses infections naturelles chez des animaux domestiques des foyers tchadiens de la THA. Des échantillons de sang ont été prélevés chez 267 chèvres, 181 moutons, 154 chiens et 67 porcs. Le test de diagnostic rapide (TDR) et la centrifugation en tube capillaire (CTC) ont été utilisés pour mettre en évidence les trypanosomes. L'ADN a été extrait des couches leucocytaires et les trypanosomes du sous-genre Trypanozoon ainsi que T. b. gambiense ont été identifiés par PCR. Sur les 669 échantillons de sang analysés, 19,4& % étaient positifs au TDR et 9,0& % à la CTC. La PCR a révélé 150 (22,4& %) animaux avec des trypanosomes du sous-genre Trypanozoon donc 18 (12& %) portant l'ADN de T. b. gambiense. Ce dernier a été identifié chez toutes les espèces animales de tous les foyers de la THA. Entre les espèces animales ou les villages, aucune différence significative n'a été observée entre le nombre d'animaux ayant l'ADN de T. b. gambiense. Les porcs, les chiens, les moutons et les chèvres sont apparus comme des hôtes réservoirs potentiels de T. b. gambiense au Tchad. L'identification de T. b. gambiense, chez toutes les espèces animales étudiées dans tous les foyers, suggère de considérer ces animaux dans la conception des nouvelles stratégies de lutte visant une élimination durable de la THA. Des investigations visant à décrypter leur rôle spécifique dans chaque contexte épidémiologique sont nécessaires pour parvenir à une transmission nulle de la THA.


Subject(s)
Animals, Domestic , Disease Reservoirs , Trypanosoma brucei gambiense , Trypanosomiasis, African , Animals , Animals, Domestic/parasitology , Chad/epidemiology , Dogs/parasitology , Goats/parasitology , Sheep/parasitology , Swine/parasitology , Trypanosoma brucei gambiense/genetics , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/veterinary
13.
Exp Parasitol ; 219: 108014, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33011238

ABSTRACT

The objective set by WHO to reach elimination of human African trypanosomiasis (HAT) as a public health problem by 2020 is being achieved. The next target is the interruption of gambiense-HAT transmission in humans by 2030. To monitor progress towards this target, in areas where specialized local HAT control capacities will disappear, is a major challenge. Test specimens should be easily collectable and safely transportable such as dried blood spots (DBS). Monitoring tests performed in regional reference centres should be reliable, cheap and allow analysis of large numbers of specimens in a high-throughput format. The aim of this study was to assess the analytical sensitivity of Loopamp, M18S quantitative real-time PCR (M18S qPCR) and TgsGP qPCR as molecular diagnostic tests for the presence of Trypanosoma brucei gambiense in DBS. The sensitivity of the Loopamp test, with a detection limit of 100 trypanosomes/mL, was in the range of parasitaemias commonly observed in HAT patients, while detection limits for M18S and TgsGP qPCR were respectively 1000 and 10,000 trypanosomes/mL. None of the tests was entirely suitable for high-throughput use and further development and implementation of sensitive high-throughput molecular tools for monitoring HAT elimination are needed.


Subject(s)
Molecular Diagnostic Techniques/standards , Nucleic Acid Amplification Techniques/standards , Real-Time Polymerase Chain Reaction/standards , Trypanosoma brucei gambiense/isolation & purification , Trypanosomiasis, African/prevention & control , Algorithms , Animals , Blood Specimen Collection/methods , Blood Specimen Collection/standards , DNA, Protozoan/isolation & purification , High-Throughput Screening Assays/methods , High-Throughput Screening Assays/standards , Humans , Mice , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Specimen Handling/methods , Specimen Handling/standards , Trypanosoma brucei gambiense/genetics , Trypanosomiasis, African/blood , Trypanosomiasis, African/diagnosis
14.
PLoS Negl Trop Dis ; 14(10): e0008753, 2020 10.
Article in English | MEDLINE | ID: mdl-33091922

ABSTRACT

Human African trypanosomiasis (HAT) is one of the neglected tropical diseases in sub-Saharan Africa. Early diagnosis and treatment prior to disease progression are crucial for the survival of HAT patients. We had previously established a loop-mediated isothermal amplification (LAMP) method for HAT diagnosis in which the reagents were dried for field-use purposes. In this study, we used a semi-automated process to produce the test tubes using a bio-inkjet printer to achieve an accurate production. The performance of the inkjet printer-produced dried LAMP test (CZC-LAMP) was found to be stable after storage for up to 180 days at 30 °C. The diagnostic accuracy of CZC-LAMP HAT was evaluated using DNA samples that were extracted from 116 Trypanosoma brucei gambiense patients and 66 T. b. rhodesiense patients. The sensitivity was 72% for T. b. gambiense (95%CI: 63%-80%) and 80% for T. b. rhodesiense (95%CI: 69%-89%). The specificity determined using DNA from 116 endemic control DNA samples was 95% (95%CI: 89%-98%). The performance of the CZC-LAMP HAT and CZC-LAMP rHAT were also evaluated using 14 crude blood lysate samples obtained from T. b. rhodesiense patients and endemic control samples collected from Rumphi District in Malawi. The sensitivity and specificity were both 100% (95%CI: 77%-100%). As the developed CZC-LAMP test does not require a cold chain or a sophisticated laboratory, it holds promise for use as a routine simple molecular tool for point-of-care HAT diagnosis in endemic areas.


Subject(s)
Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Trypanosoma brucei gambiense/isolation & purification , Trypanosoma brucei rhodesiense/isolation & purification , Trypanosomiasis, African/diagnosis , Animals , DNA, Protozoan/analysis , Humans , Malawi , Point-of-Care Systems , Sensitivity and Specificity , Trypanosoma brucei gambiense/genetics , Trypanosoma brucei rhodesiense/genetics
15.
PLoS Negl Trop Dis ; 14(10): e0008779, 2020 10.
Article in English | MEDLINE | ID: mdl-33057341

ABSTRACT

BACKGROUND: The Democratic Republic of the Congo (DRC) accounts for the majority of the reported gambiense human African trypanosomiasis (HAT) cases. Kongo Central province in the DRC reports a relatively low, yet steady number of cases, and forms a transboundary focus with Angola and the Republic of Congo. This paper describes an intervention aimed at reducing the case burden in Kongo Central by improving passive case detection, complemented with reactive screening. METHODOLOGY/PRINCIPAL FINDINGS: At the initiation of this programme in August 2015, 620 health facilities were identified and equipped with Rapid Diagnostic Tests (RDTs) for HAT screening. Of these, 603 (97%) reported use of RDTs, and 584 (94%) that continued to use RDTs to the last quarter of 2016 were used in the analysis going forward. Among all health facilities involved, 23 were equipped to confirm HAT by microscopy, and 4 of the latter were equipped to perform molecular testing with loop-mediated isothermal amplification (LAMP). Patients clinically suspected of HAT were tested with an RDT and those with a positive RDT result were referred to the nearest microscopy facility for confirmatory testing. If RDT positive patients were negative by microscopy, they were tested by LAMP, either on fresh blood or blood that was dried on filter paper and transported to a facility performing LAMP. This network of diagnostic facilities reduced the median distance for a patient to travel to a screening facility from 13.7km when the classical card agglutination test for trypanosomiasis (CATT) was used as a screening test in the past, to 3.4km. As a consequence, passive case detection was improved by between 30% and 130% compared to the period before. Furthermore, the proportion of HAT cases detected in early stage disease by passive screening increased from 27% to 64%. Reactive screening took place in 20 villages where cases were reported by passive screening, and in 45 villages in the neighbourhood of these villages. Reactive screening was responsible for detection of 40% of cases, of which, 90% were in first stage of the disease. CONCLUSIONS: This programme has demonstrated that it is possible to deploy passive screening for HAT at sub-country or country levels in the DRC, and this is made more effective when supplemented with reactive screening. Results and achievements showed an increase in the number of HAT cases detected, the majority of them in early disease, demonstrating that this strategy enables better population coverage and early detection of cases, which is critical in removing the HAT reservoir and interrupting transmission, and could contribute to HAT elimination in regions where it is implemented.


Subject(s)
Mass Screening/methods , Trypanosoma brucei gambiense/isolation & purification , Trypanosomiasis, African/diagnosis , Animals , Democratic Republic of the Congo/epidemiology , Diagnostic Tests, Routine , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Trypanosoma brucei gambiense/classification , Trypanosoma brucei gambiense/genetics , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/parasitology
16.
PLoS Negl Trop Dis ; 14(4): e0007737, 2020 04.
Article in English | MEDLINE | ID: mdl-32255793

ABSTRACT

BACKGROUND: Large-scale control of sleeping sickness has led to a decline in the number of cases of Gambian human African trypanosomiasis (g-HAT) to <2000/year. However, achieving complete and lasting interruption of transmission may be difficult because animals may act as reservoir hosts for T. b. gambiense. Our study aims to update our understanding of T. b. gambiense in local vectors and domestic animals of N.W. Uganda. METHODS: We collected blood from 2896 cattle and 400 pigs and In addition, 6664 tsetse underwent microscopical examination for the presence of trypanosomes. Trypanosoma species were identified in tsetse from a subsample of 2184 using PCR. Primers specific for T. brucei s.l. and for T. brucei sub-species were used to screen cattle, pig and tsetse samples. RESULTS: In total, 39/2,088 (1.9%; 95% CI = 1.9-2.5) cattle, 25/400 (6.3%; 95% CI = 4.1-9.1) pigs and 40/2,184 (1.8%; 95% CI = 1.3-2.5) tsetse, were positive for T. brucei s.l.. Of these samples 24 cattle (61.5%), 15 pig (60%) and 25 tsetse (62.5%) samples had sufficient DNA to be screened using the T. brucei sub-species PCR. Further analysis found no cattle or pigs positive for T. b. gambiense, however, 17/40 of the tsetse samples produced a band suggestive of T. b. gambiense. When three of these 17 PCR products were sequenced the sequences were markedly different to T. b. gambiense, indicating that these flies were not infected with T. b. gambiense. CONCLUSION: The lack of T. b. gambiense positives in cattle, pigs and tsetse accords with the low prevalence of g-HAT in the human population. We found no evidence that livestock are acting as reservoir hosts. However, this study highlights the limitations of current methods of detecting and identifying T. b. gambiense which relies on a single copy-gene to discriminate between the different sub-species of T. brucei s.l.


Subject(s)
Animals, Domestic/parasitology , Disease Reservoirs/parasitology , Topography, Medical , Trypanosoma brucei gambiense/isolation & purification , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/veterinary , Tsetse Flies/parasitology , Animals , Blood/parasitology , Cattle , Humans , Microscopy , Polymerase Chain Reaction , Prevalence , Swine , Trypanosoma brucei gambiense/genetics , Uganda/epidemiology
17.
Infect Genet Evol ; 77: 104095, 2020 01.
Article in English | MEDLINE | ID: mdl-31689541

ABSTRACT

Even if the number of Human African Trypanosomiasis (HAT) cases from Kinshasa province in DRC is going towards elimination for the last decade, cases still occur in the periphery of the city. The diagnosis of 21 cases in the south periphery of Kinshasa, between 2015 and 2017 gives evidence of the existence of an active focus in this area. Here, we present the results of a punctual entomological survey that was realized in july 2014 in the outskirts of the southeast of Kinshasa. Using pyramidal traps, we caught tsetse flies during 2 days, dissecting the fresh ones for further molecular analysis. The average Apparent Density of flies per Trap and per Day was three with a maximum of 5.6 flies in Nganda PIO. Polymerase chain reaction analysis of the midguts provided evidence of a high prevalence (57.2%) of infected flies. Ninety three percent of the trypanosomes that were identified belonged to the Nanomonas species, but Trypanozoon trypanosomes were also present in 24% of the infected flies, including mixed infections with Nanomonas, including 3 flies carrying Trypanosoma brucei gambiense, the human pathogen of trypanosomiasis. These results show that at the time of the field's study there was an active reservoir of trypanosomes, closed to pigsties, knowing that pig is a potential animal reservoir. It also demonstrates that xenomonitoring using the entomological approach can be an efficient tool for monitoring sleeping sickness. Finally, results are discussed in the frame of WHO's HAT elimination project. Regarding Kinshasa, it points out the need of regular epidemiologic surveys.


Subject(s)
Trypanosoma/classification , Trypanosomiasis/epidemiology , Tsetse Flies/parasitology , Animals , DNA, Protozoan/genetics , Democratic Republic of the Congo/epidemiology , Disease Reservoirs/parasitology , Evolution, Molecular , Gastrointestinal Tract/parasitology , Phylogeny , Prevalence , Trypanosoma/genetics , Trypanosoma/isolation & purification , Trypanosoma brucei gambiense/classification , Trypanosoma brucei gambiense/genetics , Trypanosoma brucei gambiense/isolation & purification , Trypanosomiasis/transmission
18.
Trends Parasitol ; 35(12): 983-995, 2019 12.
Article in English | MEDLINE | ID: mdl-31668893

ABSTRACT

Trypanosoma brucei causes human African trypanosomiasis (HAT). Three subspecies were described: T. b. gambiense (Tbg) and T. b. rhodesiense (Tbr) in humans, and T. b. brucei (Tbb) in animals. Molecular markers subdivided Tbg into two groups: Tbg1 and Tbg2, of which the latter is different from Tbg1 and Tbr (absence of the SRA gene), but indistinguishable from Tbb. Tbg2 is considered to be a zoonotic form of HAT in West Africa. Tbg2 was found mainly in Côte d'Ivoire between 1978 and 1992, but the latest description was made in Ghana in 2013. New molecular tools would be welcome to characterize such infections and determine their origins (resistance to human serum or patient immunodeficiency) in the current context of HAT elimination.


Subject(s)
Trypanosoma brucei gambiense/classification , Trypanosomiasis, African/parasitology , Africa, Western/epidemiology , Animals , Demography , Genetic Markers/genetics , Humans , Trypanosoma brucei gambiense/genetics , Trypanosomiasis, African/epidemiology
19.
Parasit Vectors ; 12(1): 420, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31455430

ABSTRACT

BACKGROUND: Animal trypanosomosis is endemic in Nigeria, while the human disease caused by Trypanosoma brucei gambiense is rarely reported nowadays after efforts to bring it under control in the 20th century. The University of Nigeria Veterinary Teaching Hospital (UNVTH) is a reference centre located within the Nsukka area and serves Enugu and neighboring states, Benue, Kogi, Anambra and Delta. Among dogs presented to the UNVTH with canine trypanosomosis, T. brucei is frequently reported as the causative agent. However, this is by morphological identification under the microscope, which does not allow distinction of human-infective (T. b. gambiense) and non-human-infective (T. b. brucei) subspecies. Here, we used subspecies-specific PCR tests to distinguish T. b. gambiense and T. b. brucei. METHODS: Blood samples were collected on FTA cards from 19 dogs presenting with clinical signs of trypanosomosis at the UNVTH from January 2017 to December 2018. All dogs had a patent parasitaemia. DNA was extracted from the FTA cards using Chelex 100 resin and used as template for PCR. RESULTS: All infections were initially identified as belonging to subgenus Trypanozoon using a generic PCR test based on the internal transcribed spacer 1 (ITS1) of the ribosomal RNA locus and a PCR test specific for the 177 bp satellite DNA of subgenus Trypanozoon. None of the samples were positive using a specific PCR test for T. evansi Type A kinetoplast DNA minicircles. Further PCR tests specific for T. b. gambiense based on the TgsGP and AnTat 11.17 genes revealed that two of the dogs harboured T. b. gambiense. In addition to trypanosomes of subgenus Trypanozoon, T. congolense savannah was identified in one dog using a species-specific PCR test for this taxon. CONCLUSIONS: Nineteen dogs presenting with canine African trypanosomosis at UNVTH were infected with trypanosomes of the T. brucei group and in two cases the trypanosomes were further identified to subspecies T. b. gambiense using specific PCR tests. Thus T. b. gambiense is one of the parasites responsible for canine African trypanosomosis in the Nsukka area of Nigeria and represents a serious danger to human health.


Subject(s)
Dog Diseases/epidemiology , Dog Diseases/parasitology , Trypanosomiasis, African/veterinary , Animals , DNA, Protozoan/genetics , DNA, Ribosomal Spacer/genetics , Dog Diseases/diagnosis , Dogs , Female , Male , Nigeria/epidemiology , Trypanosoma brucei gambiense/genetics , Trypanosoma brucei gambiense/isolation & purification , Trypanosomiasis, African/epidemiology
20.
Parasite Immunol ; 41(8): e12632, 2019 08.
Article in English | MEDLINE | ID: mdl-31099071

ABSTRACT

Trypanosoma brucei gambiense, an extracellular eukaryotic flagellate parasite, is the main etiological agent of human African trypanosomiasis (HAT) or sleeping sickness. Dendritic cells (DCs) play a pivotal role at the interface between innate and adaptive immune response and are implicated during HAT. In this study, we investigated the effects of T gambiense and its excreted/secreted factors (ESF) on the phenotype of human monocyte-derived DCs (Mo-DCs). Mo-DCs were cultured with trypanosomes, lipopolysaccharide (LPS), ESF derived from T gambiense bloodstream strain Biyamina (MHOM/SD/82), or both ESF and LPS. Importantly, ESF reduced the expression of the maturation markers HLA-DR and CD83, as well as the secretion of IL-12, TNF-alpha and IL-10, in LPS-stimulated Mo-DCs. During mixed-leucocyte reactions, LPS- plus ESF-exposed DCs induced a non-significant decrease in the IFN-gamma/IL-10 ratio of CD4 + T-cell cytokines. Based on the results presented here, we raise the hypothesis that T gambiense has developed an immune escape strategy through the secretion of paracrine mediators in order to limit maturation and activation of human DCs. The identification of the factor(s) in the T gambiense ESF and of the DCs signalling pathway(s) involved may be important in the development of new therapeutic targets.


Subject(s)
Dendritic Cells/immunology , Monocytes/immunology , Protozoan Proteins/immunology , Trypanosoma brucei gambiense/immunology , Trypanosomiasis, African/immunology , Animals , Dendritic Cells/parasitology , Female , HLA-DR Antigens/genetics , HLA-DR Antigens/immunology , Host-Parasite Interactions , Humans , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-12/genetics , Interleukin-12/immunology , Lipopolysaccharides/immunology , Mice , Monocytes/parasitology , Protozoan Proteins/genetics , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/parasitology , Trypanosoma brucei gambiense/genetics , Trypanosomiasis, African/genetics , Trypanosomiasis, African/parasitology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...