Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 781
Filter
1.
PLoS Negl Trop Dis ; 18(5): e0011516, 2024 May.
Article in English | MEDLINE | ID: mdl-38701067

ABSTRACT

BACKGROUND: Sleeping sickness caused by Trypanosoma brucei rhodesiense is a fatal disease and endemic in Southern and Eastern Africa. There is an urgent need to develop novel diagnostic and control tools to achieve elimination of rhodesiense sleeping sickness which might be achieved through a better understanding of trypanosome gene expression and genetics using endemic isolates. Here, we describe transcriptome profiles and population structure of endemic T. b. rhodesiense isolates in human blood in Malawi. METHODOLOGY: Blood samples of r-HAT cases from Nkhotakota and Rumphi foci were collected in PaxGene tubes for RNA extraction before initiation of r-HAT treatment. 100 million reads were obtained per sample, reads were initially mapped to the human genome reference GRCh38 using HiSat2 and then the unmapped reads were mapped against Trypanosoma brucei reference transcriptome (TriTrypDB54_TbruceiTREU927) using HiSat2. Differential gene expression analysis was done using the DeSeq2 package in R. SNP calling from reads that were mapped to the T. brucei genome was done using GATK in order to identify T.b. rhodesiense population structure. RESULTS: 24 samples were collected from r-HAT cases of which 8 were from Rumphi and 16 from Nkhotakota foci. The isolates from Nkhotakota were enriched with transcripts for cell cycle arrest and stumpy form markers, whereas isolates in Rumphi focus were enriched with transcripts for folate biosynthesis and antigenic variation pathways. These parasite focus-specific transcriptome profiles are consistent with the more virulent disease observed in Rumphi and a less symptomatic disease in Nkhotakota associated with the non-dividing stumpy form. Interestingly, the Malawi T.b. rhodesiense isolates expressed genes enriched for reduced cell proliferation compared to the Uganda T.b. rhodesiense isolates. PCA analysis using SNPs called from the RNAseq data showed that T. b. rhodesiense parasites from Nkhotakota are genetically distinct from those collected in Rumphi. CONCLUSION: Our results suggest that the differences in disease presentation in the two foci is mainly driven by genetic differences in the parasites in the two major endemic foci of Rumphi and Nkhotakota rather than differences in the environment or host response.


Subject(s)
Transcriptome , Trypanosoma brucei rhodesiense , Trypanosomiasis, African , Malawi , Humans , Trypanosoma brucei rhodesiense/genetics , Trypanosomiasis, African/parasitology , Gene Expression Profiling , Polymorphism, Single Nucleotide , Male
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731916

ABSTRACT

Herein, we report a series of 1,3-diarylpyrazoles that are analogues of compound 26/HIT 8. We previously identified this molecule as a 'hit' during a high-throughput screening campaign for autophagy inducers. A variety of synthetic strategies were utilized to modify the 1,3-diarylpyrazole core at its 1-, 3-, and 4-position. Compounds were assessed in vitro to identify their cytotoxicity properties. Of note, several compounds in the series displayed relevant cytotoxicity, which warrants scrutiny while interpreting biological activities that have been reported for structurally related molecules. In addition, antiparasitic activities were recorded against a range of human-infective protozoa, including Trypanosoma cruzi, T. brucei rhodesiense, and Leishmania infantum. The most interesting compounds displayed low micromolar whole-cell potencies against individual or several parasitic species, while lacking cytotoxicity against human cells.


Subject(s)
Pyrazoles , Trypanosoma cruzi , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Humans , Trypanosoma cruzi/drug effects , Antiparasitic Agents/pharmacology , Antiparasitic Agents/chemical synthesis , Antiparasitic Agents/chemistry , Drug Design , Leishmania infantum/drug effects , Structure-Activity Relationship , Trypanosoma brucei rhodesiense/drug effects , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry
3.
PLoS Negl Trop Dis ; 18(4): e0012103, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38620045

ABSTRACT

BACKGROUND: The severe late stage Human African Trypanosomiasis (HAT) caused by Trypanosoma brucei rhodesiense (T.b.r) is characterized by damage to the blood brain barrier, severe brain inflammation, oxidative stress and organ damage. Melarsoprol (MelB) is currently the only treatment available for this disease. MelB use is limited by its lethal neurotoxicity due to post-treatment reactive encephalopathy. This study sought to assess the potential of Ginkgo biloba (GB), a potent anti-inflammatory and antioxidant, to protect the integrity of the blood brain barrier and ameliorate detrimental inflammatory and oxidative events due to T.b.r in mice treated with MelB. METHODOLOGY: Group one constituted the control; group two was infected with T.b.r; group three was infected with T.b.r and treated with 2.2 mg/kg melarsoprol for 10 days; group four was infected with T.b.r and administered with GB 80 mg/kg for 30 days; group five was given GB 80mg/kg for two weeks before infection with T.b.r, and continued thereafter and group six was infected with T.b.r, administered with GB and treated with MelB. RESULTS: Co-administration of MelB and GB improved the survival rate of infected mice. When administered separately, MelB and GB protected the integrity of the blood brain barrier and improved neurological function in infected mice. Furthermore, the administration of MelB and GB prevented T.b.r-induced microcytic hypochromic anaemia and thrombocytopenia, as well as T.b.r-driven downregulation of total WBCs. Glutathione analysis showed that co-administration of MelB and GB prevented T.b.r-induced oxidative stress in the brain, spleen, heart and lungs. Notably, GB averted peroxidation and oxidant damage by ameliorating T.b.r and MelB-driven elevation of malondialdehyde (MDA) in the brain, kidney and liver. In fact, the co-administered group for the liver, registered the lowest MDA levels for infected mice. T.b.r-driven elevation of serum TNF-α, IFN-γ, uric acid and urea was abrogated by MelB and GB. Co-administration of MelB and GB was most effective in stabilizing TNFα levels. GB attenuated T.b.r and MelB-driven up-regulation of nitrite. CONCLUSION: Utilization of GB as an adjuvant therapy may ameliorate detrimental effects caused by T.b.r infection and MelB toxicity during late stage HAT.


Subject(s)
Ginkgo biloba , Melarsoprol , Oxidative Stress , Plant Extracts , Trypanosoma brucei rhodesiense , Trypanosomiasis, African , Animals , Mice , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Ginkgo biloba/chemistry , Trypanosoma brucei rhodesiense/drug effects , Melarsoprol/pharmacology , Male , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Disease Models, Animal , Brain/drug effects , Brain/parasitology , Brain/metabolism , Brain/pathology , Antioxidants/pharmacology , Inflammation/drug therapy
4.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38673995

ABSTRACT

In recent decades, neglected tropical diseases and poverty-related diseases have become a serious health problem worldwide. Among these pathologies, human African trypanosomiasis, and malaria present therapeutic problems due to the onset of resistance, toxicity problems and the limited spectrum of action. In this drug discovery process, rhodesain and falcipain-2, of Trypanosoma brucei rhodesiense and Plasmodium falciparum, are currently considered the most promising targets for the development of novel antitrypanosomal and antiplasmodial agents, respectively. Therefore, in our study we identified a novel lead-like compound, i.e., inhibitor 2b, which we proved to be active against both targets, with a Ki = 5.06 µM towards rhodesain and an IC50 = 40.43 µM against falcipain-2.


Subject(s)
Cysteine Proteinase Inhibitors , Nitriles , Plasmodium falciparum , Trypanosoma brucei rhodesiense , Trypanosomiasis, African , Humans , Antimalarials/therapeutic use , Antimalarials/pharmacology , Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Cysteine Proteinase Inhibitors/therapeutic use , Cysteine Proteinase Inhibitors/chemistry , Malaria/drug therapy , Nitriles/therapeutic use , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Trypanosoma brucei rhodesiense/drug effects , Trypanosomiasis, African/drug therapy
5.
Eur J Med Chem ; 268: 116162, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38394930

ABSTRACT

Human African trypanosomiasis (HAT), or sleeping sickness, is a neglected tropical disease with current treatments marred by severe side effects or delivery issues. To identify novel classes of compounds for the treatment of HAT, high throughput screening (HTS) had previously been conducted on bloodstream forms of T. b. brucei, a model organism closely related to the human pathogens T. b. gambiense and T. b. rhodesiense. This HTS had identified a number of structural classes with potent bioactivity against T. b. brucei (IC50 ≤ 10 µM) with selectivity over mammalian cell-lines (selectivity index of ≥10). One of the confirmed hits was an aroyl guanidine derivative. Deemed to be chemically tractable with attractive physicochemical properties, here we explore this class further to develop the SAR landscape. We also report the influence of the elucidated SAR on parasite metabolism, to gain insight into possible modes of action of this class. Of note, two sub-classes of analogues were identified that generated opposing metabolic responses involving disrupted energy metabolism. This knowledge may guide the future design of more potent inhibitors, while retaining the desirable physicochemical properties and an excellent selectivity profile of the current compound class.


Subject(s)
Parasites , Trypanocidal Agents , Trypanosoma brucei brucei , Trypanosoma , Trypanosomiasis, African , Animals , Humans , Trypanocidal Agents/chemistry , Trypanosoma brucei rhodesiense , Guanidine/pharmacology , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology , Guanidines/pharmacology , Energy Metabolism , Mammals
6.
J Med Chem ; 67(5): 3437-3447, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38363074

ABSTRACT

Human African trypanosomiasis (HAT), a neglected tropical disease caused by Trypanosoma brucei gambiense (Tbg) or Trypanosoma brucei rhodesiense (Tbr), remains a significant public health concern with over 55 million people at risk of infection. Current treatments for HAT face the challenges of poor efficacy, drug resistance, and toxicity. This study presents the synthesis and evaluation of chloronitrobenzamides (CNBs) against Trypanosoma species, identifying previously reported compound 52 as a potent and selective orally bioavailable antitrypanosomal agent. 52 was well tolerated in vivo and demonstrated favorable oral pharmacokinetics, maintaining plasma concentrations surpassing the cellular EC50 for over 24 h and achieving peak brain concentrations exceeding 7 µM in rodents after single oral administration (50 mg/kg). Treatment with 52 significantly extended the lifespan of mice infected with Trypanosoma congolense and T. brucei rhodesiense. These results demonstrate that 52 is a strong antitrypanosomal lead with potential for developing treatments for both human and animal African trypanosomiasis.


Subject(s)
Trypanocidal Agents , Trypanosoma brucei brucei , Trypanosomiasis, African , Humans , Animals , Mice , Trypanosomiasis, African/drug therapy , Trypanosoma brucei rhodesiense , Trypanosoma brucei gambiense , Trypanocidal Agents/toxicity , Trypanocidal Agents/therapeutic use
7.
Emerg Infect Dis ; 30(1): 125-128, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37967521

ABSTRACT

We report 4 cases of human African trypanosomiasis that occurred in Ethiopia in 2022, thirty years after the last previously reported case in the country. Two of 4 patients died before medicine became available. We identified the infecting parasite as Trypanosoma brucei rhodesiense. Those cases imply human African trypanosomiasis has reemerged.


Subject(s)
Trypanosomiasis, African , Animals , Humans , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/parasitology , Trypanosoma brucei rhodesiense , Ethiopia/epidemiology
8.
Fundam Clin Pharmacol ; 38(1): 72-83, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37479675

ABSTRACT

Human African trypanosomosis (HAT) which is also known as sleeping sickness is caused by Trypanosoma brucei gambiense that is endemic in western and central Africa and T. b. rhodesiense that is endemic in eastern and southern Africa. Drugs used for treatment against HAT first stage have limited effectiveness, and the second stage drugs have been reported to be toxic, expensive, and have time-consuming administration, and parasitic resistance has developed against these drugs. The aim of this study was to evaluate the anti-trypanosomal activity of nitrofurantoin-triazole hybrids against T. b. gambiense and T. b. rhodesiense parasites in vitro. This study screened 19 synthesized nitrofurantoin-triazole (NFT) hybrids on two strains of human trypanosomes, and cytotoxicity was evaluated on Madin-Darby bovine kidney (MDBK) cells. The findings in this study showed that an increase in the chain length and the number of carbon atoms in some n-alkyl hybrids influenced the increase in anti-trypanosomal activity against T. b. gambiense and T. b. rhodesiense. The short-chain n-alkyl hybrids showed decreased activity compared to the long-chain n-alkyl hybrids, with increased activity against both T. b. gambiense and T. b. rhodesiense. Incorporation of additional electron-donating substituents in some NFT hybrids showed increased anti-trypanosomal activity than to electron-withdrawing substituents in NFT hybrids. All 19 NFT hybrids tested displayed better anti-trypanosomal activity against T. b. gambiense than T. b. rhodesiense. The NFT hybrid no. 16 was among the best performing hybrids against both T. b. gambiense (0.08 ± 0.04 µM) and T. b.rhodesiense (0.11 ± 0.06 µM), and its activity might be influenced by the introduction of fluorine in the para-position on the benzyl ring. Remarkably, the NFT hybrids in this study displayed weak to moderate cytotoxicity on MDBK cells. All of the NFT hybrids in this study had selectivity index values ranging from 18 to greater than 915, meaning that they were up to 10-100 times fold selective in their anti-trypanosomal activity. The synthesized NFT hybrids showed strong selectivity >10 to T. b. gambiense and T. b. rhodesiense, which indicates that they qualify from the initial selection criteria for potential hit drugs.


Subject(s)
Nitrofurantoin , Trypanosomiasis, African , Humans , Animals , Cattle , Nitrofurantoin/therapeutic use , Trypanosoma brucei rhodesiense , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/parasitology , Trypanosoma brucei gambiense
9.
Chemistry ; 30(3): e202303316, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37926692

ABSTRACT

Balgacyclamide A-C are a family of cyanobactin natural products isolated from freshwater cyanobacteria Microcystis aeruginosa. These macrocyclic peptides are characterized by their oxazoline-thiazole core, their 7 or 8 stereocenters, and their antiparasitic activities. Balgacyclamide B is known for its activity towards Plasmodium falciparum chloroquine-resistant strain K1, Trypanosoma brucei rhodesiense, and Leishmania donovani. In this report, the first total synthesis of Balgacyclamide B is described in a 17-steps pathway and a 2 % overall yield. The synthetic pathway toward balgacyclamide B can be adapted for the future syntheses of balgacyclamide A and C. In addition, a brief history background of oxazolines syntheses is shown to emphasize the importance of the cyclization conditions used to interconvert or retain configuration of ß-hydroxy amides via dehydrative cyclization.


Subject(s)
Antiparasitic Agents , Leishmania donovani , Peptides, Cyclic , Parasitic Sensitivity Tests , Trypanosoma brucei rhodesiense , Plasmodium falciparum
10.
Eur J Med Chem ; 263: 115954, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37984297

ABSTRACT

Human African Trypanosomiasis (HAT), caused by Trypanosoma brucei gambiense and rhodesiense, is a parasitic disease endemic to sub-Saharan Africa. Untreated cases of HAT can be severely debilitating and fatal. Although the number of reported cases has decreased progressively over the last decade, the number of effective and easily administered medications is very limited. In this work, we report the antitrypanosomal activity of a series of potent compounds. A subset of molecules in the series are highly selective for trypanosomes and are metabolically stable. One of the compounds, (E)-N-(4-(methylamino)-4-oxobut-2-en-1-yl)-5-nitrothiophene-2-carboxamide (10), selectively inhibited the growth of T. b. brucei, T. b. gambiense and T. b. rhodesiense, have excellent oral bioavailability and was effective in treating acute infection of HAT in mouse models. Based on its excellent bioavailability, compound 10 and its analogs are candidates for lead optimization and pre-clinical investigations.


Subject(s)
Trypanocidal Agents , Trypanosoma brucei brucei , Trypanosomiasis, African , Animals , Mice , Humans , Trypanosoma brucei rhodesiense , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology , Trypanosoma brucei gambiense
11.
Parasitol Res ; 123(1): 11, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38057659

ABSTRACT

Suramin was the first drug developed using the approach of medicinal chemistry by the German Bayer company in the 1910s for the treatment of human African sleeping sickness caused by the two subspecies Trypanosoma brucei gambiense and Trypanosoma brucei rhodesienese. However, the drug was politically instrumentalized by the German government in the 1920s in an attempt to regain possession of its former African colonies lost after the First World War. For this reason, the formula of suramin was kept secret for more than 10 years. Eventually, the French pharmacist Ernest Fourneau uncovered the chemical structure of suramin by reverse engineering and published the formula of the drug in 1924. During the Nazi period, suramin became the subject of colonial revisionism, and the development of the drug was portrayed in books and films to promote national socialist propaganda. Ever since its discovery, suramin has also been tested for bioactivity against numerous other infections and diseases. However, sleeping sickness caused by Trypanosoma brucei rhodesiense is the only human disease for which treatment with suramin is currently approved.


Subject(s)
Trypanosoma brucei brucei , Trypanosomiasis, African , Animals , Humans , Suramin/therapeutic use , Trypanosomiasis, African/drug therapy , Trypanosoma brucei rhodesiense
12.
PLoS Negl Trop Dis ; 17(12): e0011803, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38055777

ABSTRACT

T. b. rhodesiense is the causative agent of Rhodesian human African trypanosomiasis (r-HAT) in Malawi. Clinical presentation of r-HAT in Malawi varies between foci and differs from East African HAT clinical phenotypes. The purpose of this study was to gain more insights into the transcriptomic profiles of patients with early stage 1 and late stage 2 HAT disease in Malawi. Whole blood from individuals infected with T. b. rhodesiense was used for RNA-Seq. Control samples were from healthy trypanosome negative individuals matched on sex, age range, and disease foci. Illumina sequence FASTQ reads were aligned to the GRCh38 release 84 human genome sequence using HiSat2 and differential analysis was done in R Studio using the DESeq2 package. XGR, ExpressAnalyst and InnateDB algorithms were used for functional annotation and gene enrichment analysis of significant differentially expressed genes. RNA-seq was done on 23 r-HAT case samples and 28 healthy controls with 7 controls excluded for downstream analysis as outliers. A total of 4519 genes were significant differentially expressed (p adjusted <0.05) in individuals with early stage 1 r-HAT disease (n = 12) and 1824 genes in individuals with late stage 2 r-HAT disease (n = 11) compared to controls. Enrichment of innate immune response genes through neutrophil activation was identified in individuals with both early and late stages of the disease. Additionally, lipid metabolism genes were enriched in late stage 2 disease. We further identified uniquely upregulated genes (log2 Fold Change 1.4-2.0) in stage 1 (ZNF354C) and stage 2 (TCN1 and MAGI3) blood. Our data add to the current understanding of the human transcriptome profiles during T. b. rhodesiense infection. We further identified biological pathways and transcripts enriched than were enriched during stage 1 and stage 2 r-HAT. Lastly, we have identified transcripts which should be explored in future research whether they have potential of being used in combination with other markers for staging or r-HAT.


Subject(s)
Transcriptome , Trypanosomiasis, African , Animals , Humans , Trypanosoma brucei rhodesiense , Malawi , Phenotype , Repressor Proteins
14.
Article in English | MEDLINE | ID: mdl-37757728

ABSTRACT

Suramin is one of the oldest drugs in use today. It is still the treatment of choice for the hemolymphatic stage of African sleeping sickness caused by Trypanosoma brucei rhodesiense, and it is also used for surra in camels caused by Trypanosoma evansi. Yet despite one hundred years of use, suramin's mode of action is not fully understood. Suramin is a polypharmacological molecule that inhibits diverse proteins. Here we demonstrate that a DNA helicase of the pontin/ruvB-like 1 family, termed T. brucei RuvBL1, is involved in suramin resistance in African trypanosomes. Bloodstream-form T. b. rhodesiense under long-term selection for suramin resistance acquired a homozygous point mutation, isoleucine-312 to valine, close to the ATP binding site of T. brucei RuvBL1. The introduction of this missense mutation, by reverse genetics, into drug-sensitive trypanosomes significantly decreased their sensitivity to suramin. Intriguingly, the corresponding residue of T. evansi RuvBL1 was found mutated in a suramin-resistant field isolate, in that case to a leucine. RuvBL1 (Tb927.4.1270) is predicted to build a heterohexameric complex with RuvBL2 (Tb927.4.2000). RNAi-mediated silencing of gene expression of either T. brucei RuvBL1 or RuvBL2 caused cell death within 72 h. At 36 h after induction of RNAi, bloodstream-form trypanosomes exhibited a cytokinesis defect resulting in the accumulation of cells with two nuclei and two or more kinetoplasts. Taken together, these data indicate that RuvBL1 DNA helicase is involved in suramin action in African trypanosomes.


Subject(s)
Trypanosoma brucei brucei , Trypanosoma , Trypanosomiasis, African , Animals , Suramin/pharmacology , Suramin/therapeutic use , DNA Helicases/genetics , Trypanosoma/genetics , Trypanosomiasis, African/drug therapy , Trypanosoma brucei rhodesiense/genetics , Trypanosoma brucei brucei/genetics
15.
ACS Infect Dis ; 9(10): 1964-1980, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37695781

ABSTRACT

We discovered dibenzannulated medium-ring keto lactams (11,12-dihydro-5H-dibenzo[b,g]azonine-6,13-diones) as a new antimalarial chemotype. Most of these had chromatographic LogD7.4 values ranging from <0 to 3 and good kinetic solubilities (12.5 to >100 µg/mL at pH 6.5). The more polar compounds in the series (LogD7.4 values of <2) had the best metabolic stability (CLint values of <50 µL/min/mg protein in human liver microsomes). Most of the compounds had relatively low cytotoxicity, with IC50 values >30 µM, and there was no correlation between antiplasmodial activity and cytotoxicity. The four most potent compounds had Plasmodium falciparum IC50 values of 4.2 to 9.4 nM and in vitro selectivity indices of 670 to >12,000. They were more than 4 orders-of-magnitude less potent against three other protozoal pathogens (Trypanosoma brucei rhodesiense, Trypanosoma cruzi, and Leishmania donovani) but did have relatively high potency against Toxoplasma gondii, with IC50 values ranging from 80 to 200 nM. These keto lactams are converted into their poorly soluble 4(1H)-quinolone transannular condensation products in vitro in culture medium and in vivo in mouse blood. The similar antiplasmodial potencies of three keto lactam-quinolone pairs suggest that the quinolones likely contribute to the antimalarial activity of the lactams.


Subject(s)
Antimalarials , Quinolones , Trypanosoma cruzi , Mice , Animals , Humans , Antimalarials/pharmacology , Antimalarials/chemistry , Lactams , Trypanosoma brucei rhodesiense
16.
Bull World Health Organ ; 101(8): 529-534, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37529024

ABSTRACT

Rhodesiense human African trypanosomiasis is a lethal parasitic infection caused by Trypanosoma brucei rhodesiense and transmitted by tsetse flies in eastern and southern Africa. It accounts for around 5% of all cases of human African trypanosomiasis. Currently, there is no simple serological test for rhodesiense human African trypanosomiasis and diagnosis relies on microscopic confirmation of trypanosomes in samples of blood or other tissues. The availability of a simple and accurate diagnostic test would aid the control, surveillance and treatment of the disease. A subcommittee of the World Health Organization's Neglected Tropical Diseases Diagnostics Technical Advisory Group has developed a target product profile for a diagnostic tool to identify T. b. rhodesiense infection. The optimum tool would have a sensitivity and specificity above 99% for detecting T. b. rhodesiense, but be simple enough for use by minimally trained health-care workers in unsophisticated peripheral health facilities or mobile teams in villages. The test should yield a qualitative result that can be easily observed and can be used to determine treatment. An antigen test would be preferable, with blood collected by finger-prick. Ideally, there should be no need for a cold chain, instrumentation or precision liquid handling. The test should be usable between 10 °C and 40 °C and between 10% and 88% relative humidity. Basic training should take under 2 hours and the test should involve fewer than five steps. The unit cost should be less than 1 United States dollar.


La trypanosomiase humaine africaine à T. b. rhodesiense est une infection parasitaire mortelle causée par Trypanosoma brucei rhodesiense et transmise par les mouches tsé-tsé en Afrique orientale et australe. Elle représente environ 5% de l'ensemble des cas de trypanosomiase humaine africaine. À l'heure actuelle, il n'existe aucun test sérologique simple pour l'infection à T. b. rhodesiense et le diagnostic repose sur la confirmation microscopique de la présence de trypanosomes dans des échantillons de sang ou d'autres tissus. Fournir un test de diagnostic simple et précis favoriserait la lutte, la surveillance et la prise en charge de la maladie. Un sous-comité du Groupe consultatif technique sur les produits de diagnostic des maladies tropicales négligées de l'Organisation mondiale de la Santé a donc élaboré un profil de produit cible pour un outil visant à détecter une infection par T. b. rhodesiense. L'outil le plus adapté présenterait un niveau de sensibilité et de spécificité supérieur à 99% pour la détection de T. b. rhodesiense, tout en étant à la portée de professionnels de la santé ayant reçu une formation sommaire, tant dans des structures de santé périphériques basiques qu'au sein d'équipes mobiles dans les villages. Cet outil doit fournir un résultat fiable, facile à interpréter, qui peut servir à établir un traitement. Un test antigénique serait préférable, avec prélèvement de l'échantillon sanguin par le biais d'une piqûre au bout du doigt. Idéalement, l'outil ne doit pas être thermosensible, ni nécessiter un équipement spécifique ou une manipulation de liquides délicate. Le test doit pouvoir être utilisé à une température comprise entre 10 °C et 40 °C, ainsi que dans une humidité relative de 10% à 88%. La formation requise pour son utilisation doit durer moins de deux heures et le test doit être effectué en moins de cinq étapes, Enfin, son coût unitaire doit être inférieur à un dollar américain.


La tripanosomiasis humana africana rhodesiense es una infección letal parasitaria causada por el Trypanosoma brucei rhodesiense, y es transmitida por la mosca tse-tsé en África oriental y meridional. Representa aproximadamente el 5% de todos los casos de tripanosomiasis humana africana. Actualmente, no existe ninguna prueba serológica simple para la tripanosomiasis humana africana rhodesiense, y el diagnóstico se basa en la confirmación microscópica de tripanosomas existentes en muestras de sangre u otros tejidos. Una prueba diagnóstica sencilla y precisa ayudaría a controlar, vigilar y tratar la enfermedad. Un subcomité del Grupo Asesor Técnico de Diagnóstico de Enfermedades Tropicales Desatendidas de la Organización Mundial de la Salud ha creado un perfil de producto objetivo para una herramienta de diagnóstico que permita identificar la infección T. b. rhodesiense. La herramienta óptima tendría una sensibilidad y una especificidad superiores al 99% para detectar la T. b. rhodesiense y, al ser lo suficientemente sencilla, podrían utilizarla trabajadores sanitarios mínimamente formados, en centros sanitarios periféricos no sofisticados, o bien equipos móviles. La prueba debe arrojar un resultado cualitativo de fácil lectura y que pueda utilizarse para determinar el tratamiento. Sería preferible una prueba de antígenos, con sangre extraída mediante punción digital. Idealmente, no debería ser necesaria la cadena de frío, la instrumentación ni la manipulación de líquidos de precisión. La prueba debe poder utilizarse entre 10 °C y 40 °C, con una humedad relativa de entre el 10% y el 88%. La instrucción básica debe llevar menos de 2 horas y la prueba debe incluir menos de cinco pasos. El coste de la unidad debe ser inferior a 1 dólar estadounidense.


Subject(s)
Trypanosoma brucei rhodesiense , Trypanosomiasis, African , Animals , Humans , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/parasitology , Africa, Southern , Sensitivity and Specificity , Diagnostic Tests, Routine
17.
Parasitol Int ; 96: 102775, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37390918

ABSTRACT

Infection with Trypanosoma brucei rhodesiense (T.b.r) causes acute Human African Trypanosomiasis (HAT) in Africa. This study determined the effect of vitamin B12 on T.b.r -driven pathological events in a mouse model. Mice were randomly assigned into four groups; group one was the control. Group two was infected with T.b.r; group three was supplemented with 8 mg/kg vitamin B12 for two weeks; before infection with T.b.r. For group four, administration of vitamin B12 was started from the 4th days post-infection with T.b.r. At 40 days post-infection, the mice were sacrificed to obtain blood, tissues, and organs for various analyses. The results showed that vitamin B12 administration enhanced the survival rate of T.b.r infected mice, and prevented T.b.r-induced disruption of the blood-brain barrier and decline in neurological performance. Notably, T.b.r-induced hematological alteration leading to anaemia, leukocytosis and dyslipidemia was alleviated by vitamin B12. T.b.r-induced elevation of the liver alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and total bilirubin as well as the kidney damage markers urea, uric acid and creatinine were attenuated by vitamin B12. Vitamin B12 blocked T.b.r-driven rise in TNF-α and IFN-γ, nitric oxide and malondialdehyde. T.b.r-induced depletion of GSH levels were attenuated in the presence of vitamin B12 in the brain, spleen and liver tissues; a clear indication of the antioxidant activity of vitamin B12. In conclusion, treatment with vitamin B12 potentially protects against various pathological events associated with severe late-stage HAT and presents a great opportunity for further scrutiny to develop an adjunct therapy for severe late-stage HAT.


Subject(s)
Trypanosoma brucei brucei , Trypanosomiasis, African , Animals , Mice , Blood-Brain Barrier/pathology , Disease Models, Animal , Nitric Oxide , Trypanosoma brucei rhodesiense , Trypanosomiasis, African/drug therapy , Vitamin B 12/adverse effects
18.
Int J Mol Sci ; 24(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37239824

ABSTRACT

Rhodesain is the main cysteine protease of Trypanosoma brucei rhodesiense, the parasite causing the acute lethal form of Human African Trypanosomiasis. Starting from the dipeptide nitrile CD24, the further introduction of a fluorine atom in the meta position of the phenyl ring spanning in the P3 site and the switch of the P2 leucine with a phenylalanine led to CD34, a synthetic inhibitor that shows a nanomolar binding affinity towards rhodesain (Ki = 27 nM) and an improved target selectivity with respect to the parent dipeptide nitrile CD24. In the present work, following the Chou and Talalay method, we carried out a combination study of CD34 with curcumin, a nutraceutical obtained from Curcuma longa L. Starting from an affected fraction (fa) of rhodesain inhibition of 0.5 (i.e., the IC50), we observed an initial moderate synergistic action, which became a synergism for fa values ranging from 0.6 to 0.7 (i.e., 60-70% inhibition of the trypanosomal protease). Interestingly, at 80-90% inhibition of rhodesain proteolytic activity, we observed a strong synergism, resulting in 100% enzyme inhibition. Overall, in addition to the improved target selectivity of CD34 with respect to CD24, the combination of CD34 + curcumin resulted in an increased synergistic action with respect to CD24 + curcumin, thus suggesting that it is desirable to use CD34 and curcumin in combination.


Subject(s)
Curcumin , Trypanosoma brucei rhodesiense , Curcumin/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Dipeptides/pharmacology , Nitriles , Structure-Activity Relationship , Trypanosoma brucei rhodesiense/drug effects
19.
Fitoterapia ; 168: 105517, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37121409

ABSTRACT

Seven undescribed sesquiterpene derivatives, Azerins A-G (3-6, 8, 14 and 15), three known sesquiterpene phenols, kopetdaghin A (1), kopetdaghin B (2) and latisectin (7), together with five known sesquiterpene coumarins (9-13), were isolated from the roots of Dorema glabrum. The structures were elucidated by comprehensive 1D- and 2D-NMR spectral analysis as well as HR-ESI-MS. Compounds were assessed for their in vitro antiprotozoal activity against Trypanosoma brucei rhodesiense, T. cruzi, Leishmania donovani, and Plasmodium falciparum. Cytotoxic potentials of the compounds were also tested on L6 rat skeletal myoblasts. Azerin G (15) showed a potent preferential growth inhibitory activity against T. b. rhodesiense with IC50 value of 0.01 µM and selectivity index of 329. Compounds 1, 4, 7 and 8 were also found as the most active compounds with selective growth inhibitory effects toward P. falciparum with selectivity indices ranging from 11.6 to 16.7 (IC50: 1.8-24.6 µM).


Subject(s)
Antiprotozoal Agents , Ferula , Leishmania donovani , Sesquiterpenes , Trypanosoma cruzi , Animals , Rats , Molecular Structure , Antiprotozoal Agents/pharmacology , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Magnetic Resonance Spectroscopy , Plasmodium falciparum , Trypanosoma brucei rhodesiense , Inhibitory Concentration 50 , Parasitic Sensitivity Tests
20.
J Biomol Struct Dyn ; 41(12): 5672-5684, 2023.
Article in English | MEDLINE | ID: mdl-35751127

ABSTRACT

Human African Trypanosomiasis (HAT) or sleeping sickness is caused by the Trypanosoma brucei rhodesiense, a subspecies of the Trypanosomatide family. The parasite is associated with high morbidity and mortality rate in both animals and humans, claimed to be more fatal than other vector-transmitted diseases such as malaria. The majority of existing medications are highly toxic, not effective in the late chronic phase of the disease, and require maximum dosages to fully eradicate the parasite. In this study, we used computational methods to find out natural products that inhibit the Rhodesain, a parasitic enzyme that plays an important role in the parasite's pathogenicity, multiplication, and ability to pass through the host's blood-brain barrier. A library of 270540 natural products from ZINC databases was processed by using e-pharmacophore hypnosis and screening procedures, molecular docking, ADMET processes, and MM-GBSA calculations. This led to the identification of 3 compounds (ZINC000096269390, ZINC000035485292, and ZINC000035485242) which were then subjected to molecular dynamics. The findings of this study showed excellent binding affinity and stability toward the Rhodesain and suggest they may be a hopeful treatment for HAT in the future if further clinical trials were performed.Communicated by Ramaswamy H. Sarma.


Subject(s)
Trypanosomiasis, African , Animals , Humans , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/parasitology , Molecular Docking Simulation , Trypanosoma brucei rhodesiense , Cysteine Endopeptidases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...