Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.494
Filter
1.
J Nanobiotechnology ; 22(1): 216, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698399

ABSTRACT

The enhanced permeability and retention (EPR) effect has become the guiding principle for nanomedicine against cancer for a long time. However, several biological barriers severely resist therapeutic agents' penetration and retention into the deep tumor tissues, resulting in poor EPR effect and high tumor mortality. Inspired by lava, we proposed a proteolytic enzyme therapy to improve the tumor distribution and penetration of nanomedicine. A trypsin-crosslinked hydrogel (Trypsin@PSA Gel) was developed to maintain trypsin's activity. The hydrogel postponed trypsin's self-degradation and sustained the release. Trypsin promoted the cellular uptake of nanoformulations in breast cancer cells, enhanced the penetration through endothelial cells, and degraded total and membrane proteins. Proteomic analysis reveals that trypsin affected ECM components and down-regulated multiple pathways associated with cancer progression. Intratumoral injection of Trypsin@PSA Gel significantly increased the distribution of liposomes in tumors and reduced tumor vasculature. Combination treatment with intravenous injection of gambogic acid-loaded liposomes and intratumoral injection of Trypsin@PSA Gel inhibited tumor growth. The current study provides one of the first investigations into the enhanced tumor distribution of liposomes induced by a novel proteolytic enzyme therapy.


Subject(s)
Hydrogels , Liposomes , Polyethylene Glycols , Trypsin , Xanthones , Liposomes/chemistry , Animals , Polyethylene Glycols/chemistry , Hydrogels/chemistry , Humans , Trypsin/metabolism , Trypsin/chemistry , Female , Mice , Cell Line, Tumor , Mice, Inbred BALB C , Breast Neoplasms/drug therapy , Proteolysis
2.
J Agric Food Chem ; 72(20): 11782-11793, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717295

ABSTRACT

Soybeans are the number one source of plant proteins for food and feed, but the natural presence of protein protease inhibitors (PIs), namely, the Kunitz trypsin inhibitor (KTI) and the Bowman-Birk inhibitor (BBI), exerts antinutritional effects. This communication describes a new methodology for simultaneously quantitating all parameters of PIs in soybeans. It consists of seven steps and featured enzymatically measuring trypsin and chymotrypsin inhibitory activities, respectively, and subsequently determining the contents of reactive KTI and BBI and the contributions of each toward total PI mass and total trypsin or chymotrypsin inhibition by solving a proposed system of linear equations with two variables (C = dB + eK and T = xB + yK). This enzymatic and algebraic (EA) methodology was based on differential inhibitions of KTI and BBI toward trypsin and chymotrypsin and validated by applications to a series of mixtures of purified KTI and BBI, two KTI-null and two conventional soybeans, and by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The EA methodology allowed calculations of PI composition and the contributions of individual inhibitors toward total inhibition with ease. It was first found that although BBI constituted only about 30% of the total PI mass in conventional raw soybeans, it contributed about 80% toward total chymotrypsin inhibitor activity and about 45% toward trypsin inhibitor activity. Therefore, BBI caused more total protease inhibitions than those of KTI. Furthermore, the so-called KTI-null soybean mutants still contained measurable KTI content and thus should be named KTI-low soybeans.


Subject(s)
Chymotrypsin , Glycine max , Trypsin Inhibitor, Bowman-Birk Soybean , Trypsin Inhibitor, Kunitz Soybean , Trypsin , Chymotrypsin/antagonists & inhibitors , Chymotrypsin/metabolism , Chymotrypsin/chemistry , Trypsin Inhibitor, Bowman-Birk Soybean/chemistry , Glycine max/chemistry , Glycine max/enzymology , Trypsin/chemistry , Trypsin/metabolism , Trypsin Inhibitor, Kunitz Soybean/chemistry , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/analysis
3.
Int J Biol Macromol ; 269(Pt 1): 132072, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705339

ABSTRACT

Chitosan (CTS) and chitosan oligosaccharides (COS) have been widely applied in food industry due to their bioactivities and functions. However, CTS and COS with positive charges could interact with proteins, such as whey protein isolate (WPI), influencing their digestion. Interaction among CTS/COS, FUC, and WPI/enzymes was studied by spectroscopy, chromatography, and chemical methods in order to reveal the role of FUC in relieving the inhibition of protein digestibility by CTS/COS and demonstrate the action mechanisms. As shown by the results, the addition of FUC increased degree of hydrolysis (DH) and free protein in the mixture of CTS and WPI to 3.1-fold and 1.8-fold, respectively, while raise DH value and free protein in the mixture of COS and WPI to 6.7-fold and 1.2-fold, respectively. The interaction between amino, carboxyl, sulfate, and hydroxyl groups from carbohydrates and protein could be observed, and notably, FUC could interact with CTS/COS preferentially to prevent CTS/COS from combining with WPI. In addition, the addition of FUC could also relieve the combination of CTS to trypsin, increasing the fluorescence intensity and concentration of trypsin by 83.3 % and 4.8 %, respectively. Thus, the present study demonstrated that FUC could alleviate the inhibitory effect of CTS/COS on protein digestion.


Subject(s)
Chitosan , Oligosaccharides , Polysaccharides , Chitosan/chemistry , Chitosan/pharmacology , Oligosaccharides/pharmacology , Oligosaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/metabolism , Hydrolysis , Whey Proteins/chemistry , Whey Proteins/pharmacology , Whey Proteins/metabolism , Trypsin/metabolism , Trypsin/chemistry , Proteolysis/drug effects
4.
ACS Appl Mater Interfaces ; 16(19): 24398-24409, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38712727

ABSTRACT

Low-molecular weight proteins (LWPs) are important sources of biological information in biomarkers, signaling molecules, and pathology. However, the separation and analysis of LWPs in complex biological samples are challenging, mainly due to their low abundance and the complex sample pretreatment procedure. Herein, trypsin modified by poly(acrylic acid) (PAA) was encapsulated by a zeolitic imidazolate framework (ZIF-L). Mesopores were formed on the ZIF-L with the introduction of PAA. An alternative strategy for separation and pretreatment of LWPs was developed based on the prepared ZIF-L-encapsulated trypsin with adjustable pore size. The mesoporous structure of the prepared materials selectively excluded high-molecular weight proteins from the reaction system, allowing LWPs to enter the pores and react with the internal trypsin, resulting in an improved separation efficiency. The hydrophobicity of the ZIF-L simplified the digestion process by inducing significant structural changes in substrate proteins. In addition, the enzymatic activity was significantly enhanced by the developed encapsulation method that maintained the enzyme conformation, allowed low mass transfer resistance, and possessed a high enzyme-to-substrate ratio. As a result, the ZIF-L-encapsulated trypsin can achieve highly selective separation, valid denaturation, and efficient digestion of LWPs in a short time by simply mixing with substrate proteins, greatly simplifying the separation and pretreatment process of the traditional hydrolysis method. The prepared materials and the developed strategy demonstrated an excellent size-selective assay performance in model protein mixtures, showing great potential in the application of proteomics analysis.


Subject(s)
Imidazoles , Trypsin , Zeolites , Trypsin/chemistry , Trypsin/metabolism , Zeolites/chemistry , Imidazoles/chemistry , Molecular Weight , Acrylic Resins/chemistry , Porosity , Proteins/chemistry
5.
Biochem J ; 481(11): 717-739, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38752933

ABSTRACT

Typical Kunitz proteins (I2 family of the MEROPS database, Kunitz-A family) are metazoan competitive inhibitors of serine peptidases that form tight complexes of 1:1 stoichiometry, mimicking substrates. The cestode Echinococcus granulosus, the dog tapeworm causing cystic echinococcosis in humans and livestock, encodes an expanded family of monodomain Kunitz proteins, some of which are secreted to the dog host interface. The Kunitz protein EgKU-7 contains, in addition to the Kunitz domain with the anti-peptidase loop comprising a critical arginine, a C-terminal extension of ∼20 amino acids. Kinetic, electrophoretic, and mass spectrometry studies using EgKU-7, a C-terminally truncated variant, and a mutant in which the critical arginine was substituted by alanine, show that EgKU-7 is a tight inhibitor of bovine and canine trypsins with the unusual property of possessing two instead of one site of interaction with the peptidases. One site resides in the anti-peptidase loop and is partially hydrolyzed by bovine but not canine trypsins, suggesting specificity for the target enzymes. The other site is located in the C-terminal extension. This extension can be hydrolyzed in a particular arginine by cationic bovine and canine trypsins but not by anionic canine trypsin. This is the first time to our knowledge that a monodomain Kunitz-A protein is reported to have two interaction sites with its target. Considering that putative orthologs of EgKU-7 are present in other cestodes, our finding unveils a novel piece in the repertoire of peptidase-inhibitor interactions and adds new notes to the evolutionary host-parasite concerto.


Subject(s)
Echinococcus granulosus , Helminth Proteins , Echinococcus granulosus/enzymology , Echinococcus granulosus/genetics , Echinococcus granulosus/metabolism , Animals , Dogs , Helminth Proteins/metabolism , Helminth Proteins/genetics , Helminth Proteins/chemistry , Trypsin Inhibitors/metabolism , Trypsin Inhibitors/chemistry , Cattle , Amino Acid Sequence , Trypsin/chemistry , Trypsin/metabolism
6.
Food Chem ; 452: 139567, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38718456

ABSTRACT

In this study, a hydroxyl radical oxidation system was established to simulate the oxidation process in fermented meat products. This system was employed to examine the structural changes in myofibrillar proteins (MPs) resulting from tryptic hydrolysis after a hydroxyl radical oxidative regime. The effect of these changes on the ability of MPs to bind selected aldehydes (3-methyl butanal, pentanal, hexanal, and heptanal) was also investigated. Moderate oxidation (H2O2 ≤ 1.0 mM) unfolded the structure of MPs, facilitating trypsin-mediated hydrolysis and increasing their binding capacity for the four selected aldehydes. However, excessive oxidation (H2O2 ≥ 2.5 mM) led to cross-linking and aggregation of MPs, inhibiting trypsin-mediated hydrolysis. The oxidised MPs had the best binding capacity for heptanal. The interaction of the oxidised trypsin-hydrolysed MPs with heptanal was driven by hydrophobic interactions. The binding of heptanal affected the structure of the oxidised trypsin-hydrolysed MPs and reduced their α-helix content.


Subject(s)
Aldehydes , Hydroxyl Radical , Oxidative Stress , Hydroxyl Radical/chemistry , Hydroxyl Radical/metabolism , Aldehydes/chemistry , Aldehydes/metabolism , Hydrolysis , Animals , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Oxidation-Reduction , Myofibrils/chemistry , Myofibrils/metabolism , Trypsin/chemistry , Trypsin/metabolism , Swine , Protein Binding , Meat Products/analysis
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124517, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38801790

ABSTRACT

The effects of common migration substances in milk packaging on digestive protease were studied. We choose the common migrants found in eight types of multi-layer composite milk packaging. Enzyme activity experiments revealed that pepsin activity decreased by approximately 18 % at 500 µg/mL of stearic acid and stearamide treatment, while trypsin activity decreased by approximately 18 % only by stearic acid treatment (500 µg/mL). Subsequently, fluorescence spectroscopy, circular dichroism spectroscopy, and molecular docking technology were employed to investigate the inhibition mechanism of protease activity by migrating substances in three systems: stearic acid-trypsin, stearic acid-pepsin, and stearamide-pepsin. Results showed that the inhibitory effect of stearic acid on trypsin is a reversible mixed inhibition, whereas the inhibitory effects of stearic acid and stearamide on pepsin are non-competitive. In all three systems, ΔH < 0, ΔS < 0, and ΔG < 0, indicating the binding process between the migrant and the protease is a spontaneous exothermic process primarily driven by hydrogen bonding and van der Waals forces. In addition, their binding constants are all around 104 L/moL, indicating that there are moderate binding affinities exist between migrants and proteases. The binding process results in the quenching of the protease's endogenous fluorescence and induces alterations in the enzyme's secondary structure. Synchronized fluorescence spectroscopy showed that stearic acid enhanced the hydrophobicity near the Tyr residue of trypsin. The molecular docking results indicated that the binding affinity of stearic acid-trypsin, stearic acid-pepsin, and stearamide-pepsin was -22.51 kJ/mol, -12.35 kJ/mol, -19.28 kJ/mol respectively, which consistent with the trend in the enzyme activity results. This study can provide references for the selection of milk packaging materials and the use of processing additives, ensuring food health and safety.


Subject(s)
Food Packaging , Milk , Molecular Docking Simulation , Spectrometry, Fluorescence , Trypsin , Animals , Milk/chemistry , Trypsin/metabolism , Trypsin/chemistry , Stearic Acids/chemistry , Stearic Acids/metabolism , Pepsin A/metabolism , Pepsin A/chemistry , Circular Dichroism , Peptide Hydrolases/metabolism , Peptide Hydrolases/chemistry , Thermodynamics
8.
Food Res Int ; 185: 114288, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38658074

ABSTRACT

In this paper, the effect of monosodium glutamate (MSG) on coconut protein (CP) solubility, surface hydrophobicity, emulsification activity, ultraviolet spectroscopy and fluorescence spectroscopy was investigated. Meanwhile, the changes in the in vitro digestive properties of coconut milk were also further analyzed. MSG treatment altered the solubility and surface hydrophobicity of CP, thereby improving protein digestibility. Molecular docking showed that CP bound to pepsin and trypsin mainly through hydrogen bonds and salt bridges. And MSG increased the cleavable sites of pepsin and trypsin on CP, thus further improving the protein digestibility. In addition, MSG increased the Na+ concentration in coconut milk, promoted flocculation and aggregation between coconut milk droplets, which prevented the binding of lipase and oil droplets and inhibited lipid digestion. These findings may provide new ideas and insights to improve the digestive properties of plant-based milk.


Subject(s)
Cocos , Digestion , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Plant Proteins , Sodium Glutamate , Solubility , Sodium Glutamate/chemistry , Digestion/drug effects , Cocos/chemistry , Plant Proteins/chemistry , Trypsin/metabolism , Trypsin/chemistry , Pepsin A/metabolism , Pepsin A/chemistry
9.
J Am Soc Mass Spectrom ; 35(5): 922-934, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38602416

ABSTRACT

DESI-MSI is an ambient ionization technique used frequently for the detection of lipids, small molecules, and drug targets. Until recently, DESI had only limited use for the detection of proteins and peptides due to the setup and needs around deconvolution of data resulting in a small number of species being detected at lower spatial resolution. There are known differences in the ion species detected using DESI and MALDI for nonpeptide molecules, and here, we identify that this extends to proteomic species. DESI MS images were obtained for tissue sections of mouse and rat brain using a precommercial heated inlet (approximately 450 °C) to the mass spectrometer. Ion mobility separation resolved spectral overlap of peptide ions and significantly improved the detection of multiply charged species. The images acquired were of pixel size 100 µm (rat brain) and 50 µm (mouse brain), respectively. Observed tryptic peptides were filtered against proteomic target lists, generated by LC-MS, enabling tentative protein assignment for each peptide ion image. Precise localizations of peptide ions identified by DESI and MALDI were found to be comparable. Some spatially localized peptides ions were observed in DESI that were not found in the MALDI replicates, typically, multiply charged species with a low mass to charge ratio. This method demonstrates the potential of DESI-MSI to detect large numbers of tryptic peptides from tissue sections with enhanced spatial resolution when compared to previous DESI-MSI studies.


Subject(s)
Brain Chemistry , Spectrometry, Mass, Electrospray Ionization , Animals , Mice , Rats , Spectrometry, Mass, Electrospray Ionization/methods , Peptides/analysis , Peptides/chemistry , Brain/metabolism , Brain/diagnostic imaging , Proteomics/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Trypsin/metabolism , Trypsin/chemistry , Peptide Fragments/analysis , Peptide Fragments/chemistry
10.
Talanta ; 274: 125988, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38569368

ABSTRACT

Despite technological advances in the proteomics field, sample preparation still represents the main bottleneck in mass spectrometry (MS) analysis. Bead-based protein aggregation techniques have recently emerged as an efficient, reproducible, and high-throughput alternative for protein extraction and digestion. Here, a refined paramagnetic bead-based digestion protocol is described for Opentrons® OT-2 platform (OT-2) as a versatile, reproducible, and affordable alternative for the automatic sample preparation for MS analysis. For this purpose, an artificial neural network (ANN) was applied to maximize the number of peptides without missed cleavages identified in HeLa extract by combining factors such as the quantity (µg) of trypsin/Lys-C and beads (MagReSyn® Amine), % (w/v) SDS, % (v/v) acetonitrile, and time of digestion (h). ANN model predicted the optimal conditions for the digestion of 50 µg of HeLa extract, pointing to the use of 2.5% (w/v) SDS and 300 µg of beads for sample preparation and long-term digestion (16h) with 0.15 µg Lys-C and 2.5 µg trypsin (≈1:17 ratio). Based on the results of the ANN model, the manual protocol was automated in OT-2. The performance of the automatic protocol was evaluated with different sample types, including human plasma, Arabidopsis thaliana leaves, Escherichia coli cells, and mouse tissue cortex, showing great reproducibility and low sample-to-sample variability in all cases. In addition, we tested the performance of this method in the preparation of a challenging biological fluid such as rat bile, a proximal fluid that is rich in bile salts, bilirubin, cholesterol, and fatty acids, among other MS interferents. Compared to other protocols described in the literature for the extraction and digestion of bile proteins, the method described here allowed identify 385 unique proteins, thus contributing to improving the coverage of the bile proteome.


Subject(s)
Neural Networks, Computer , Animals , Humans , HeLa Cells , Mice , Rats , Proteomics/methods , Trypsin/metabolism , Trypsin/chemistry , Automation
11.
J Agric Food Chem ; 72(17): 9955-9966, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38628059

ABSTRACT

Cold-adapted proteases are capable of efficient protein hydrolysis at reduced temperatures, which offer significant potential applications in the area of low temperature food processing. In this paper, we attempted to characterize cold-adapted proteases from Antarctic krill. Antarctic krill possesses an extremely active autolytic enzyme system in their bodies, and the production of peptides and free amino acids accompanies the rapid breakdown of muscle proteins following the death. The crucial role of trypsin in this process is recognized. A cold-adapted trypsin named OUC-Pp-20 from Antarctic krill genome was cloned and expressed in Pichia pastoris. Recombinant trypsin is a monomeric protein of 26.8 ± 1.0 kDa with optimum reaction temperature at 25 °C. In addition, the catalytic specificity of OUC-Pp-20 was assessed by identifying its hydrolysis sites through LC-MS/MS. OUC-Pp-20 appeared to prefer Gln and Asn at the P1 position, which is an amino acid with an amide group in its side chain. Hydrolysis reactions on milk and shrimp meat revealed that it can effectively degrade allergenic components in milk and arginine kinase in shrimp meat. These findings update the current knowledge of cold-adapted trypsin and demonstrate the potential application of OUC-Pp-20 in low temperature food processing.


Subject(s)
Cold Temperature , Euphausiacea , Trypsin , Animals , Euphausiacea/chemistry , Euphausiacea/enzymology , Euphausiacea/genetics , Euphausiacea/metabolism , Hydrolysis , Trypsin/metabolism , Trypsin/chemistry , Trypsin/genetics , Substrate Specificity , Amino Acid Sequence , Tandem Mass Spectrometry , Enzyme Stability , Antarctic Regions
12.
J Am Soc Mass Spectrom ; 35(6): 1076-1088, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38660944

ABSTRACT

A recently developed proteolytic reactor, designed for protein structural investigation, was coupled to ion mobility mass spectrometry to monitor collisional cross section (CCS) evolution of model proteins undergoing trypsin-mediated mono enzymatic digestion. As peptides are released during digestion, the CCS of the remaining protein structure may deviate from the classical 2/3 power of the CCS-mass relationship for spherical structures. The classical relationship between CCS and mass (CCS = A × M2/3) for spherical structures, assuming a globular shape in the gas phase, may deviate as stabilizing elements are lost during digestion. In addition, collision-induced unfolding (CIU) experiments on partially digested proteins provided insights into the CCS resilience in the gas phase to ion activation, potentially due to the presence of stabilizing elements. The study initially investigated a model peptide ModBea (3 kDa), assessing the impact of disulfide bridges on CCS resilience in both reduced and oxidized forms. Subsequently, ß-lactoglobulin (2 disulfide bridges), calmodulin (Ca2+ coordination cation), and cytochrome c (heme) were selected to investigate the influence of common structuring elements on CCS resilience. CIU experiments probed the unfolding process, evaluating the effect of losing specific peptides on the energy landscapes of partially digested proteins. Comparisons of the TWCCSN2→He to trend curves describing the CCS/mass relationship revealed that proteins with structure-stabilizing elements consistently exhibit TWCCSN2→He and greater resilience toward CIU compared to proteins lacking these elements. The integration of online digestion, ion mobility, and CIU provides a valuable tool for identifying structuring elements in biopolymers in the gas phase.


Subject(s)
Calmodulin , Ion Mobility Spectrometry , Protein Unfolding , Proteins , Ion Mobility Spectrometry/methods , Proteins/chemistry , Calmodulin/chemistry , Calmodulin/metabolism , Lactoglobulins/chemistry , Lactoglobulins/metabolism , Cytochromes c/chemistry , Cytochromes c/analysis , Mass Spectrometry/methods , Peptides/chemistry , Peptides/analysis , Trypsin/chemistry , Trypsin/metabolism , Animals , Protein Conformation
13.
Int J Biol Macromol ; 268(Pt 2): 131860, 2024 May.
Article in English | MEDLINE | ID: mdl-38670206

ABSTRACT

Recent advancements in enzyme research have unveiled a new proteoform of bovine trypsin, expanding our understanding of this well-characterized enzyme. While generally similar to other trypsins, this novel proteoform comprises three polypeptide chains, marking a significant difference in activity, kinetic properties, and conformational stability. Compared with the already known bovine trypsin proteoforms, the results showed a lower: activity, kcat and kcat.KM-1 and protein 'foldedness' ratio for the new proteoform. Molecular autolysis, a common feature in trypsin and chymotrypsin, has been explored through comparative physical chemistry properties with other proteoforms. This new proteoform of trypsin not only enriches the existing enzyme repertoire but also promises to shed light on the intricate physiological pathway for enzyme inactivation. Our results suggest that the new trypsin proteoform is one of the likely final pathways for enzyme inactivation in a physiological environment. This discovery opens up new avenues for further research into the functional implications of this new trypsin proteoform.


Subject(s)
Trypsin , Trypsin/chemistry , Trypsin/metabolism , Animals , Cattle , Kinetics , Enzyme Stability , Protein Conformation
14.
Biosens Bioelectron ; 256: 116274, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38599074

ABSTRACT

Exploring the photochemical (PEC) method induced by low-energy light source makes great significance to achieve high stability and accurate analysis. A sensing platform driven by near-infrared (NIR) light was designed by making the biochemically encoded carbon rich plasmonic hybrid (CPH) probe, the peptide@C-Mo2C. The inherent plasmonic effect of C-Mo2C CPH can directly absorb NIR light, thus starting effective electronic-hole pairs separation. Moreover, the photothermal effect of C-Mo2C CPH also promoted the reaction yield of photothermal catalyst reaction on sensing interface to assist the PEC signal amplification. In the presence of target trypsin, it cleaves the peptides, resulting in the release of peptide@C-Mo2C probe from interface, which leads to a relative decrease in PEC signal. More importantly, a self-calibration system consisting of two independent PEC test channels attempted to eliminate the influence of background signal and baseline drift. The test channel was used to specify the recognition target, while the blank channel was used as a reference. Therefore, the signal difference between two channels was recorded, so as to obtain results with less error and higher stability. In this NIR driven PEC sensor, the carbon rich probe with direct and efficient NIR light conversion promoted the sensitivity and a self-calibration system guaranteed the stability which provided innovative thoughts for developing ingenious PEC sensor.


Subject(s)
Biosensing Techniques , Carbon , Infrared Rays , Carbon/chemistry , Electrochemical Techniques , Peptides/chemistry , Trypsin/chemistry , Limit of Detection , Equipment Design
15.
J Pharm Biomed Anal ; 243: 116124, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38520959

ABSTRACT

Peptide mapping is the key method for characterization of primary structure of biotherapeutic proteins. This method relies on digestion of proteins into peptides that are then analyzed for amino acid sequence and post-translational modifications. Owing to its high activity and cleavage specificity, trypsin is the protease of choice for peptide mapping. In this study, we investigated critical requirements of peptide mapping and how trypsin affects these requirements. We found that the commonly used MS-grade trypsins contained non-specific, chymotryptic-like cleavage activity causing generation of semi-tryptic peptides and degradation of tryptic-specific peptides. Furthermore, MS-grade trypsins contained pre-existing autoproteolytic peptides and, moreover, additional autoproteolytic peptides were resulting from prominent autoproteolysis during digestion. In our long-standing quest to improve trypsin performance, we developed novel recombinant trypsin and evaluated whether it could address major trypsin drawbacks in peptide mapping. The study showed that the novel trypsin was free of detectable non-specific cleavage activity, had negligible level of autoproteolysis and maintained high activity over the course of digestion reaction. Taking advantage of the novel trypsin advanced properties, especially high cleavage specificity, we established the application for use of large trypsin quantities to digest proteolytically resistant protein sites without negative side effects. We also tested trypsin/Lys-C mix comprising the novel trypsin and showed elimination of non-specific cleavages observed in the digests with the commonly used trypsins. In addition, the improved features of the novel trypsin allowed us to establish the method for accurate and efficient non-enzymatic PTM analysis in biotherapeutic proteins.


Subject(s)
Peptide Fragments , Proteins , Peptide Mapping/methods , Trypsin/chemistry , Peptide Fragments/chemistry , Peptides/analysis
16.
J Proteomics ; 297: 105109, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38325732

ABSTRACT

To identify proteins by the bottom-up mass spectrometry workflow, enzymatic digestion is essential to break down proteins into smaller peptides amenable to both chromatographic separation and mass spectrometric analysis. Trypsin is the most extensively used protease due to its high cleavage specificity and generation of peptides with desirable positively charged N- and C-terminal amino acid residues that are amenable to reverse phase HPLC separation and MS/MS analyses. However, trypsin can yield variable digestion profiles and its protein cleavage activity is interdependent on trypsin source and quality, digestion time and temperature, pH, denaturant, trypsin and substrate concentrations, composition/complexity of the sample matrix, and other factors. There is therefore a need for a more standardized, general-purpose trypsin digestion protocol. Based on a review of the literature we delineate optimal conditions for carrying out trypsin digestions of complex proteomes from bulk samples to limiting amounts of protein extracts. Furthermore, we highlight recent developments and technological advances used in digestion protocols to quantify complex proteomes from single cells. SIGNIFICANCE: Currently, bottom-up MS-based proteomics is the method of choice for global proteome analysis. Since trypsin is the most utilized protease in bottom-up MS proteomics, delineating optimal conditions for carrying out trypsin digestions of complex proteomes in samples ranging from tissues to single cells should positively impact a broad range of biomedical research.


Subject(s)
Proteome , Tandem Mass Spectrometry , Proteome/metabolism , Trypsin/chemistry , Tandem Mass Spectrometry/methods , Peptides/chemistry , Digestion
17.
J Proteomics ; 298: 105143, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38423353

ABSTRACT

An increasing number of studies utilise the recovery of ancient skeletal proteomes for phylogenetic and evolutionary analysis. Although these studies manage to extract and analyse ancient peptides, the recovered proteomes are generally small in size and with low protein sequence coverage. We expand on previous observations which have shown that the parallel digestion and analysis of Pleistocene skeletal proteomes increases overall proteome size and protein sequence coverage. Furthermore, we demonstrate that the consecutive digestion of a skeletal proteome using two proteases, particularly the combination of Glu-C or chymotrypsin followed by trypsin digestion, enables the recovery of alternative proteome components not reachable through trypsin digestion alone. The proteomes preserved in Pleistocene skeletal specimens are larger than previously anticipated, but unlocking this protein sequence information requires adaptation of extraction and protein digestion protocols. The sequential utilisation of several proteases is, in this regard, a promising avenue for the study of highly degraded but unique hominin proteomes for phylogenetic purposes. SIGNIFICANCE: Palaeoproteomic analysis of archaeological materials, such as hominin skeletal elements, show great promise in studying past organisms and evolutionary relationships. However, as most proteomic methods are inherently destructive, it is essential to aim to recover as much information as possible from every sample. Currently, digestion with trypsin is the standard approach in most palaeoproteomic studies. We find that parallel or consecutive digestion with multiple proteases can improve proteome size and coverage for both Holocene and Pleistocene bone specimens. This allows for recovery of more proteomic data from a sample and maximises the chance of recovering phylogenetically relevant information.


Subject(s)
Hominidae , Proteome , Animals , Trypsin/chemistry , Proteome/metabolism , Peptide Hydrolases/metabolism , Phylogeny , Proteomics/methods , Hominidae/metabolism , Digestion
18.
Nat Chem ; 16(4): 592-598, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38238467

ABSTRACT

The development of mirror-image biology systems and related applications is hindered by the lack of effective methods to sequence mirror-image (D-) proteins. Although natural-chirality (L-) proteins can be sequenced by bottom-up liquid chromatography-tandem mass spectrometry (LC-MS/MS), the sequencing of long D-peptides and D-proteins with the same strategy requires digestion by a site-specific D-protease before mass analysis. Here we apply solid-phase peptide synthesis and native chemical ligation to chemically synthesize a mirror-image version of trypsin, a widely used protease for site-specific protein digestion. Using mirror-image trypsin digestion and LC-MS/MS, we sequence a mirror-image large subunit ribosomal protein (L25) and a mirror-image Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4), and distinguish between different mutants of D-Dpo4. We also perform writing and reading of digital information in a long D-peptide of 50 amino acids. Thus, mirror-image trypsin digestion in conjunction with LC-MS/MS may facilitate practical applications of D-peptides and D-proteins as potential therapeutic and informational tools.


Subject(s)
Proteins , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Trypsin/chemistry , Trypsin/metabolism , Tandem Mass Spectrometry/methods , Peptides/chemistry , Digestion
19.
Chempluschem ; 89(5): e202300698, 2024 May.
Article in English | MEDLINE | ID: mdl-38242852

ABSTRACT

This study presents an innovative method for synthesizing ß-amino carbonylated compounds, specifically 2-[phenyl(phenylamino)methyl] cyclohexanone, achieving high conversions and diastereomeric ratios. Using trypsin or α-chymotrypsin in both free and immobilized forms on titanate nanotubes (NtsTi), synthesized through alkaline hydrothermal methods, successful immobilization yields were attained. Notably, α-chymotrypsin, when free, displayed a diastereoselective synthesis of the anti-isomer with 97 % conversion and 16 : 84 (syn : anti) diastereomeric ratio, which slightly decreased upon immobilization on NtsTi. Trypsin, in its free form, exhibited diastereoselective recognition of the syn-isomer, while immobilization on NtsTi (trypsin/NtsTi) led to an inversion of diastereomeric ratio. Both trypsin/NtsTi and α-chymotrypsin/NtsTi demonstrated significant catalytic efficiency over five cycles. In conclusion, NtsTi serves as an effective support for trypsin and α-chymotrypsin immobilization, presenting promising prospects for diastereoselective synthesis and potential industrial applications. Furthermore, it offers promising prospects for the diastereoselective synthesis of 2-[phenyl(phenylamino)methyl] cyclohexanone through multicomponent Mannich reaction and future industrial application.


Subject(s)
Chymotrypsin , Enzymes, Immobilized , Nanotubes , Titanium , Trypsin , Titanium/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Chymotrypsin/chemistry , Chymotrypsin/metabolism , Trypsin/metabolism , Trypsin/chemistry , Nanotubes/chemistry , Stereoisomerism , Biocatalysis , Cyclohexanones/chemistry
20.
J Biomol Struct Dyn ; 42(6): 3108-3117, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37278377

ABSTRACT

Caffeic acid is one of the widely distributed phenolic compounds in nature and can be found in planet products. On the other hand, trypsin is a vital digestive enzyme in the intestine that plays an essential role in the immune response, blood coagulation, apoptosis and protein maturation like protein digestion. Several studies have revealed the inhibitory effects of the phenolic compound on the digestive enzyme. The present study reports functional and conformational alteration of trypsin after caffeic acid addition using multiple experimental and computational techniques for the first time. The intrinsic fluorescence of trypsin is quenched in the presence of caffeic acid via a static mechanism. The percent of secondary structures (α-helix and ß-sheet) of trypsin alter after caffeic acid addition. In the kinetic study, a reduction in the trypsin function is obtained with a lower Vmax and Kcat upon interaction with caffeic acid. The thermal study reveals an unstable structure of trypsin upon complex formation with this phenolic compound. Also, the binding sites and conformational changes of trypsin are elucidated through molecular docking and molecular dynamic simulation.Communicated by Ramaswamy H. Sarma.


Subject(s)
Caffeic Acids , Trypsin , Trypsin/chemistry , Molecular Docking Simulation , Spectrum Analysis , Binding Sites , Protein Structure, Secondary , Protein Binding , Thermodynamics , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...