Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.796
Filter
1.
BMC Pulm Med ; 24(1): 283, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886709

ABSTRACT

OBJECTIVE: This comparative analysis aimed to investigate the efficacy of Sivelestat Sodium Hydrate (SSH) combined with Ulinastatin (UTI) in the treatment of sepsis with acute respiratory distress syndrome (ARDS). METHODS: A control group and an observation group were formed with eighty-four cases of patients with sepsis with ARDS, with 42 cases in each group. The control group was intravenously injected with UTI based on conventional treatment, and the observation group was injected with SSH based on the control group. Both groups were treated continuously for 7 days, and the treatment outcomes and efficacy of both groups were observed. The Murray Lung Injury Score (MLIS), Sequential Organ Failure Assessment (SOFA), and Acute Physiology and Chronic Health Evaluation II (APACHE II) were compared. Changes in respiratory function, inflammatory factors, and oxidative stress indicators were assessed. The occurrence of adverse drug reactions was recorded. RESULTS: The total effective rate in the observation group (95.24%) was higher than that in the control group (80.95%) (P < 0.05). The mechanical ventilation time, intensive care unit (ICU) hospitalization time, and duration of antimicrobial medication in the observation group were shorter and multiple organ dysfunction syndrome incidence was lower than those in the control group (P < 0.05). The mortality rate of patients in the observation group (35.71%) was lower than that in the control group (52.38%), but there was no statistically significant difference between the two groups (P > 0.05). MLIS, SOFA, and APACHE II scores in the observation group were lower than the control group (P < 0.05). After treatment, respiratory function, inflammation, and oxidative stress were improved in the observation group (P < 0.05). Adverse reactions were not significantly different between the two groups (P > 0.05). CONCLUSION: The combination of SSH plus UTI improves lung injury and pulmonary ventilation function, and reduces inflammation and oxidative stress in patients with sepsis and ARDS.


Subject(s)
Drug Therapy, Combination , Glycine , Glycoproteins , Respiratory Distress Syndrome , Sepsis , Sulfonamides , Humans , Male , Sepsis/drug therapy , Sepsis/complications , Respiratory Distress Syndrome/drug therapy , Female , Middle Aged , Glycoproteins/administration & dosage , Glycoproteins/therapeutic use , Aged , Glycine/analogs & derivatives , Glycine/therapeutic use , Glycine/administration & dosage , Sulfonamides/administration & dosage , Sulfonamides/therapeutic use , Treatment Outcome , Respiration, Artificial , APACHE , Adult , Multiple Organ Failure/etiology , Multiple Organ Failure/drug therapy , Oxidative Stress/drug effects , Organ Dysfunction Scores , Intensive Care Units , Trypsin Inhibitors/administration & dosage , Trypsin Inhibitors/therapeutic use
2.
BMJ Case Rep ; 17(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839406

ABSTRACT

Steroid-induced acute pancreatitis is a rare form of pancreatitis that requires intensive care and has a high morbidity and mortality rate as there is no specific treatment. Management of steroid-induced pancreatitis is generally non-specific and supportive. Here, we are presenting a man in his 40s presented with epigastric pain, fever and vomiting. The patient was diagnosed case of rheumatoid arthritis, for which he was receiving regular 5 mg oral prednisolone therapy. Based on history, and clinical, biochemical and radiological imaging a diagnosis of steroid-induced pancreatitis was made, which was successfully managed with the help of ulinastatin and other supportive treatments. A serine protease inhibitor like ulinastatin may be used early in the clinical management of steroid-induced pancreatitis.


Subject(s)
Glycoproteins , Pancreatitis , Prednisolone , Trypsin Inhibitors , Humans , Male , Prednisolone/therapeutic use , Pancreatitis/chemically induced , Pancreatitis/drug therapy , Adult , Trypsin Inhibitors/therapeutic use , Arthritis, Rheumatoid/drug therapy , Glucocorticoids/therapeutic use , Glucocorticoids/adverse effects
3.
Protein Expr Purif ; 222: 106534, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38897399

ABSTRACT

Tribolium castaneum, also known as the red flour beetle, is a polyphagous pest that seriously damages agricultural products, including stored and processed grains. Researchers have aimed to discover alternative pest control mechanisms that are less harmful to the ecosystem than those currently used. We conduct the purification and characterization of a protease inhibitor from C. plumieri seeds and an in vitro evaluation of its insecticidal potential against the insect pest T. castaneum. The trypsin inhibitor was isolated from C. plumieri seeds in a single-step DEAE-Sepharose column chromatography and had a molecular mass of 50 kDA. When analyzed for interaction with different proteolytic enzymes, the inhibitor exhibited specificity against trypsin and no activity against other serine proteases such as chymotrypsin and elastase-2. The isolated inhibitor was able to inhibit digestive enzymes of T. castaneum from extracts of the intestine of this insect. Therefore, we conclude that the new protease inhibitor, specific in tryptic inhibition, of protein nature from the seeds of C. plumieri was effective in inhibiting the digestive enzymes of T. castaneum and is a promising candidate in the ecological control of pests.


Subject(s)
Tribolium , Trypsin Inhibitors , Animals , Trypsin Inhibitors/pharmacology , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/isolation & purification , Tribolium/enzymology , Tribolium/drug effects , Insect Proteins/chemistry , Insect Proteins/isolation & purification , Insect Proteins/antagonists & inhibitors , Seeds/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Insecticides/isolation & purification , Plant Proteins/pharmacology , Plant Proteins/isolation & purification , Plant Proteins/chemistry
4.
Molecules ; 29(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38893489

ABSTRACT

Recovering valuable active substances from the by-products of agricultural processing is a crucial concern for scientific researchers. This paper focuses on the enrichment of soybean trypsin inhibitor (STI) from soybean whey wastewater using either ammonium sulfate salting or ethanol precipitation, and discusses their physicochemical properties. The results show that at a 60% ethanol content, the yield of STI was 3.983 mg/mL, whereas the yield was 3.833 mg/mL at 60% ammonium sulfate saturation. The inhibitory activity of STI obtained by ammonium sulfate salting out (A-STI) was higher than that obtained by ethanol precipitation (E-STI). A-STI exhibited better solubility than E-STI at specific temperatures and pH levels, as confirmed by turbidity and surface hydrophobicity measurements. Thermal characterization revealed that both A-STI and E-STI showed thermal transition temperatures above 90 °C. Scanning electron microscopy demonstrated that A-STI had a smooth surface with fewer pores, while E-STI had a rough surface with more pores. In conclusion, there was no significant difference in the yield of A-STI and E-STI (p < 0.05); however, the physicochemical properties of A-STI were superior to those of E-STI, making it more suitable for further processing and utilization. This study provides a theoretical reference for the enrichment of STI from soybean whey wastewater.


Subject(s)
Glycine max , Trypsin Inhibitors , Wastewater , Whey , Glycine max/chemistry , Wastewater/chemistry , Whey/chemistry , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/isolation & purification , Ammonium Sulfate/chemistry , Chemical Precipitation , Hydrogen-Ion Concentration , Solubility , Hydrophobic and Hydrophilic Interactions , Temperature
5.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891766

ABSTRACT

Despite the high quality of soybean protein, raw soybeans and soybean meal cannot be directly included in animal feed mixtures due to the presence of Kunitz (KTi) and Bowman-Birk protease inhibitors (BBis), which reduces animal productivity. Heat treatment can substantially inactivate trypsin and chymotrypsin inhibitors (BBis), but such treatment is energy-intensive, adds expense, and negatively impacts the quality of seed proteins. As an alternative approach, we have employed CRISPR/Cas9 gene editing to create mutations in BBi genes to drastically lower the protease inhibitor content in soybean seed. Agrobacterium-mediated transformation was used to generate several stable transgenic soybean events. These independent CRISPR/Cas9 events were examined in comparison to wild-type plants using Sanger sequencing, proteomic analysis, trypsin/chymotrypsin inhibitor activity assays, and qRT-PCR. Collectively, our results demonstrate the creation of an allelic series of loss-of-function mutations affecting the major BBi gene in soybean. Mutations in two of the highly expressed seed-specific BBi genes lead to substantial reductions in both trypsin and chymotrypsin inhibitor activities.


Subject(s)
Gene Editing , Glycine max , Trypsin Inhibitor, Bowman-Birk Soybean , Chymotrypsin/metabolism , Chymotrypsin/genetics , CRISPR-Cas Systems , Gene Editing/methods , Glycine max/genetics , Glycine max/metabolism , Mutation , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Seeds/genetics , Seeds/metabolism , Trypsin/metabolism , Trypsin/genetics , Trypsin/chemistry , Trypsin Inhibitor, Bowman-Birk Soybean/metabolism , Trypsin Inhibitor, Bowman-Birk Soybean/genetics , Trypsin Inhibitors/metabolism
6.
J Chem Inf Model ; 64(13): 5194-5206, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38870039

ABSTRACT

The serine protease trypsin forms a tightly bound inhibitor complex with the bovine pancreatic trypsin inhibitor (BPTI). The complex is stabilized by the P1 residue Lys15, which interacts with negatively charged amino acids at the bottom of the S1 pocket. Truncating the P1 residue of wildtype BPTI to α-aminobutyric acid (Abu) leaves a complex with moderate inhibitor strength, which is held in place by additional hydrogen bonds at the protein-protein interface. Fluorination of the Abu residue partially restores the inhibitor strength. The mechanism with which fluorination can restore the inhibitor strength is unknown, and accurate computational investigation requires knowledge of the binding and unbinding pathways. The preferred unbinding pathway is likely to be complex, as encounter states have been described before, and unrestrained umbrella sampling simulations of these complexes suggest additional energetic minima. Here, we use random acceleration molecular dynamics to find a new metastable state in the unbinding pathway of Abu-BPTI variants and wildtype BPTI from trypsin, which we call the prebound state. The prebound state and the fully bound state differ by a substantial shift in the position, a slight shift in the orientation of the BPTI variants, and changes in the interaction pattern. Particularly important is the breaking of three hydrogen bonds around Arg17. Fluorination of the P1 residue lowers the energy barrier of the transition between the fully bound state and prebound state and also lowers the energy minimum of the prebound state. While the effect of fluorination is in general difficult to quantify, here, it is in part caused by favorable stabilization of a hydrogen bond between Gln194 and Cys14. The interaction pattern of the prebound state offers insights into the inhibitory mechanism of BPTI and might add valuable information for the design of serine protease inhibitors.


Subject(s)
Aprotinin , Molecular Dynamics Simulation , Protein Binding , Trypsin , Trypsin/metabolism , Trypsin/chemistry , Aprotinin/chemistry , Aprotinin/metabolism , Animals , Cattle , Halogenation , Hydrogen Bonding , Protein Conformation , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/metabolism , Trypsin Inhibitors/pharmacology
7.
Talanta ; 277: 126386, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38876027

ABSTRACT

The detection of trypsin and its inhibitors is important for both clinical diagnosis and disease treatment. Abnormal trypsin activity affects pancreatic function and leads to corresponding pathological changes in the body. Therefore, the study presented a riboflavin-induced photo-ATRP electrochemical assay of trypsin activity and its inhibitor, including detection of trypsin activity in real urine samples. Experiments were performed on indium tin oxide (ITO) electrodes modified with sulfhydryl groups of 3-mercaptopropionic acid, and target trypsin-specific cleavage of BSA-Au nanocluster (BSA-Au NCs) was followed by the modification of Au NCs to the electrodes using Au-S. The Au NCs immobilized monodeoxy-monomercapto-ß-cyclodextrin@adamantan-2-amine (SH-ß-CD@2-NH2-Ada) host-guest inclusion complexes to the electrode surfaces via Au-S. In a two-component photo-initiator system consisting of riboflavin as an initiator and ascorbic acid (AA) as a mild reducing agent under mild blue light radiation, a large number of electroactive substances were grafted onto the electrode surface to generate electrochemical signals. In addition, we have successfully realized the detection of clinical drug inhibitors of trypsin. The detection limit of the system is as low as 0.0024 ng/mL, which much littler than the average standard of trypsin in the patient's urine or serum. It's worth noting that this work will provide researchers with a different route to design electrochemical sensors based on non-covalent recognition strategies.


Subject(s)
Electrochemical Techniques , Electrodes , Gold , Riboflavin , Trypsin , Riboflavin/chemistry , Riboflavin/urine , Trypsin/metabolism , Trypsin/chemistry , Humans , Gold/chemistry , Biomarkers/urine , Biomarkers/blood , Metal Nanoparticles/chemistry , Photochemical Processes , Limit of Detection , Serum Albumin, Bovine/chemistry , Tin Compounds/chemistry , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/pharmacology , Trypsin Inhibitors/urine
8.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892254

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. Known as COVID-19, it has affected billions of people worldwide, claiming millions of lives and posing a continuing threat to humanity. This is considered one of the most extensive pandemics ever recorded in human history, causing significant losses to both life and economies globally. However, the available evidence is currently insufficient to establish the effectiveness and safety of antiviral drugs or vaccines. The entry of the virus into host cells involves binding to angiotensin-converting enzyme 2 (ACE2), a cell surface receptor, via its spike protein. Meanwhile, transmembrane protease serine 2 (TMPRSS2), a host surface protease, cleaves and activates the virus's S protein, thus promoting viral infection. Plant protease inhibitors play a crucial role in protecting plants against insects and/or microorganisms. The major storage proteins in sweet potato roots include sweet potato trypsin inhibitor (SWTI), which accounts for approximately 60% of the total water-soluble protein and has been found to possess a variety of health-promoting properties, including antioxidant, anti-inflammatory, ACE-inhibitory, and anticancer functions. Our study found that SWTI caused a significant reduction in the expression of the ACE2 and TMPRSS2 proteins, without any adverse effects on cells. Therefore, our findings suggest that the ACE2 and TMPRSS2 axis can be targeted via SWTI to potentially inhibit SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , Ipomoea batatas , SARS-CoV-2 , Serine Endopeptidases , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Animals , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Ipomoea batatas/virology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19/virology , COVID-19/metabolism , Trypsin Inhibitors/pharmacology , Trypsin Inhibitors/metabolism , Virus Internalization/drug effects , Chlorocebus aethiops , Vero Cells , Down-Regulation/drug effects , Mice
9.
J Oleo Sci ; 73(6): 865-874, 2024.
Article in English | MEDLINE | ID: mdl-38825540

ABSTRACT

Although peach kernels are rich in oil, there is a lack of information about its chemical and biological properties. Therefore, the purpose of this study was to determine the lipid profile, antioxidant capacity, and trypsin inhibitory propriety of peach oil extracted from two varieties (sweet cap and O'Henry) cultivated in Tunisia. The investigated peach kernel oil contains significant amount of unsaponifiable (2.1±0.5-2.8±0.2% of oil) and phenolic compounds (45.8±0.92-74.6±1.3 mg GAE/g of oil). Its n-alkane profile was characterized by the predominance of tetracosane n-C24 (47.24%) followed by tricosane n-C23 (34.43%). An important total tocopherol content (1192.83±3.1 mg/kg oil) has been found in sweet cap cultivar. Although rich in polyphenols and tocopherols, the tested oil did not display an inhibitory effect on trypsin. However, all peach oil samples showed effective antioxidant capacity and the highest values (86.34±1.3% and 603.50±2.6 µmol TE/g oil for DPPH test and ORAC assay, respectively) were observed for sweet cap oil. Peach oil has an excellent potential for application in the food and pharmaceutical industries as source of naturally-occurring bioactive substances.


Subject(s)
Antioxidants , Phenols , Plant Oils , Prunus persica , Tocopherols , Antioxidants/analysis , Plant Oils/chemistry , Plant Oils/analysis , Phenols/analysis , Tocopherols/analysis , Prunus persica/chemistry , Trypsin Inhibitors/analysis , Polyphenols/analysis
10.
J Agric Food Chem ; 72(20): 11782-11793, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717295

ABSTRACT

Soybeans are the number one source of plant proteins for food and feed, but the natural presence of protein protease inhibitors (PIs), namely, the Kunitz trypsin inhibitor (KTI) and the Bowman-Birk inhibitor (BBI), exerts antinutritional effects. This communication describes a new methodology for simultaneously quantitating all parameters of PIs in soybeans. It consists of seven steps and featured enzymatically measuring trypsin and chymotrypsin inhibitory activities, respectively, and subsequently determining the contents of reactive KTI and BBI and the contributions of each toward total PI mass and total trypsin or chymotrypsin inhibition by solving a proposed system of linear equations with two variables (C = dB + eK and T = xB + yK). This enzymatic and algebraic (EA) methodology was based on differential inhibitions of KTI and BBI toward trypsin and chymotrypsin and validated by applications to a series of mixtures of purified KTI and BBI, two KTI-null and two conventional soybeans, and by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The EA methodology allowed calculations of PI composition and the contributions of individual inhibitors toward total inhibition with ease. It was first found that although BBI constituted only about 30% of the total PI mass in conventional raw soybeans, it contributed about 80% toward total chymotrypsin inhibitor activity and about 45% toward trypsin inhibitor activity. Therefore, BBI caused more total protease inhibitions than those of KTI. Furthermore, the so-called KTI-null soybean mutants still contained measurable KTI content and thus should be named KTI-low soybeans.


Subject(s)
Chymotrypsin , Glycine max , Trypsin Inhibitor, Bowman-Birk Soybean , Trypsin Inhibitor, Kunitz Soybean , Trypsin , Chymotrypsin/antagonists & inhibitors , Chymotrypsin/metabolism , Chymotrypsin/chemistry , Trypsin Inhibitor, Bowman-Birk Soybean/chemistry , Glycine max/chemistry , Glycine max/enzymology , Trypsin/chemistry , Trypsin/metabolism , Trypsin Inhibitor, Kunitz Soybean/chemistry , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/analysis
11.
J Agric Food Chem ; 72(22): 12319-12339, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38780067

ABSTRACT

This review aims to provide an updated overview of the effects of protein extraction/recovery on antinutritional factors (ANFs) in plant protein ingredients, such as protein-rich fractions, protein concentrates, and isolates. ANFs mainly include lectins, trypsin inhibitors, phytic acid, phenolic compounds, oxalates, saponins, tannins, and cyanogenic glycosides. The current technologies used to recover proteins (e.g., wet extraction, dry fractionation) and novel technologies (e.g., membrane processing) are included in this review. The mechanisms involved during protein extraction/recovery that may enhance or decrease the ANF content in plant protein ingredients are discussed. However, studies on the effects of protein extraction/recovery on specific ANFs are still scarce, especially for novel technologies such as ultrasound- and microwave-assisted extraction and membrane processing. Although the negative effects of ANFs on protein digestibility and the overall absorption of plant proteins and other nutrients are a health concern, it is also important to highlight the potential positive effects of ANFs. This is particularly relevant given the rise of novel protein ingredients in the market and the potential presence or absence of these factors and their effects on consumers' health.


Subject(s)
Plant Proteins , Animals , Chemical Fractionation/methods , Nutritive Value , Plant Proteins/chemistry , Trypsin Inhibitors/isolation & purification , Trypsin Inhibitors/analysis , Trypsin Inhibitors/chemistry , Humans
12.
Biochem J ; 481(11): 717-739, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38752933

ABSTRACT

Typical Kunitz proteins (I2 family of the MEROPS database, Kunitz-A family) are metazoan competitive inhibitors of serine peptidases that form tight complexes of 1:1 stoichiometry, mimicking substrates. The cestode Echinococcus granulosus, the dog tapeworm causing cystic echinococcosis in humans and livestock, encodes an expanded family of monodomain Kunitz proteins, some of which are secreted to the dog host interface. The Kunitz protein EgKU-7 contains, in addition to the Kunitz domain with the anti-peptidase loop comprising a critical arginine, a C-terminal extension of ∼20 amino acids. Kinetic, electrophoretic, and mass spectrometry studies using EgKU-7, a C-terminally truncated variant, and a mutant in which the critical arginine was substituted by alanine, show that EgKU-7 is a tight inhibitor of bovine and canine trypsins with the unusual property of possessing two instead of one site of interaction with the peptidases. One site resides in the anti-peptidase loop and is partially hydrolyzed by bovine but not canine trypsins, suggesting specificity for the target enzymes. The other site is located in the C-terminal extension. This extension can be hydrolyzed in a particular arginine by cationic bovine and canine trypsins but not by anionic canine trypsin. This is the first time to our knowledge that a monodomain Kunitz-A protein is reported to have two interaction sites with its target. Considering that putative orthologs of EgKU-7 are present in other cestodes, our finding unveils a novel piece in the repertoire of peptidase-inhibitor interactions and adds new notes to the evolutionary host-parasite concerto.


Subject(s)
Echinococcus granulosus , Helminth Proteins , Echinococcus granulosus/enzymology , Echinococcus granulosus/genetics , Echinococcus granulosus/metabolism , Animals , Dogs , Helminth Proteins/metabolism , Helminth Proteins/genetics , Helminth Proteins/chemistry , Trypsin Inhibitors/metabolism , Trypsin Inhibitors/chemistry , Cattle , Amino Acid Sequence , Trypsin/chemistry , Trypsin/metabolism
13.
J Agric Food Chem ; 72(18): 10439-10450, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38676695

ABSTRACT

Trypsin inhibitors derived from plants have various pharmacological activities and promising clinical applications. In our previous study, a Bowman-Birk-type major trypsin inhibitor from foxtail millet bran (FMB-BBTI) was extracted with antiatherosclerotic activity. Currently, we found that FMB-BBTI possesses a prominent anticolorectal cancer (anti-CRC) activity. Further, a recombinant FMB-BBTI (rFMB-BBTI) was successfully expressed in a soluble manner in host strain Escherichia coli. BL21 (DE3) was induced by isopropyl-ß-d-thiogalactoside (0.1 mM) at 37 °C for 3.5 h by the pET28a vector system. Fortunately, a purity greater than 93% of rFMB-BBTI with anti-CRC activity was purified by nickel-nitrilotriacetic acid affinity chromatography. Subsequently, we found that rFMB-BBTI displays a strikingly anti-CRC effect, characterized by the inhibition of cell proliferation and clone formation ability, cell cycle arrest at the G2/M phase, and induction of cell apoptosis. It is interesting that the rFMB-BBTI treatment had no obvious effect on normal colorectal cells in the same concentration range. Importantly, the anti-CRC activity of rFMB-BBTI was further confirmed in the xenografted nude mice model. Taken together, our study highlights the anti-CRC activity of rFMB-BBTI in vitro and in vivo, uncovering the clinical potential of rFMB-BBTI as a targeted agent for CRC in the future.


Subject(s)
Colorectal Neoplasms , Plant Extracts , Plant Proteins , Setaria Plant , Trypsin Inhibitors , Animals , Humans , Male , Mice , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Gene Expression , Mice, Inbred BALB C , Mice, Nude , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Proteins/genetics , Plant Proteins/isolation & purification , Plant Proteins/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Setaria Plant/genetics , Setaria Plant/chemistry , Trypsin Inhibitors/pharmacology , Trypsin Inhibitors/isolation & purification , Trypsin Inhibitors/chemistry
14.
Braz J Microbiol ; 55(2): 1205-1217, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38594492

ABSTRACT

The incidence of Candida species resistant to traditional antifungal drugs is increasing globally. This issue significantly impacts patients' lives and increases healthcare expenses, confirming the need to develop novel therapeutic strategies. Recently, a thermostable trypsin inhibitor named ShTI (11.558 kDa), which has antibacterial effects on Staphylococcus aureus, was isolated from Salvia hispanica L. (chia) seeds. This study aimed to assess the antifungal effect of ShTI against Candida species and its synergism with fluconazole and to evaluate its mode of action. Preliminary toxicological studies on mouse fibroblasts were also performed. ShTI exhibited antifungal effects against C. parapsilosis (ATCC® 22,019), C. krusei (ATCC® 6258), and six clinical fluconazole-resistant strains of C. albicans (2), C. parapsilosis (2), and C. tropicalis (2). The minimum inhibitory concentration (MIC) values were 4.1 µM (inhibiting 50% of the isolates) and 8.2 µM (inhibiting 100% of the isolates). Additionally, when combined with fluconazole, ShTI had a synergistic effect on C. albicans, altering the morphological structure of the yeast. The mode of action of ShTI against C. krusei (ATCC® 6258) and C. albicans involves cell membrane permeabilization, the overproduction of reactive oxygen species, the formation of pseudohyphae, pore formation, and consequently, cell death. In addition, ShTI (8.65 and 17.3 µM) had noncytotoxic and nongenotoxic effects on L929 mouse fibroblasts. These findings suggest that ShTI could be a promising antimicrobial candidate, but further research is necessary to advance its application as a novel antifungal agent.


Subject(s)
Antifungal Agents , Candida , Drug Resistance, Fungal , Fluconazole , Microbial Sensitivity Tests , Salvia , Seeds , Trypsin Inhibitors , Antifungal Agents/pharmacology , Antifungal Agents/toxicity , Fluconazole/pharmacology , Fluconazole/toxicity , Candida/drug effects , Salvia/chemistry , Seeds/chemistry , Animals , Mice , Trypsin Inhibitors/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fibroblasts/drug effects , Drug Synergism , Candidiasis/microbiology , Candidiasis/drug therapy
15.
Pestic Biochem Physiol ; 201: 105899, 2024 May.
Article in English | MEDLINE | ID: mdl-38685208

ABSTRACT

This study investigated the function of the MDR49 gene in Aedes aegypti. MDR49 mutants were constructed using CRISPR/Cas9 technology; the mutation led to increased sensitivity to ivermectin (LC50: from 1.3090 mg L-1 to 0.5904 mg L-1), and a reduction in midgut trypsin activity. These findings suggest that the P-gp encoded by MDR49 confers resistance to ivermectin and impacts the reproductive function in Ae. aegypti. RNA interference technology showed that knockdown of MDR49 gene resulted in a significant decrease in the expression of VGA1 after a blood meal, as well as a decrease in the number of eggs laid and their hatching rate. LC-MS revealed that following ivermectin treatment, the MDR493d+2s/3d+2s strain larvae exhibited significantly higher drug concentrations in the head and fat body compared to the wild type. Modeling of inward-facing P-gp and molecular docking found almost no difference in the affinity of P-gp for ivermectin before and after the mutation. However, modeling of the outward-facing conformation demonstrated that the flexible linker loop between TM5 and TM6 of P-gp undergoes changes after the mutation, resulting in a decrease in trypsin activity and an increase in sensitivity to ivermectin. These results provide useful insights into ivermectin resistance and the other roles played by the MDR49 gene.


Subject(s)
Aedes , Insect Proteins , Ivermectin , Animals , Aedes/drug effects , Aedes/genetics , Aedes/metabolism , Ivermectin/pharmacology , Insect Proteins/metabolism , Insect Proteins/genetics , Trypsin/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Fertility/drug effects , Insecticide Resistance/genetics , Trypsin Inhibitors/metabolism , Trypsin Inhibitors/pharmacology , Molecular Docking Simulation , Insecticides/pharmacology
16.
Anal Methods ; 16(19): 2997-3006, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38687148

ABSTRACT

α-Amylase/trypsin inhibitor proteins (ATI) are discussed as possible triggers for non-celiac gluten sensitivity. The potential of high-performance thin-layer chromatography (HPTLC) was studied for the first time to analyse the inhibitory properties of ATIs from flour of wheat, spelt, and einkorn. Inhibition by each flour of the digestive enzymes trypsin or α-amylase was determined by the reduction of released metabolisation products in comparison to non-digested flour, and positive (acarbose) and negative (water) controls. Firstly, amylolysis was carried out in miniaturized form on the HPTLC surface (HPTLC-nanoGIT) after in-vial pre-incubation of the amylase with the inhibitors from flour. α-Amylase inhibition was evident via the reduction of released saccharides, as analysed by normal phase HPTLC. A strong influence of the flour matrix on the assay results (individual saccharides) was evident, caused by an increased amylolysis of further polysaccharides present, making HPTLC analysis more reliable than currently used spectrophotometric sum value assays. The detection and visualization of such matrix influence helps to understand the problems associated with spectrophotometric assays. Only maltotriose was identified as a reliable marker of the amylolysis. The highest α-amylase inhibition and thus the lowest saccharide response was detected for maltotriose in refined spelt, whereas the lowest α-amylase inhibition and thus the highest saccharide response was detected for maltotriose in refined wheat. A comparison of refined and whole grain flours showed no clear trend in the responses. Secondly, trypsin inhibition and proteolysis were performed in-vial, and any inhibition was evident via the reduction of released peptides, analysed by reversed-phase HPTLC. Based on the product pattern of the proteolysis, einkorn and whole wheat showed the highest trypsin inhibition, whereas refined wheat and refined spelt showed the lowest inhibition. Advantageously, HPTLC analysis provided important information on changes in individual saccharides or peptides, which was more reliable and sustainable than spectrophotometric in-vial assays (only sum value) or liquid column chromatography analysis (targeting only the ATI proteins).


Subject(s)
Triticum , Trypsin Inhibitors , alpha-Amylases , Triticum/chemistry , Chromatography, Thin Layer/methods , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/analysis , Trypsin Inhibitors/analysis , Trypsin Inhibitors/pharmacology , Plant Proteins/analysis , Flour/analysis
17.
Food Chem ; 450: 139293, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38631207

ABSTRACT

Lentils have a valuable physicochemical profile, which can be affected by the presence of antinutrients that may impair the benefits arising from their consumption. Different treatments can be used to reduce these undesirable compounds, although they can also affect the general composition and behaviour of the lentils. Thus, the effect of different processing methods on the physicochemical and techno-functional properties, as well as on the antinutritional factors of different lentil varieties was studied. Phytic acid was eliminated during germination, while tannins and trypsin inhibitors are mostly affected by cooking. Functional properties were also altered by processing, these being dependent on the concentration of different nutrients in lentils. All the studied treatments affected the physicochemical profile of lentils and their functional properties. Cooking and germination appear to be the most effective in reducing antinutritional factors and improving the physicochemical profile of the lentils, meeting the current nutritional demands of today's society.


Subject(s)
Cooking , Germination , Lens Plant , Nutritive Value , Seeds , Lens Plant/chemistry , Seeds/chemistry , Seeds/growth & development , Phytic Acid/analysis , Phytic Acid/chemistry , Tannins/analysis , Tannins/chemistry , Trypsin Inhibitors/analysis , Trypsin Inhibitors/chemistry , Food Handling
18.
Int J Mol Sci ; 25(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38473954

ABSTRACT

This experimental study was designed to evaluate the effect of ulinastatin, a urinary trypsin inhibitor, on postoperative cognitive dysfunction (POCD) in rats under general anesthesia with isoflurane, on the aspect of behavior, as evaluated using a Y-maze test and focusing on microglial activity. Ulinastatin (50,000 U/mL) and normal saline (1 mL) were randomly (1:1) administered intraperitoneally to the ulinastatin and control groups, respectively, before general anesthesia. Anesthesia with isoflurane 1.5 volume% was maintained for 2 h. The Y-maze test was used to evaluate cognitive function. Neuronal damage using caspase-1 expression, the degree of inflammation through cytokine detection, and microglial activation with differentiation of the phenotypic expression were evaluated. Twelve rats were enrolled in the study and evenly allocated into the two groups, with no dropouts from the study. The Y-maze test showed similar results in the two groups before general anesthesia (63 ± 12% in the control group vs. 64 ± 12% in the ulinastatin group, p = 0.81). However, a significant difference was observed between the two groups after general anesthesia (17 ± 24% in the control group vs. 60 ± 12% in the ulinastatin group, p = 0.006). The ulinastatin group showed significantly lower expression of caspase-1. Pro-inflammatory cytokine levels were significantly lower in the ulinastatin group than in the control group. The ulinastatin group had a significantly lower microglial activation (41.74 ± 10.56% in the control group vs. 4.77 ± 0.56% in the ulinastatin, p < 0.001), with a significantly lower activation of M1 phenotypes (52.19 ± 7.83% in the control group vs. 5.58 ± 0.76% in the ulinastatin group, p < 0.001). Administering ulinastatin before general anesthesia prevented neuronal damage and cognitive decline after general anesthesia, in terms of the aspect of behavior, as evaluated by the Y-maze test. The protective effect of ulinastatin was associated with the inhibition of microglial activation, especially the M1 phenotype.


Subject(s)
Cognitive Dysfunction , Glycoproteins , Isoflurane , Postoperative Cognitive Complications , Rats , Animals , Isoflurane/pharmacology , Microglia , Cytokines/pharmacology , Caspase 1 , Maze Learning , Trypsin Inhibitors/pharmacology
19.
Protein J ; 43(2): 333-350, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38347326

ABSTRACT

A novel trypsin inhibitor from Cajanus cajan (TIC) fresh leaves was partially purified by affinity chromatography. SDS-PAGE revealed one band with about 15 kDa with expressive trypsin inhibitor activity by zymography. TIC showed high affinity for trypsin (Ki = 1.617 µM) and was a competitive inhibitor for this serine protease. TIC activity was maintained after 24 h of treatment at 70 °C, after 1 h treatments with different pH values, and ß-mercaptoethanol increasing concentrations, and demonstrated expressive structural stability. However, the activity of TIC was affected in the presence of oxidizing agents. In order to study the effect of TIC on secreted serine proteases, as well as on the cell culture growth curve, SK-MEL-28 metastatic human melanoma cell line and CaCo-2 colon adenocarcinoma was grown in supplemented DMEM, and the extracellular fractions were submitted salting out and affinity chromatography to obtain new secreted serine proteases. TIC inhibited almost completely, 96 to 89%, the activity of these serine proteases and reduced the melanoma and colon adenocarcinoma cells growth of 48 and 77% respectively. Besides, it is the first time that a trypsin inhibitor was isolated and characterized from C. cajan leaves and cancer serine proteases were isolated and partial characterized from SK-MEL-28 and CaCo-2 cancer cell lines. Furthermore, TIC shown to be potent inhibitor of tumor protease affecting cell growth, and can be one potential drug candidate to be employed in chemotherapy of melanoma and colon adenocarcinoma.


Subject(s)
Cajanus , Plant Leaves , Humans , Cajanus/chemistry , Plant Leaves/chemistry , Caco-2 Cells , Cell Proliferation/drug effects , Cell Line, Tumor , Trypsin Inhibitors/pharmacology , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/isolation & purification , Plant Proteins/pharmacology , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Serine Proteases/chemistry , Serine Proteases/isolation & purification , Serine Proteases/metabolism
20.
Int J Mol Sci ; 25(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38397107

ABSTRACT

Predicting the potency of inhibitors is key to in silico screening of promising synthetic or natural compounds. Here we describe a predictive workflow that provides calculated inhibitory values, which concord well with empirical data. Calculations of the free interaction energy ΔG with the YASARA plugin FoldX were used to derive inhibition constants Ki from PDB coordinates of protease-inhibitor complexes. At the same time, corresponding KD values were obtained from the PRODIGY server. These results correlated well with the experimental values, particularly for serine proteases. In addition, analyses were performed for inhibitory complexes of cysteine and aspartic proteases, as well as of metalloproteases, whereby the PRODIGY data appeared to be more consistent. Based on our analyses, we calculated theoretical Ki values for trypsin with sunflower trypsin inhibitor (SFTI-1) variants, which yielded the more rigid Pro14 variant, with probably higher potency than the wild-type inhibitor. Moreover, a hirudin variant with an Arg1 and Trp3 is a promising basis for novel thrombin inhibitors with high potency. Further examples from antibody interaction and a cancer-related effector-receptor system demonstrate that our approach is applicable to protein interaction studies beyond the protease field.


Subject(s)
Helianthus , Serine Endopeptidases , Trypsin Inhibitors/pharmacology , Trypsin/metabolism , Helianthus/metabolism , Peptide Hydrolases , Protease Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...