Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.212
Filter
1.
Cell Host Microbe ; 32(5): 623-624, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38723597

ABSTRACT

Common nutrients in our diet often affect our health through unexpected mechanisms. In a recent issue of Nature, Scott et al. show gut microbes convert dietary tryptophan into metabolites activating intestinal dopamine receptors, which can block attachment of bacterial pathogens to host cells.


Subject(s)
Dopamine , Gastrointestinal Microbiome , Gastrointestinal Microbiome/physiology , Dopamine/metabolism , Humans , Receptors, Dopamine/metabolism , Animals , Tryptophan/metabolism , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism , Bacteria/metabolism , Host-Pathogen Interactions , Bacterial Adhesion
2.
Nutrients ; 16(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38794769

ABSTRACT

Several metabolites of the essential amino acid tryptophan have emerged as key players in gut homeostasis through different cellular pathways, particularly through metabolites which can activate the aryl hydrocarbon receptor (AHR). This study aimed to map the metabolism of tryptophan in early life and investigate the effects of specific metabolites on epithelial cells and barrier integrity. Twenty-one tryptophan metabolites were measured in the feces of full-term and preterm neonates as well as in human milk and formula. The ability of specific AHR metabolites to regulate cytokine-induced IL8 expression and maintain barrier integrity was assessed in Caco2 cells and human fetal organoids (HFOs). Overall, higher concentrations of tryptophan metabolites were measured in the feces of full-term neonates compared to those of preterm ones. Within AHR metabolites, indole-3-lactic acid (ILA) was significantly higher in the feces of full-term neonates. Human milk contained different levels of several tryptophan metabolites compared to formula. Particularly, within the AHR metabolites, indole-3-sulfate (I3S) and indole-3-acetic acid (IAA) were significantly higher compared to formula. Fecal-derived ILA and milk-derived IAA were capable of reducing TNFα-induced IL8 expression in Caco2 cells and HFOs in an AHR-dependent manner. Furthermore, fecal-derived ILA and milk-derived IAA significantly reduced TNFα-induced barrier disruption in HFOs.


Subject(s)
Feces , Milk, Human , Receptors, Aryl Hydrocarbon , Tryptophan , Humans , Receptors, Aryl Hydrocarbon/metabolism , Milk, Human/metabolism , Milk, Human/chemistry , Caco-2 Cells , Tryptophan/metabolism , Infant, Newborn , Feces/chemistry , Indoleacetic Acids/metabolism , Female , Infant, Premature , Interleukin-8/metabolism , Indoles/pharmacology , Infant Formula , Organoids/metabolism , Basic Helix-Loop-Helix Transcription Factors
3.
Front Immunol ; 15: 1353903, 2024.
Article in English | MEDLINE | ID: mdl-38799469

ABSTRACT

Introduction: The global healthcare burden of COVID-19 pandemic has been unprecedented with a high mortality. Metabolomics, a powerful technique, has been increasingly utilized to study the host response to infections and to understand the progression of multi-system disorders such as COVID-19. Analysis of the host metabolites in response to SARS-CoV-2 infection can provide a snapshot of the endogenous metabolic landscape of the host and its role in shaping the interaction with SARS-CoV-2. Disease severity and consequently the clinical outcomes may be associated with a metabolic imbalance related to amino acids, lipids, and energy-generating pathways. Hence, the host metabolome can help predict potential clinical risks and outcomes. Methods: In this prospective study, using a targeted metabolomics approach, we studied the metabolic signature in 154 COVID-19 patients (males=138, age range 48-69 yrs) and related it to disease severity and mortality. Blood plasma concentrations of metabolites were quantified through LC-MS using MxP Quant 500 kit, which has a coverage of 630 metabolites from 26 biochemical classes including distinct classes of lipids and small organic molecules. We then employed Kaplan-Meier survival analysis to investigate the correlation between various metabolic markers, disease severity and patient outcomes. Results: A comparison of survival outcomes between individuals with high levels of various metabolites (amino acids, tryptophan, kynurenine, serotonin, creatine, SDMA, ADMA, 1-MH and carnitine palmitoyltransferase 1 and 2 enzymes) and those with low levels revealed statistically significant differences in survival outcomes. We further used four key metabolic markers (tryptophan, kynurenine, asymmetric dimethylarginine, and 1-Methylhistidine) to develop a COVID-19 mortality risk model through the application of multiple machine-learning methods. Conclusions: Metabolomics analysis revealed distinct metabolic signatures among different severity groups, reflecting discernible alterations in amino acid levels and perturbations in tryptophan metabolism. Notably, critical patients exhibited higher levels of short chain acylcarnitines, concomitant with higher concentrations of SDMA, ADMA, and 1-MH in severe cases and non-survivors. Conversely, levels of 3-methylhistidine were lower in this context.


Subject(s)
COVID-19 , Metabolomics , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/mortality , COVID-19/blood , COVID-19/metabolism , Male , Middle Aged , Female , Aged , Metabolomics/methods , Prospective Studies , Metabolome , Biomarkers/blood , Tryptophan/metabolism , Tryptophan/blood , Survival Analysis
4.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791512

ABSTRACT

Although migraine belongs to the main causes of disability worldwide, the mechanisms of its pathogenesis are poorly known. As migraine diagnosis is based on the subjective assessment of symptoms, there is a need to establish objective auxiliary markers to support clinical diagnosis. Tryptophan (TRP) metabolism has been associated with the pathogenesis of neurological and psychiatric disorders. In the present work, we investigated an association between migraine and the urine concentration of TRP and its metabolites 5-hydroxyindoleacetic acid (5-HIAA), kynurenine (KYN), kynurenic acid (KYNA) and quinolinic acid (QA) in 21 low-frequency episodic migraine patients and 32 controls. We chose the interictal phase as the episodic migraine patients were recruited from the outpatient clinic and had monthly migraine days as low as 1-2 in many cases. Migraine patients displayed lower urinary levels of 5-HIAA (p < 0.01) and KYNA (p < 0.05), but KYN and QA were enhanced, as compared with the controls (p < 0.05 and 0.001, respectively). Consequently, the patients were characterized by different values of the 5-HIAA/TRP, KYN/TRP, KYNA/KYN, and KYNA/QA ratios (p < 0.001 for all). Furthermore, urinary concentration of 5-HIAA was negatively correlated with Migraine Disability Assessment score and monthly migraine and monthly headache days. There was a negative correlation between Patient Health Questionnaire 9 scores assessing depression. In conclusion, the urinary 5-HIAA level may be further explored to assess its suitability as an easy-to-determine marker of migraine.


Subject(s)
Biomarkers , Hydroxyindoleacetic Acid , Kynurenic Acid , Kynurenine , Migraine Disorders , Tryptophan , Humans , Hydroxyindoleacetic Acid/urine , Migraine Disorders/urine , Migraine Disorders/metabolism , Female , Adult , Male , Kynurenine/urine , Kynurenine/metabolism , Biomarkers/urine , Kynurenic Acid/urine , Tryptophan/urine , Tryptophan/metabolism , Quinolinic Acid/urine , Middle Aged , Case-Control Studies , Young Adult
5.
Nat Commun ; 15(1): 4266, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769298

ABSTRACT

Cancer cells exhibit distinct metabolic activities and nutritional dependencies compared to normal cells. Thus, characterization of nutrient demands by individual tumor types may identify specific vulnerabilities that can be manipulated to target the destruction of cancer cells. We find that MYC-driven liver tumors rely on augmented tryptophan (Trp) uptake, yet Trp utilization to generate metabolites in the kynurenine (Kyn) pathway is reduced. Depriving MYC-driven tumors of Trp through a No-Trp diet not only prevents tumor growth but also restores the transcriptional profile of normal liver cells. Despite Trp starvation, protein synthesis remains unhindered in liver cancer cells. We define a crucial role for the Trp-derived metabolite indole 3-pyruvate (I3P) in liver tumor growth. I3P supplementation effectively restores the growth of liver cancer cells starved of Trp. These findings suggest that I3P is a potential therapeutic target in MYC-driven cancers. Developing methods to target this metabolite represents a potential avenue for liver cancer treatment.


Subject(s)
Carcinogenesis , Indoles , Liver Neoplasms , Proto-Oncogene Proteins c-myc , Tryptophan , Tryptophan/metabolism , Animals , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Indoles/metabolism , Indoles/pharmacology , Humans , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Mice , Carcinogenesis/metabolism , Carcinogenesis/genetics , Cell Line, Tumor , Kynurenine/metabolism , Mice, Inbred C57BL , Liver/metabolism , Liver/pathology , Male
6.
Microb Cell Fact ; 23(1): 147, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783320

ABSTRACT

Aminopyrrolnitrin (APRN), a natural halogenated phenylpyrrole derivative (HPD), has strong antifungal and antiparasitic activities. Additionally, it showed 2.8-fold increased photostability compared to pyrrolnitrin, a commercially available HPD with antimicrobial activity. For microbial production of APRN, we first engineered anthranilate phosphoribosyltransferase encoded by trpD from Corynebacterium glutamicum, resulting in a TrpDA162D mutation that exhibits feedback-resistant against L-tryptophan and higher substrate affinity compared to wild-type TrpD. Plasmid-borne expression of trpDA162D in C. glutamicum TP851 strain with two copies of trpDA162D in the genome led to the production of 3.1 g/L L-tryptophan in flask culture. Subsequent step for L-tryptophan chlorination into 7-chloro-L-tryptophan was achieved by introducing diverse sources of genes encoding tryptophan 7-halogenase (PrnA or RebH) and flavin reductase (Fre, PrnF, or RebF). The combined expression of prnA from Serratia grimesii or Serratia plymuthica with flavin reductase gene from Escherichia coli, Pseudomonas fluorescens, or Lechevalieria aerocolonigenes yielded higher production of 7-chloro-L-tryptophan in comparison to other sets of two-component systems. In the next step, production of putative monodechloroaminopyrrolnitrin (MDAP) from 7-chloro-L-tryptophan was achieved through the expression of prnB encoding MDAP synthase from S. plymuthica or P. fluorescens. Finally, an artificial APRN biosynthetic pathway was constructed by simultaneously expressing genes coding for tryptophan 7-halogenase, flavin reductase, MDAP synthase, and MDAP halogenase (PrnC) from different microbial sources within the L-tryptophan-producing TP851 strain. As prnC from S. grimesii or S. plymuthica was introduced into the host strain, which carried plasmids expressing prnA from S. plymuthica, fre from E. coli, and prnB from S. plymuthica, APN3639 and APN3638 accumulated 29.5 mg/L and 28.1 mg/L of APRN in the culture broth. This study represents the first report on the fermentative APRN production by metabolically engineered C. glutamicum.


Subject(s)
Corynebacterium glutamicum , Metabolic Engineering , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/genetics , Metabolic Engineering/methods , Pyrrolnitrin/biosynthesis , Pyrrolnitrin/metabolism , Fermentation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Tryptophan/biosynthesis , Tryptophan/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Oxidoreductases
7.
Exp Dermatol ; 33(5): e15103, 2024 May.
Article in English | MEDLINE | ID: mdl-38794829

ABSTRACT

Erythrodermic psoriasis (EP) is a rare and life-threatening disease, the pathogenesis of which remains to be largely unknown. Metabolomics analysis can provide global information on disease pathophysiology, candidate biomarkers, and potential intervention strategies. To gain a better understanding of the mechanisms of EP and explore the serum metabolic signature of EP, we conducted an untargeted metabolomics analysis from 20 EP patients and 20 healthy controls. Furthermore, targeted metabolomics for focused metabolites were identified in the serum samples of 30 EP patients and 30 psoriasis vulgaris (PsV) patients. In the untargeted analysis, a total of 2992 molecular features were extracted from each sample, and the peak intensity of each feature was obtained. Principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA) revealed significant difference between groups. After screening, 98 metabolites were found to be significantly dysregulated in EP, including 67 down-regulated and 31 up-regulated. EP patients had lower levels of L-tryptophan, L-isoleucine, retinol, lysophosphatidylcholine (LPC), and higher levels of betaine and uric acid. KEGG analysis showed differential metabolites were enriched in amino acid metabolism and glycerophospholipid metabolism. The targeted metabolomics showed lower L-tryptophan in EP than PsV with significant difference and L-tryptophan levels were negatively correlated with the PASI scores. The serum metabolic signature of EP was discovered. Amino acid and glycerophospholipid metabolism were dysregulated in EP. The metabolite differences provide clues for pathogenesis of EP and they may provide insights for therapeutic interventions.


Subject(s)
Metabolomics , Principal Component Analysis , Psoriasis , Humans , Psoriasis/blood , Psoriasis/metabolism , Metabolomics/methods , Male , Female , Adult , Middle Aged , Chromatography, Liquid , Betaine/blood , Biomarkers/blood , Tryptophan/blood , Tryptophan/metabolism , Lysophosphatidylcholines/blood , Isoleucine/blood , Uric Acid/blood , Vitamin A/blood , Case-Control Studies , Mass Spectrometry , Dermatitis, Exfoliative/blood , Glycerophospholipids/blood , Discriminant Analysis , Down-Regulation , Least-Squares Analysis , Liquid Chromatography-Mass Spectrometry
8.
Parasit Vectors ; 17(1): 239, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802961

ABSTRACT

BACKGROUND: The spleen plays a critical role in the immune response against malaria parasite infection, where splenic fibroblasts (SFs) are abundantly present and contribute to immune function by secreting type I collagen (collagen I). The protein family is characterized by Plasmodium vivax tryptophan-rich antigens (PvTRAgs), comprising 40 members. PvTRAg23 has been reported to bind to human SFs (HSFs) and affect collagen I levels. Given the role of type I collagen in splenic immune function, it is important to investigate the functions of the other members within the PvTRAg protein family. METHODS: Protein structural prediction was conducted utilizing bioinformatics analysis tools and software. A total of 23 PvTRAgs were successfully expressed and purified using an Escherichia coli prokaryotic expression system, and the purified proteins were used for co-culture with HSFs. The collagen I levels and collagen-related signaling pathway protein levels were detected by immunoblotting, and the relative expression levels of inflammatory factors were determined by quantitative real-time PCR. RESULTS: In silico analysis showed that P. vivax has 40 genes encoding the TRAg family. The C-terminal region of all PvTRAgs is characterized by the presence of a domain rich in tryptophan residues. A total of 23 recombinant PvTRAgs were successfully expressed and purified. Only five PvTRAgs (PvTRAg5, PvTRAg16, PvTRAg23, PvTRAg30, and PvTRAg32) mediated the activation of the NF-κBp65 signaling pathway, which resulted in the production of inflammatory molecules and ultimately a significant reduction in collagen I levels in HSFs. CONCLUSIONS: Our research contributes to the expansion of knowledge regarding the functional role of PvTRAgs, while it also enhances our understanding of the immune evasion mechanisms utilized by parasites.


Subject(s)
Antigens, Protozoan , Collagen Type I , Fibroblasts , Plasmodium vivax , Signal Transduction , Spleen , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Fibroblasts/parasitology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Animals , Collagen Type I/metabolism , Collagen Type I/genetics , Spleen/immunology , Spleen/parasitology , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Mice , Humans , Malaria, Vivax/parasitology , Malaria, Vivax/immunology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/immunology , Tryptophan/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Computational Biology
9.
Sci Rep ; 14(1): 12377, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811632

ABSTRACT

Sacubitril/valsartan has been highly recognized as a treatment for Chronic heart failure (CHF). Its potential cardioprotective benefits and mechanisms, however, remain to be explored. Metabolomics can be used to identify the metabolic characteristics and related markers, as well as the influence of drugs, thereby opening up the new mechanism for sacubitril/valsartan therapy in CHF disease. In this study, the ligation of left anterior descending and exhaustive swimming were used to induce a rat model of CHF after myocardial infarction. The efficacy was appraised with echocardiography, serum NT-proBNP, and histopathologica. UPLC-Q/TOF-MS combined with multivariate statistical analysis approach were used to analyze the effect of sacubitril/valsartan on CHF rats. RT-qPCR and western blot were performed to investigate the tryptophan/kynurenine metabolism pathway. Accordingly, the basal cardiac function were increased, while the serum NT-proBNP and collagen volume fraction decreased in CHF rats with sacubitril/valsartan. Sacubitril/valsartan regulated the expression of kynurenine et.al 8 metabolomic biomarkers in CHF rats serum, and it contributed to the cardioprotective effects through tryptophan metabolism pathway. In addition, the mRNA and protein expression of the indoleamine 2,3-dioxygenase (IDO) in the myocardial tissue of CHF rats, were down-regulated by sacubitril/valsartan, which was the same with the IL-1ß, IFN-γ, TNF-α, COX-2, and IL-6 mRNA expression, and IL-1ß, IFN-γ, and TNF-α expression in serum. In conclusion, sacubitril/valsartan can ameliorate cardiac function and ventricular remodeling in CHF rats, at least in part through inhibition of tryptophan/kynurenine metabolism.


Subject(s)
Aminobutyrates , Biphenyl Compounds , Drug Combinations , Heart Failure , Inflammation , Kynurenine , Tetrazoles , Tryptophan , Valsartan , Ventricular Remodeling , Animals , Aminobutyrates/pharmacology , Valsartan/pharmacology , Biphenyl Compounds/pharmacology , Ventricular Remodeling/drug effects , Kynurenine/metabolism , Heart Failure/drug therapy , Heart Failure/metabolism , Rats , Tryptophan/metabolism , Male , Tetrazoles/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Disease Models, Animal , Natriuretic Peptide, Brain/metabolism , Natriuretic Peptide, Brain/blood , Rats, Sprague-Dawley
10.
Sci Rep ; 14(1): 12531, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822100

ABSTRACT

Binding affinity is an important factor in drug design to improve drug-target selectivity and specificity. In this study, in silico techniques based on molecular docking followed by molecular dynamics (MD) simulations were utilized to identify the key residue(s) for CSF1R binding affinity among 14 pan-tyrosine kinase inhibitors and 15 CSF1R-specific inhibitors. We found tryptophan at position 550 (W550) on the CSF1R binding site interacted with the inhibitors' aromatic ring in a π-π way that made the ligands better at binding. Upon W550-Alanine substitution (W550A), the binding affinity of trans-(-)-kusunokinin and imatinib to CSF1R was significantly decreased. However, in terms of structural features, W550 did not significantly affect overall CSF1R structure, but provided destabilizing effect upon mutation. The W550A also did not either cause ligand to change its binding site or conformational changes due to ligand binding. As a result of our findings, the π-π interaction with W550's aromatic ring could be still the choice for increasing binding affinity to CSF1R. Nevertheless, our study showed that the increasing binding to W550 of the design ligand may not ensure CSF1R specificity and inhibition since W550-ligand bound state did not induce significantly conformational change into inactive state.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Tryptophan , Tryptophan/chemistry , Tryptophan/metabolism , Ligands , Binding Sites , Humans , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Imatinib Mesylate/pharmacology , Imatinib Mesylate/chemistry , Receptor, Macrophage Colony-Stimulating Factor
11.
Sci Rep ; 14(1): 10388, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710760

ABSTRACT

Research into the molecular basis of disease trajectory and Long-COVID is important to get insights toward underlying pathophysiological processes. The objective of this study was to investigate inflammation-mediated changes of metabolism in patients with acute COVID-19 infection and throughout a one-year follow up period. The study enrolled 34 patients with moderate to severe COVID-19 infection admitted to the University Clinic of Innsbruck in early 2020. The dynamics of multiple laboratory parameters (including inflammatory markers [C-reactive protein (CRP), interleukin-6 (IL-6), neopterin] as well as amino acids [tryptophan (Trp), phenylalanine (Phe) and tyrosine (Tyr)], and parameters of iron and vitamin B metabolism) was related to disease severity and patients' physical performance. Also, symptom load during acute illness and at approximately 60 days (FU1), and one year after symptom onset (FU2) were monitored and related with changes of the investigated laboratory parameters: During acute infection many investigated laboratory parameters were elevated (e.g., inflammatory markers, ferritin, kynurenine, phenylalanine) and enhanced tryptophan catabolism and phenylalanine accumulation were found. At FU2 nearly all laboratory markers had declined back to reference ranges. However, kynurenine/tryptophan ratio (Kyn/Trp) and the phenylalanine/tyrosine ratio (Phe/Tyr) were still exceeding the 95th percentile of healthy controls in about two thirds of our cohort at FU2. Lower tryptophan concentrations were associated with B vitamin availability (during acute infection and at FU1), patients with lower vitamin B12 levels at FU1 had a prolonged and more severe impairment of their physical functioning ability. Patients who had fully recovered (ECOG 0) presented with higher concentrations of iron parameters (ferritin, hepcidin, transferrin) and amino acids (phenylalanine, tyrosine) at FU2 compared to patients with restricted ability to work. Persistent symptoms at FU2 were tendentially associated with IFN-γ related parameters. Women were affected by long-term symptoms more frequently. Conclusively, inflammation-mediated biochemical changes appear to be related to symptoms of patients with acute and Long Covid.


Subject(s)
Biomarkers , COVID-19 , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/blood , COVID-19/complications , COVID-19/diagnosis , Female , Male , Middle Aged , Biomarkers/blood , SARS-CoV-2/isolation & purification , Aged , Adult , Physical Functional Performance , Interleukin-6/blood , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Inflammation , Tryptophan/blood , Tryptophan/metabolism , Neopterin/blood , Phenylalanine/blood , Phenylalanine/metabolism , Amino Acids/blood
12.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731967

ABSTRACT

Tryptophan metabolites, such as 5-hydroxytryptophan (5-HTP), serotonin, and melatonin, hold significant promise as supplements for managing various mood-related disorders, including depression and insomnia. However, their chemical production via chemical synthesis and phytochemical extraction presents drawbacks, such as the generation of toxic byproducts and low yields. In this study, we explore an alternative approach utilizing S. cerevisiae STG S101 for biosynthesis. Through a series of eleven experiments employing different combinations of tryptophan supplementation, Tween 20, and HEPES buffer, we investigated the production of these indolamines. The tryptophan metabolites were analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Notably, setups replacing peptone in the YPD media with tryptophan (Run 3) and incorporating tryptophan along with 25 mM HEPES buffer (Run 4) demonstrated successful biosynthesis of 5-HTP and serotonin. The highest 5-HTP and serotonin concentrations were 58.9 ± 16.0 mg L-1 and 0.0650 ± 0.00211 mg L-1, respectively. Melatonin concentrations were undetected in all the setups. These findings underscore the potential of using probiotic yeast strains as a safer and conceivably more cost-effective alternative for indolamine synthesis. The utilization of probiotic strains presents a promising avenue, potentially offering scalability, sustainability, reduced environmental impact, and feasibility for large-scale production.


Subject(s)
5-Hydroxytryptophan , Biosynthetic Pathways , Saccharomyces cerevisiae , Serotonin , Tryptophan , Tryptophan/metabolism , Saccharomyces cerevisiae/metabolism , Serotonin/metabolism , Serotonin/biosynthesis , 5-Hydroxytryptophan/metabolism , Melatonin/metabolism , Melatonin/biosynthesis , Tandem Mass Spectrometry , Chromatography, Liquid/methods
13.
Nat Commun ; 15(1): 3975, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729930

ABSTRACT

Oxidoreductases have evolved tyrosine/tryptophan pathways that channel highly oxidizing holes away from the active site to avoid damage. Here we dissect such a pathway in a bacterial LPMO, member of a widespread family of C-H bond activating enzymes with outstanding industrial potential. We show that a strictly conserved tryptophan is critical for radical formation and hole transference and that holes traverse the protein to reach a tyrosine-histidine pair in the protein's surface. Real-time monitoring of radical formation reveals a clear correlation between the efficiency of hole transference and enzyme performance under oxidative stress. Residues involved in this pathway vary considerably between natural LPMOs, which could reflect adaptation to different ecological niches. Importantly, we show that enzyme activity is increased in a variant with slower radical transference, providing experimental evidence for a previously postulated trade-off between activity and redox robustness.


Subject(s)
Bacterial Proteins , Mixed Function Oxygenases , Oxidation-Reduction , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Catalytic Domain , Tryptophan/metabolism , Polysaccharides/metabolism , Mutation , Oxidative Stress , Tyrosine/metabolism , Models, Molecular , Histidine/metabolism , Histidine/genetics
14.
Gut Microbes ; 16(1): 2347728, 2024.
Article in English | MEDLINE | ID: mdl-38706226

ABSTRACT

Indole in the gut is formed from dietary tryptophan by a bacterial tryptophan-indole lyase. Indole not only triggers biofilm formation and antibiotic resistance in gut microbes but also contributes to the progression of kidney dysfunction after absorption by the intestine and sulfation in the liver. As tryptophan is an essential amino acid for humans, these events seem inevitable. Despite this, we show in a proof-of-concept study that exogenous indole can be converted to an immunomodulatory tryptophan metabolite, indole-3-lactic acid (ILA), by a previously unknown microbial metabolic pathway that involves tryptophan synthase ß subunit and aromatic lactate dehydrogenase. Selected bifidobacterial strains converted exogenous indole to ILA via tryptophan (Trp), which was demonstrated by incubating the bacterial cells in the presence of (2-13C)-labeled indole and l-serine. Disruption of the responsible genes variedly affected the efficiency of indole bioconversion to Trp and ILA, depending on the strains. Database searches against 11,943 bacterial genomes representing 960 human-associated species revealed that the co-occurrence of tryptophan synthase ß subunit and aromatic lactate dehydrogenase is a specific feature of human gut-associated Bifidobacterium species, thus unveiling a new facet of bifidobacteria as probiotics. Indole, which has been assumed to be an end-product of tryptophan metabolism, may thus act as a precursor for the synthesis of a host-interacting metabolite with possible beneficial activities in the complex gut microbial ecosystem.


Subject(s)
Bifidobacterium , Gastrointestinal Microbiome , Indoles , Tryptophan , Tryptophan/metabolism , Humans , Indoles/metabolism , Bifidobacterium/metabolism , Bifidobacterium/genetics , Tryptophan Synthase/metabolism , Tryptophan Synthase/genetics , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism
15.
J Agric Food Chem ; 72(21): 11990-12002, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38757490

ABSTRACT

The main challenge in the development of agrochemicals is the lack of new leads and/or targets. It is critical to discover new molecular targets and their corresponding ligands. YZK-C22, which contains a 1,2,3-thiadiazol-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole skeleton, is a fungicide lead compound with broad-spectrum fungicidal activity. Previous studies suggested that the [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole scaffold exhibited good antifungal activity. Inspired by this, a series of pyrrolo[2,3-d]thiazole derivatives were designed and synthesized through a bioisosteric strategy. Compounds C1, C9, and C20 were found to be more active against Rhizoctonia solani than the positive control YZK-C22. More than half of the target compounds provided favorable activity against Botrytis cinerea, where the EC50 values of compounds C4, C6, C8, C10, and C20 varied from 1.17 to 1.77 µg/mL. Surface plasmon resonance and molecular docking suggested that in vitro potent compounds C9 and C20 have a new mode of action instead of acting as pyruvate kinase inhibitors. Transcriptome analysis revealed that compound C20 can impact the tryptophan metabolic pathway, cutin, suberin, and wax biosynthesis of B. cinerea. Overall, pyrrolo[2,3-d]thiazole is discovered as a new fungicidal lead structure with a potential new mode of action for further exploration.


Subject(s)
Botrytis , Fungicides, Industrial , Rhizoctonia , Thiazoles , Tryptophan , Waxes , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Rhizoctonia/drug effects , Botrytis/drug effects , Thiazoles/pharmacology , Thiazoles/chemistry , Thiazoles/metabolism , Tryptophan/metabolism , Tryptophan/chemistry , Waxes/chemistry , Waxes/metabolism , Structure-Activity Relationship , Metabolic Networks and Pathways/drug effects , Molecular Docking Simulation , Pyrroles/pharmacology , Pyrroles/chemistry , Pyrroles/metabolism , Plant Diseases/microbiology , Molecular Structure
16.
Phytomedicine ; 129: 155584, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704913

ABSTRACT

Depression, a prevalent and multifaceted mental disorder, has emerged as a significant public health concern due to its escalating prevalence and heightened risk of severe suicidality. Given its profound impact, the imperative for preventing and intervening in depression is paramount. Substantial evidence underscores intricate connections between depression and cardiovascular health. SheXiangXinTongNing (XTN), a recognized traditional Chinese medicine for treating Coronary Heart Disease (CHD), prompted our exploration into its antidepressant effects and underlying mechanisms. In this investigation, we assessed XTN's antidepressant potential using the chronic unpredictable mild stress (CUMS) mice model and behavioral tests. Employing network pharmacology, we delved into the intricate mechanisms at play. We characterized the microbial composition and function in CUMS mice, both with and without XTN treatment, utilizing 16S rRNA sequencing and metabolomics analysis. The joint analysis of these results via Cytoscape identified pivotal metabolic pathways. In the realm of network pharmacology, XTN administration exhibited antidepressant effects by modulating pathways such as IL-17, neuroactive ligand-receptor interaction, PI3K-Akt, cAMP, calcium, and dopamine synapse signaling pathways. Our findings revealed that XTN significantly mitigated depression-like symptoms and cognitive deficits in CUMS mice by inhibiting neuroinflammation and pyroptosis. Furthermore, 16S rRNA sequencing unveiled that XTN increased the alpha-diversity and beta-diversity of the gut microbiome in CUMS mice. Metabolomics analysis identified brain metabolites crucial for distinguishing between the CUMS and CUMS+XTN groups, with a focus on pathways like Tryptophan metabolism and Linoleic acid metabolism. Notably, specific bacterial families, including Alloprevotella, Helicobacter, Allobaculum, and Clostridia, exhibited robust co-occurring relationships with brain tryptophan metabolomics, hinting at the potential mediating role of gut microbiome alterations and metabolites in the efficacy of XTN treatment. In conclusion, our study unveils modifications in microbial compositions and metabolic functions may be pivotal in understanding the response to XTN treatment, offering novel insights into the mechanisms underpinning the efficacy of antidepressants.


Subject(s)
Antidepressive Agents , Brain , Depression , Disease Models, Animal , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Metabolomics , Stress, Psychological , Tryptophan , Animals , Gastrointestinal Microbiome/drug effects , Drugs, Chinese Herbal/pharmacology , Antidepressive Agents/pharmacology , Male , Mice , Tryptophan/metabolism , Depression/drug therapy , Depression/metabolism , Brain/metabolism , Brain/drug effects , Stress, Psychological/drug therapy , Mice, Inbred C57BL , RNA, Ribosomal, 16S , Network Pharmacology
17.
Front Endocrinol (Lausanne) ; 15: 1356914, 2024.
Article in English | MEDLINE | ID: mdl-38752181

ABSTRACT

Introduction: Nutritional deficiency occurs frequently during pregnancy and breastfeeding. Tryptophan (Trp), an essential amino acid which is critical for protein synthesis, serves as the precursor for serotonin, melatonin, and kynurenine (Kyn). The imbalance between serotonin and kynurenine pathways in Trp metabolism is closely related to inflammation and depression. This study assessed the effects of Trp deficiency on mouse early pregnancy. Methods: Embryo implantation and decidualization were analyzed after female mice had been fed diets containing 0.2% Trp (for the control group), 0.062% Trp (for the low Trp group) and 0% Trp (for the Trp-free group) for two months. The uteri of the mice were collected on days 4, 5, and 8 of pregnancy for further analysis. Results: On day 8 of pregnancy, the number of implantation sites were found to be similar between the control and the low Trp groups. However, no implantation sites were detected in the Trp-free group. On day 5 of pregnancy, plane polarity- and decidualization-related molecules showed abnormal expression pattern in the Trp-free group. On day 4 of pregnancy, there was no significant difference in uterine receptivity molecules between the low-Trp group and the control group, but uterine receptivity was abnormal in the Trp-free group. At implantation sites of the Trp-free group, IDO and AHR levels were markedly elevated. This potentially increased levels of Kyn, 2-hydroxy estradiol, and 4-hydroxy estradiol to affect decidualization. Conclusions: Trp-free diet may impair decidualization via the IDO-KYN-AHR pathway.


Subject(s)
Decidua , Embryo Implantation , Tryptophan , Animals , Female , Embryo Implantation/physiology , Embryo Implantation/drug effects , Tryptophan/metabolism , Mice , Pregnancy , Decidua/metabolism , Diet , Kynurenine/metabolism
18.
Gut Microbes ; 16(1): 2347757, 2024.
Article in English | MEDLINE | ID: mdl-38773738

ABSTRACT

Emerging evidence has revealed the novel role of gut microbiota in the development of cancer. The characteristics of function and composition in the gut microbiota of patients with breast cancer patients has been reported, however the detailed causation between gut microbiota and breast cancer remains uncertain. In the present study, 16S rRNA sequencing revealed that Prevotella, particularly the dominant species Prevotella copri, is significantly enriched and prevalent in gut microbiota of breast cancer patients. Prior-oral administration of P. copri could promote breast cancer growth in specific pathogen-free mice and germ-free mice, accompanied with sharp reduction of indole-3-pyruvic acid (IPyA). Mechanistically, the present of excessive P. copri consumed a large amount of tryptophan (Trp), thus hampering the physiological accumulation of IPyA in the host. Our results revealed that IPyA is an intrinsic anti-cancer reagent in the host at physiological level. Briefly, IPyA directly suppressed the transcription of UHRF1, following by the declined UHRF1 and PP2A C in nucleus, thus inhibiting the phosphorylation of AMPK, which is just opposite to the cancer promoting effect of P. copri. Therefore, the exhaustion of IPyA by excessive P. copri strengthens the UHRF1-mediated negative control to inactivated the energy-controlling AMPK signaling pathway to promote tumor growth, which was indicated by the alternation in pattern of protein expression and DNA methylation. Our findings, for the first time, highlighted P. copri as a risk factor for the progression of breast cancer.


Subject(s)
AMP-Activated Protein Kinases , Breast Neoplasms , Gastrointestinal Microbiome , Indoles , Prevotella , Ubiquitin-Protein Ligases , Breast Neoplasms/microbiology , Breast Neoplasms/metabolism , Animals , Female , Humans , Mice , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Indoles/metabolism , Indoles/pharmacology , Prevotella/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Disease Progression , Mice, Inbred BALB C , Tryptophan/metabolism , Cell Line, Tumor
19.
Front Immunol ; 15: 1378040, 2024.
Article in English | MEDLINE | ID: mdl-38698866

ABSTRACT

Background: Interleukin-17-producing CD4 T cells contribute to the control of Mycobacterium tuberculosis (Mtb) infection in humans; whether infection with human immunodeficiency virus (HIV) disproportionately affects distinct Th17-cell subsets that respond to Mtb is incompletely defined. Methods: We performed high-definition characterization of circulating Mtb-specific Th17 cells by spectral flow cytometry in people with latent TB and treated HIV (HIV-ART). We also measured kynurenine pathway activity by liquid chromatography-mass spectrometry (LC/MS) on plasma and tested the hypothesis that tryptophan catabolism influences Th17-cell frequencies in this context. Results: We identified two subsets of Th17 cells: subset 1 defined as CD4+Vα7.2-CD161+CD26+and subset 2 defined as CD4+Vα7.2-CCR6+CXCR3-cells of which subset 1 was significantly reduced in latent tuberculosis infection (LTBI) with HIV-ART, yet Mtb-responsive IL-17-producing CD4 T cells were preserved; we found that IL-17-producing CD4 T cells dominate the response to Mtb antigen but not cytomegalovirus (CMV) antigen or staphylococcal enterotoxin B (SEB), and tryptophan catabolism negatively correlates with both subset 1 and subset 2 Th17-cell frequencies. Conclusions: We found differential effects of ART-suppressed HIV on distinct subsets of Th17 cells, that IL-17-producing CD4 T cells dominate responses to Mtb but not CMV antigen or SEB, and that kynurenine pathway activity is associated with decreases of circulating Th17 cells that may contribute to tuberculosis immunity.


Subject(s)
Antigens, Bacterial , HIV Infections , Interleukin-17 , Latent Tuberculosis , Mycobacterium tuberculosis , Th17 Cells , Adult , Female , Humans , Male , Middle Aged , Antigens, Bacterial/immunology , HIV Infections/immunology , HIV Infections/virology , Immunophenotyping , Interleukin-17/metabolism , Interleukin-17/immunology , Kynurenine/metabolism , Latent Tuberculosis/immunology , Latent Tuberculosis/microbiology , Mycobacterium tuberculosis/immunology , Phenotype , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Tryptophan/metabolism
20.
Appl Environ Microbiol ; 90(5): e0057224, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38700332

ABSTRACT

Multi-resistant bacteria are a rapidly emerging threat to modern medicine. It is thus essential to identify and validate novel antibacterial targets that promise high robustness against resistance-mediating mutations. This can be achieved by simultaneously targeting several conserved function-determining protein-protein interactions in enzyme complexes from prokaryotic primary metabolism. Here, we selected two evolutionary related glutamine amidotransferase complexes, aminodeoxychorismate synthase and anthranilate synthase, that are required for the biosynthesis of folate and tryptophan in most prokaryotic organisms. Both enzymes rely on the interplay of a glutaminase and a synthase subunit that is conferred by a highly conserved subunit interface. Consequently, inhibiting subunit association in both enzymes by one competing bispecific inhibitor has the potential to suppress bacterial proliferation. We comprehensively verified two conserved interface hot-spot residues as potential inhibitor-binding sites in vitro by demonstrating their crucial role in subunit association and enzymatic activity. For in vivo target validation, we generated genomically modified Escherichia coli strains in which subunit association was disrupted by modifying these central interface residues. The growth of such strains was drastically retarded on liquid and solid minimal medium due to a lack of folate and tryptophan. Remarkably, the bacteriostatic effect was observed even in the presence of heat-inactivated human plasma, demonstrating that accessible host metabolite concentrations do not compensate for the lack of folate and tryptophan within the tested bacterial cells. We conclude that a potential inhibitor targeting both enzyme complexes will be effective against a broad spectrum of pathogens and offer increased resilience against antibiotic resistance. IMPORTANCE: Antibiotics are indispensable for the treatment of bacterial infections in human and veterinary medicine and are thus a major pillar of modern medicine. However, the exposure of bacteria to antibiotics generates an unintentional selective pressure on bacterial assemblies that over time promotes the development or acquisition of resistance mechanisms, allowing pathogens to escape the treatment. In that manner, humanity is in an ever-lasting race with pathogens to come up with new treatment options before resistances emerge. In general, antibiotics with novel modes of action require more complex pathogen adaptations as compared to chemical derivates of existing entities, thus delaying the emergence of resistance. In this contribution, we use modified Escherichia coli strains to validate two novel targets required for folate and tryptophan biosynthesis that can potentially be targeted by one and the same bispecific protein-protein interaction inhibitor and promise increased robustness against bacterial resistances.


Subject(s)
Anthranilate Synthase , Anti-Bacterial Agents , Escherichia coli , Anthranilate Synthase/metabolism , Anthranilate Synthase/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Transaminases/metabolism , Transaminases/genetics , Transaminases/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Tryptophan/metabolism , Enzyme Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...