Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 522
Filter
1.
PLoS Negl Trop Dis ; 18(4): e0011578, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38626189

ABSTRACT

BACKGROUND: The insecticide-treated baits known as Tiny Targets are one of the cheapest means of controlling riverine species of tsetse flies, the vectors of the trypanosomes that cause sleeping sickness in humans. Models of the efficacy of these targets deployed near rivers are potentially useful in planning control campaigns and highlighting the principles involved. METHODS AND PRINCIPAL FINDINGS: To evaluate the potential of models, we produced a simple non-seasonal model of the births, deaths, mobility and aging of tsetse, and we programmed it to simulate the impact of seven years of target use against the tsetse, Glossina fuscipes fuscipes, in the riverine habitats of NW Uganda. Particular attention was given to demonstrating that the model could explain three matters of interest: (i) good control can be achieved despite the degradation of targets, (ii) local elimination of tsetse is impossible if invasion sources are not tackled, and (iii) with invasion and target degradation it is difficult to detect any effect of control on the age structure of the tsetse population. CONCLUSIONS: Despite its simplifications, the model can assist planning and teaching, but allowance should be made for any complications due to seasonality and management challenges associated with greater scale.


Subject(s)
Insect Control , Insecticides , Tsetse Flies , Tsetse Flies/physiology , Tsetse Flies/parasitology , Animals , Insect Control/methods , Uganda , Insecticides/pharmacology , Humans , Trypanosomiasis, African/prevention & control , Trypanosomiasis, African/epidemiology , Insect Vectors/parasitology , Insect Vectors/physiology
2.
Science ; 379(6633): 638-639, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36795829

ABSTRACT

Volatile pheromones offer a means to control flies that spread disease.


Subject(s)
Sex Attractants , Sexual Behavior, Animal , Tsetse Flies , Animals , Reproduction , Tsetse Flies/physiology , Sex Attractants/physiology
3.
Science ; 379(6633): eade1877, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36795837

ABSTRACT

Tsetse flies transmit trypanosomes-parasites that cause devastating diseases in humans and livestock-across much of sub-Saharan Africa. Chemical communication through volatile pheromones is common among insects; however, it remains unknown if and how such chemical communication occurs in tsetse flies. We identified methyl palmitoleate (MPO), methyl oleate, and methyl palmitate as compounds that are produced by the tsetse fly Glossina morsitans and elicit strong behavioral responses. MPO evoked a behavioral response in male-but not virgin female-G. morsitans. G. morsitans males mounted females of another species, Glossina fuscipes, when they were treated with MPO. We further identified a subpopulation of olfactory neurons in G. morsitans that increase their firing rate in response to MPO and showed that infecting flies with African trypanosomes alters the flies' chemical profile and mating behavior. The identification of volatile attractants in tsetse flies may be useful for reducing disease spread.


Subject(s)
Fatty Acids, Volatile , Olfactory Receptor Neurons , Sex Attractants , Tsetse Flies , Animals , Female , Male , Sex Attractants/pharmacology , Sex Attractants/physiology , Trypanosoma , Tsetse Flies/parasitology , Tsetse Flies/physiology , Olfactory Receptor Neurons/drug effects , Olfactory Receptor Neurons/physiology , Fatty Acids, Volatile/pharmacology , Fatty Acids, Volatile/physiology
4.
Microbiology (Reading) ; 168(9)2022 09.
Article in English | MEDLINE | ID: mdl-36129743

ABSTRACT

Wigglesworthia glossinidia is an obligate, maternally transmitted endosymbiont of tsetse flies. The ancient association between these two organisms accounts for many of their unique physiological adaptations. Similar to other obligate mutualists, Wigglesworthia's genome is dramatically reduced in size, yet it has retained the capacity to produce many B-vitamins that are found at inadequate quantities in the fly's vertebrate blood-specific diet. These Wigglesworthia-derived B-vitamins play essential nutritional roles to maintain tsetse's physiological homeostasis as well as that of other members of the fly's microbiota. In addition to its nutritional role, Wigglesworthia contributes towards the development of tsetse's immune system during the larval period. Tsetse produce amidases that degrade symbiotic peptidoglycans and prevent activation of antimicrobial responses that can damage Wigglesworthia. These amidases in turn exhibit antiparasitic activity and decrease tsetse's ability to be colonized with parasitic trypanosomes, which reduce host fitness. Thus, the Wigglesworthia symbiosis represents a fine-tuned association in which both partners actively contribute towards achieving optimal fitness outcomes.


Subject(s)
Tsetse Flies , Wigglesworthia , Amidohydrolases/metabolism , Animals , Antiparasitic Agents/metabolism , Symbiosis , Tsetse Flies/parasitology , Tsetse Flies/physiology , Vitamins/metabolism , Wigglesworthia/metabolism
5.
PLoS One ; 17(8): e0273543, 2022.
Article in English | MEDLINE | ID: mdl-36037171

ABSTRACT

Tsetse flies use antennal expressed genes to navigate their environment. While most canonical genes associated with chemoreception are annotated, potential gaps with important antennal genes are uncharacterized in Glossina morsitans morsitans. We generated antennae-specific transcriptomes from adult male G. m. morsitans flies fed/unfed on bloodmeal and/or exposed to an attractant (ε-nonalactone), a repellant (δ-nonalactone) or paraffin diluent. Using bioinformatics approach, we mapped raw reads onto G. m. morsitans gene-set from VectorBase and collected un-mapped reads (constituting the gaps in annotation). We de novo assembled these reads (un-mapped) into transcript and identified corresponding genes of the transcripts in G. m. morsitans gene-set and protein homologs in UniProt protein database to further annotate the gaps. We predicted potential protein-coding gene regions associated with these transcripts in G. m. morsitans genome, annotated/curated these genes and identified their putative annotated orthologs/homologs in Drosophila melanogaster, Musca domestica or Anopheles gambiae genomes. We finally evaluated differential expression of the novel genes in relation to odor exposures relative to no-odor control (unfed flies). About 45.21% of the sequenced reads had no corresponding transcripts within G. m. morsitans gene-set, corresponding to the gap in existing annotation of the tsetse fly genome. The total reads assembled into 72,428 unique transcripts, most (74.43%) of which had no corresponding genes in the UniProt database. We annotated/curated 592 genes from these transcripts, among which 202 were novel while 390 were improvements of existing genes in the G. m. morsitans genome. Among the novel genes, 94 had orthologs in D. melanogaster, M. domestica or An. gambiae while 88 had homologs in UniProt. These orthologs were putatively associated with oxidative regulation, protein synthesis, transcriptional and/or translational regulation, detoxification and metal ion binding, thus providing insight into their specific roles in antennal physiological processes in male G. m. morsitans. A novel gene (GMOY014237.R1396) was differentially expressed in response to the attractant. We thus established significant gaps in G. m. morsitans genome annotation and identified novel male antennae-expressed genes in the genome, among which > 53% (108) are potentially G. m. morsitans specific.


Subject(s)
Tsetse Flies , Animals , Base Sequence , Computational Biology , Drosophila melanogaster/genetics , Male , Transcriptome , Tsetse Flies/physiology
6.
PLoS Negl Trop Dis ; 15(12): e0009820, 2021 12.
Article in English | MEDLINE | ID: mdl-34871296

ABSTRACT

BACKGROUND: Tsetse flies are the major vectors of human trypanosomiasis of the form Trypanosoma brucei rhodesiense and T.b.gambiense. They are widely spread across the sub-Saharan Africa and rendering a lot of challenges to both human and animal health. This stresses effective agricultural production and productivity in Africa. Delimiting the extent and magnitude of tsetse coverage has been a challenge over decades due to limited resources and unsatisfactory technology. In a bid to overcome these limitations, this study attempted to explore modelling skills that can be applied to spatially estimate tsetse abundance in the country using limited tsetse data and a set of remote-sensed environmental variables. METHODOLOGY: Entomological data for the period 2008-2018 as used in the model were obtained from various sources and systematically assembled using a structured protocol. Data harmonisation for the purposes of responsiveness and matching was carried out. The key tool for tsetse trapping was itemized as pyramidal trap in many instances and biconical trap in others. Based on the spatially explicit assembled data, we ran two regression models; standard Poisson and Zero-Inflated Poisson (ZIP), to explore the associations between tsetse abundance in Uganda and several environmental and climatic covariates. The covariate data were constituted largely by satellite sensor data in form of meteorological and vegetation surrogates in association with elevation and land cover data. We finally used the Zero-Inflated Poisson (ZIP) regression model to predict tsetse abundance due to its superiority over the standard Poisson after model fitting and testing using the Vuong Non-Nested statistic. RESULTS: A total of 1,187 tsetse sampling points were identified and considered as representative for the country. The model results indicated the significance and level of responsiveness of each covariate in influencing tsetse abundance across the study area. Woodland vegetation, elevation, temperature, rainfall, and dry season normalised difference vegetation index (NDVI) were important in determining tsetse abundance and spatial distribution at varied scales. The resultant prediction map shows scaled tsetse abundance with estimated fitted numbers ranging from 0 to 59 flies per trap per day (FTD). Tsetse abundance was found to be largest at low elevations, in areas of high vegetative activity, in game parks, forests and shrubs during the dry season. There was very limited responsiveness of selected predictors to tsetse abundance during the wet season, matching the known fact that tsetse disperse most significantly during wet season. CONCLUSIONS: A methodology was advanced to enable compilation of entomological data for 10 years, which supported the generation of tsetse abundance maps for Uganda through modelling. Our findings indicate the spatial distribution of the G. f. fuscipes as; low 0-5 FTD (48%), medium 5.1-35 FTD (18%) and high 35.1-60 FTD (34%) grounded on seasonality. This approach, amidst entomological data shortages due to limited resources and absence of expertise, can be adopted to enable mapping of the vector to provide better decision support towards designing and implementing targeted tsetse and tsetse-transmitted African trypanosomiasis control strategies.


Subject(s)
Animal Distribution , Insect Vectors/physiology , Spatial Analysis , Tsetse Flies/physiology , Animals , Poisson Distribution , Regression Analysis , Seasons , Uganda
7.
PLoS Negl Trop Dis ; 15(12): e0009929, 2021 12.
Article in English | MEDLINE | ID: mdl-34910728

ABSTRACT

BACKGROUND: African Trypanosomiases threaten the life of both humans and animals. Trypanosomes are transmitted by tsetse and other biting flies. In Rwanda, the African Animal Trypanosomiasis (AAT) endemic area is mainly around the tsetse-infested Akagera National Park (NP). The study aimed to identify Trypanosoma species circulating in cattle, their genetic diversity and distribution around the Akagera NP. METHODOLOGY: A cross-sectional study was carried out in four districts, where 1,037 cattle blood samples were collected. The presence of trypanosomes was determined by microscopy, immunological rapid test VerY Diag and PCR coupled with High-Resolution Melt (HRM) analysis. A parametric test (ANOVA) was used to compare the mean Packed cell Volume (PCV) and trypanosomes occurrence. The Cohen Kappa test was used to compare the level of agreement between the diagnostic methods. FINDINGS: The overall prevalence of trypanosome infections was 5.6%, 7.1% and 18.7% by thin smear, Buffy coat technique and PCR/HRM respectively. Microscopy showed a low sensitivity while a low specificity was shown by the rapid test (VerY Diag). Trypanosoma (T.) congolense was found at a prevalence of 10.7%, T. vivax 5.2%, T. brucei brucei 2% and T. evansi 0.7% by PCR/HRM. This is the first report of T.evansi in cattle in Rwanda. The non-pathogenic T. theileri was also detected. Lower trypanosome infections were observed in Ankole x Friesian breeds than indigenous Ankole. No human-infective T. brucei rhodesiense was detected. There was no significant difference between the mean PCV of infected and non-infected animals (p>0.162). CONCLUSIONS: Our study sheds light on the species of animal infective trypanosomes around the Akagera NP, including both pathogenic and non-pathogenic trypanosomes. The PCV estimation is not always an indication of trypanosome infection and the mechanical transmission should not be overlooked. The study confirms that the area around the Akagera NP is affected by AAT, and should, therefore, be targeted by the control activities. AAT impact assessment on cattle production and information on the use of trypanocides are needed to help policymakers prioritise target areas and optimize intervention strategies. Ultimately, these studies will allow Rwanda to advance in the Progressive Control Pathway (PCP) to reduce or eliminate the burden of AAT.


Subject(s)
Biodiversity , Cattle Diseases/parasitology , Trypanosoma/isolation & purification , Trypanosomiasis, African/veterinary , Animals , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/transmission , Insect Vectors/parasitology , Insect Vectors/physiology , Parks, Recreational , Phylogeny , Rwanda/epidemiology , Trypanosoma/classification , Trypanosoma/genetics , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/transmission , Tsetse Flies/parasitology , Tsetse Flies/physiology
8.
Parasit Vectors ; 14(1): 506, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34583766

ABSTRACT

BACKGROUND: African trypanosomiasis, which is mainly transmitted by tsetse flies (Glossina spp.), is a threat to public health and a significant hindrance to animal production. Tools that can reduce tsetse densities and interrupt disease transmission exist, but their large-scale deployment is limited by high implementation costs. This is in part limited by the absence of knowledge of breeding sites and dispersal data, and tools that can predict these in the absence of ground-truthing. METHODS: In Kenya, tsetse collections were carried out in 261 randomized points within Shimba Hills National Reserve (SHNR) and villages up to 5 km from the reserve boundary between 2017 and 2019. Considering their limited dispersal rate, we used in situ observations of newly emerged flies that had not had a blood meal (teneral) as a proxy for active breeding locations. We fitted commonly used species distribution models linking teneral and non-teneral tsetse presence with satellite-derived vegetation cover type fractions, greenness, temperature, and soil texture and moisture indices separately for the wet and dry season. Model performance was assessed with area under curve (AUC) statistics, while the maximum sum of sensitivity and specificity was used to classify suitable breeding or foraging sites. RESULTS: Glossina pallidipes flies were caught in 47% of the 261 traps, with teneral flies accounting for 37% of these traps. Fitted models were more accurate for the teneral flies (AUC = 0.83) as compared to the non-teneral (AUC = 0.73). The probability of teneral fly occurrence increased with woodland fractions but decreased with cropland fractions. During the wet season, the likelihood of teneral flies occurring decreased as silt content increased. Adult tsetse flies were less likely to be trapped in areas with average land surface temperatures below 24 °C. The models predicted that 63% of the potential tsetse breeding area was within the SHNR, but also indicated potential breeding pockets outside the reserve. CONCLUSION: Modelling tsetse occurrence data disaggregated by life stages with time series of satellite-derived variables enabled the spatial characterization of potential breeding and foraging sites for G. pallidipes. Our models provide insight into tsetse bionomics and aid in characterising tsetse infestations and thus prioritizing control areas.


Subject(s)
Animal Distribution , Breeding , Insect Vectors/physiology , Trypanosomiasis, African/prevention & control , Tsetse Flies/physiology , Animals , Ecosystem , Female , Humans , Kenya , Seasons , Temperature , Trypanosomiasis, African/transmission
9.
PLoS Pathog ; 17(9): e1009539, 2021 09.
Article in English | MEDLINE | ID: mdl-34529715

ABSTRACT

Tsetse flies (Glossina spp.) house a population-dependent assortment of microorganisms that can include pathogenic African trypanosomes and maternally transmitted endosymbiotic bacteria, the latter of which mediate numerous aspects of their host's metabolic, reproductive, and immune physiologies. One of these endosymbionts, Spiroplasma, was recently discovered to reside within multiple tissues of field captured and laboratory colonized tsetse flies grouped in the Palpalis subgenera. In various arthropods, Spiroplasma induces reproductive abnormalities and pathogen protective phenotypes. In tsetse, Spiroplasma infections also induce a protective phenotype by enhancing the fly's resistance to infection with trypanosomes. However, the potential impact of Spiroplasma on tsetse's viviparous reproductive physiology remains unknown. Herein we employed high-throughput RNA sequencing and laboratory-based functional assays to better characterize the association between Spiroplasma and the metabolic and reproductive physiologies of G. fuscipes fuscipes (Gff), a prominent vector of human disease. Using field-captured Gff, we discovered that Spiroplasma infection induces changes of sex-biased gene expression in reproductive tissues that may be critical for tsetse's reproductive fitness. Using a Gff lab line composed of individuals heterogeneously infected with Spiroplasma, we observed that the bacterium and tsetse host compete for finite nutrients, which negatively impact female fecundity by increasing the length of intrauterine larval development. Additionally, we found that when males are infected with Spiroplasma, the motility of their sperm is compromised following transfer to the female spermatheca. As such, Spiroplasma infections appear to adversely impact male reproductive fitness by decreasing the competitiveness of their sperm. Finally, we determined that the bacterium is maternally transmitted to intrauterine larva at a high frequency, while paternal transmission was also noted in a small number of matings. Taken together, our findings indicate that Spiroplasma exerts a negative impact on tsetse fecundity, an outcome that could be exploited for reducing tsetse population size and thus disease transmission.


Subject(s)
Insect Vectors/microbiology , Insect Vectors/physiology , Spiroplasma , Symbiosis/physiology , Tsetse Flies/microbiology , Tsetse Flies/physiology , Animals , Female , Male
10.
Folia Parasitol (Praha) ; 682021 Jul 19.
Article in English | MEDLINE | ID: mdl-34309583

ABSTRACT

Tsetse flies are well-known vectors of trypanosomes pathogenic for humans and livestock. For these strictly blood-feeding viviparous flies, the host blood should be the only source of nutrients and liquids, as well as any exogenous microorganisms colonising their intestine. Here we describe the unexpected finding of several monoxenous trypanosomatids in their gut. In a total of 564 individually examined Glossina (Austenia) tabaniformis (Westwood) (436 specimens) and Glossina (Nemorhina) fuscipes fuscipes (Newstead) (128 specimens) captured in the Dzanga-Sangha Protected Areas, Central African Republic, 24 (4.3%) individuals were infected with monoxenous trypanosomatids belonging to the genera Crithidia Léger, 1902; Kentomonas Votýpka, Yurchenko, Kostygov et Lukes, 2014; Novymonas Kostygov et Yurchenko, 2020; Obscuromonas Votýpka et Lukes, 2021; and Wallacemonas Kostygov et Yurchenko, 2014. Moreover, additional 20 (3.5%) inspected tsetse flies harboured free-living bodonids affiliated with the genera Dimastigella Sandon, 1928; Neobodo Vickerman, 2004; Parabodo Skuja, 1939; and Rhynchomonas Klebs, 1892. In the context of the recently described feeding behaviour of these dipterans, we propose that they become infected while taking sugar meals and water, providing indirect evidence that blood is not their only source of food and liquids.


Subject(s)
Host-Parasite Interactions , Trypanosomatina/physiology , Tsetse Flies , Animals , Central African Republic , Feeding Behavior , Tsetse Flies/parasitology , Tsetse Flies/physiology
11.
PLoS Negl Trop Dis ; 15(7): e0009620, 2021 07.
Article in English | MEDLINE | ID: mdl-34280199

ABSTRACT

BACKGROUND: Black screen fly round (BFR) is a mobile sampling method for Glossina morsitans. This technique relies on the ability of operator(s) to capture flies landing on the screen with hand nets. In this study, we aimed to evaluate a vehicle-mounted sticky panel trap (VST) that is independent of the operator's ability to capture flies against BFR, for effective and rapid sampling of G. m. morsitans Westwood and G. m. centralis Machado. We also determined the influence of the VST colour (all-blue, all-black or 1:1 blue-black), orientation and presence of odour attractants on tsetse catch. METHODOLOGY/PRINCIPAL FINDINGS: Using randomised block design experiments conducted in Zambia, we compared and modelled the number of tsetse flies caught in the treatment arms using negative binomial regression. There were no significant differences in the catch indices of the three colour designs and for in-line or transversely oriented panels for both subspecies (P > 0.05). When baited with butanone and 1-octen-3-ol, VST caught 1.38 (1.11-1.72; P < 0.01) times more G. m. centralis flies than the un-baited trap. Attractants did not significantly increase the VST catch index for G. m. morsitans (P > 0.05). Overall, the VST caught 2.42 (1.91-3.10; P < 0.001) and 2.60 (1.50-3.21; P < 0.001) times more G. m. centralis and G. m. morsitans respectively, than the BFR. The VST and BFR took 10 and 35 min respectively to cover a 1 km transect. CONCLUSION/SIGNIFICANCE: The VST is several times more effective for sampling G. m. morsitans and G. m. centralis than the BFR and we recommend its use as an alternative sampling tool.


Subject(s)
Entomology/instrumentation , Equipment Design , Tsetse Flies/physiology , Animals , Entomology/methods , Female , Male , Motor Vehicles , Zambia
12.
PLoS Negl Trop Dis ; 15(6): e0009463, 2021 06.
Article in English | MEDLINE | ID: mdl-34153040

ABSTRACT

BACKGROUND: Riverine tsetse (Glossina spp.) transmit Trypanosoma brucei gambiense which causes Gambian Human African Trypanosomiasis. Tiny Targets were developed for cost-effective riverine tsetse control, and comprise panels of insecticide-treated blue polyester fabric and black net that attract and kill tsetse. Versus typical blue polyesters, two putatively more attractive fabrics have been developed: Vestergaard ZeroFly blue, and violet. Violet was most attractive to savannah tsetse using large targets, but neither fabric has been tested for riverine tsetse using Tiny Targets. METHODS: We measured numbers of G. f. fuscipes attracted to electrified Tiny Targets in Kenya and Uganda. We compared violets, Vestergaard blues, and a typical blue polyester, using three replicated Latin squares experiments. We then employed Bayesian statistical analyses to generate expected catches for future target deployments incorporating uncertainty in model parameters, and prior knowledge from previous experiments. RESULTS: Expected catches for average future replicates of violet and Vestergaard blue targets were highly likely to exceed those for typical blue. Accounting for catch variability between replicates, it remained moderately probable (70-86% and 59-84%, respectively) that a given replicate of these targets would have a higher expected catch than typical blue on the same day at the same site. Meanwhile, expected catches for average violet replicates were, in general, moderately likely to exceed those for Vestergaard blue. However, the difference in medians was small, and accounting for catch variability, the probability that the expected catch for a violet replicate would exceed a Vestergaard blue equivalent was marginal (46-71%). CONCLUSION: Violet and Vestergaard ZeroFly blue are expected to outperform typical blue polyester in the Tiny Target configuration. Violet is unlikely to greatly outperform Vestergaard blue deployed in this way, but because violet is highly attractive to both riverine and savannah tsetse using different target designs, it may provide the more suitable general-purpose fabric.


Subject(s)
Insect Control/methods , Insect Vectors/physiology , Insecticide-Treated Bednets , Tsetse Flies/physiology , Animals , Bayes Theorem , Insect Control/instrumentation , Insect Vectors/drug effects , Insecticides/pharmacology , Kenya , Textiles , Tsetse Flies/drug effects , Uganda
13.
PLoS Negl Trop Dis ; 15(6): e0009474, 2021 06.
Article in English | MEDLINE | ID: mdl-34061857

ABSTRACT

Savannah tsetse flies avoid flying toward tsetse fly-refractory waterbuck (Kobus defassa) mediated by a repellent blend of volatile compounds in their body odor comprised of δ-octalactone, geranyl acetone, phenols (guaiacol and carvacrol), and homologues of carboxylic acids (C5-C10) and 2-alkanones (C8-C13). However, although the blends of carboxylic acids and that of 2-alkanones contributed incrementally to the repellency of the waterbuck odor to savannah tsetse flies, some waterbuck constituents (particularly, nonanoic acid and 2-nonanone) showed significant attractive properties. In another study, increasing the ring size of δ-octalactone from six to seven membered ring changed the activity of the resulting molecule (ε-nonalactone) on the savannah tsetse flies from repellency to attraction. In the present study, we first compared the effect of blending ε-nonalactone, nonanoic acid and 2-nonanone in 1:1 binary and 1:1:1 ternary combination on responses of Glossina pallidipes and Glossina morsitans morsitans tsetse flies in a two-choice wind tunnel. The compounds showed clear synergistic effects in the blends, with the ternary blend demonstrating higher attraction than the binary blends and individual compounds. Our follow up laboratory comparisons of tsetse fly responses to ternary combinations with different relative proportions of the three components showed that the blend in 1:3:2 proportion was most attractive relative to fermented cow urine (FCU) to both tsetse species. In our field experiments at Shimba Hills game reserve in Kenya, where G. pallidipes are dominant, the pattern of tsetse catches we obtained with different proportions of the three compounds were similar to those we observed in the laboratory. Interestingly, the three-component blend in 1:3:2 proportion when released at optimized rate of 13.71mg/h was 235% more attractive to G. pallidipes than a combination of POCA (3-n-Propylphenol, 1-Octen-3-ol, 4-Cresol, and Acetone) and fermented cattle urine (FCU). This constitutes a novel finding with potential for downstream deployment in bait technologies for more effective control of G. pallidipes, G. m. morsitans, and perhaps other savannah tsetse fly species, in 'pull' and 'pull-push' tactics.


Subject(s)
Chemotactic Factors/chemistry , Insect Repellents/chemistry , Ruminants/metabolism , Tsetse Flies/physiology , Volatile Organic Compounds/chemistry , Animals , Chemotactic Factors/metabolism , Chemotaxis , Insect Control , Insect Repellents/metabolism , Kenya , Odorants/analysis , Volatile Organic Compounds/metabolism
14.
PLoS Negl Trop Dis ; 15(6): e0009404, 2021 06.
Article in English | MEDLINE | ID: mdl-34181651

ABSTRACT

BACKGROUND: Gambian human African trypanosomiasis (gHAT) is a neglected tropical disease caused by Trypanosoma brucei gambiense transmitted by tsetse flies (Glossina). In Côte d'Ivoire, Bonon is the most important focus of gHAT, with 325 cases diagnosed from 2000 to 2015 and efforts against gHAT have relied largely on mass screening and treatment of human cases. We assessed whether the addition of tsetse control by deploying Tiny Targets offers benefit to sole reliance on the screen-and-treat strategy. METHODOLOGY AND PRINCIPAL FINDINGS: In 2015, we performed a census of the human population of the Bonon focus, followed by an exhaustive entomological survey at 278 sites. After a public sensitization campaign, ~2000 Tiny Targets were deployed across an area of 130 km2 in February of 2016, deployment was repeated annually in the same month of 2017 and 2018. The intervention's impact on tsetse was evaluated using a network of 30 traps which were operated for 48 hours at three-month intervals from March 2016 to December 2018. A second comprehensive entomological survey was performed in December 2018 with traps deployed at 274 of the sites used in 2015. Sub-samples of tsetse were dissected and examined microscopically for presence of trypanosomes. The census recorded 26,697 inhabitants residing in 331 settlements. Prior to the deployment of targets, the mean catch of tsetse from the 30 monitoring traps was 12.75 tsetse/trap (5.047-32.203, 95%CI), i.e. 6.4 tsetse/trap/day. Following the deployment of Tiny Targets, mean catches ranged between 0.06 (0.016-0.260, 95%CI) and 0.55 (0.166-1.794, 95%CI) tsetse/trap, i.e. 0.03-0.28 tsetse/trap/day. During the final extensive survey performed in December 2018, 52 tsetse were caught compared to 1,909 in 2015, with 11.6% (5/43) and 23.1% (101/437) infected with Trypanosoma respectively. CONCLUSIONS: The annual deployment of Tiny Targets in the gHAT focus of Bonon reduced the density of Glossina palpalis palpalis by >95%. Tiny Targets offer a powerful addition to current strategies towards eliminating gHAT from Côte d'Ivoire.


Subject(s)
Insect Control/methods , Insect Vectors/parasitology , Trypanosoma brucei gambiense , Trypanosomiasis, African/prevention & control , Tsetse Flies/parasitology , Animals , Cote d'Ivoire/epidemiology , Humans , Insect Vectors/physiology , Tsetse Flies/physiology
15.
Parasit Vectors ; 14(1): 293, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34078431

ABSTRACT

BACKGROUND: African trypanosomiases are vector-borne diseases that affect humans and livestock in sub-Saharan Africa. Although data have been collected on tsetse fauna as well as trypanosome infections in tsetse flies and mammals in foci of sleeping sickness in Chad, the situation of tsetse fly-transmitted trypanosomes remains unknown in several tsetse-infested areas of Chad. This study was designed to fill this epidemiological knowledge gap by determining the tsetse fauna as well as the trypanosomes infecting tsetse flies in the area of Lake Iro in southeastern Chad. METHODS: Tsetse flies were trapped along the Salamat River using biconical traps. The proboscis and tsetse body were removed from each fly. DNA was extracted from the proboscis using proteinase K and phosphate buffer and from the tsetse body using Chelex 5%. Tsetse flies were identified by amplifying and sequencing the cytochrome c oxydase I gene of each tsetse fly. Trypanosome species were detected by amplifying and sequencing the internal transcribed spacer 1 of infecting trypanosomes. RESULTS: A total of 617 tsetse flies were trapped; the apparent density of flies per trap per day was 2. 6. Of the trapped flies, 359 were randomly selected for the molecular identification and for the detection of infecting trypanosomes. Glossina morsitans submorsitans (96.1%) was the dominant tsetse fly species followed by G. fuscipes fuscipes (3.1%) and G. tachinoides (0.8%). Four trypanosome species, including Trypanosoma vivax, T. simiae, T. godfreyi and T. congolense savannah, were detected. Both single infection (56.7%) and mixed infections of trypanosomes (4.6%) were detected in G. m. submorsitans. The single infection included T. simiae (20.5%), T. congolense savannah (16.43%), T. vivax (11.7%) and T. godfreyi (9.8%). The trypanosome infection rate was 61.4% in G. m. submorsitans, 72.7% in G. f. fuscipes and 66.6% in G. tachinoides. Trypanosome infections were more prevalent in tsetse bodies (40.6%) than in the proboscis (16.3%). CONCLUSION: This study revealed the presence of different tsetse species and a diversity of trypanosomes pathogenic to livestock in the area of Lake Iro. The results highlight the risks and constraints that animal African trypanosomiasis pose to livestock breeding and the importance of assessing trypanosome infections in livestock in this area.


Subject(s)
Genetic Variation , Trypanosoma/classification , Trypanosoma/genetics , Trypanosomiasis, African/transmission , Tsetse Flies/parasitology , Animals , Chad/epidemiology , Female , Lakes , Livestock/parasitology , Male , Trypanosoma/isolation & purification , Trypanosoma congolense/genetics , Trypanosoma vivax/genetics , Trypanosomiasis, African/epidemiology , Tsetse Flies/physiology
16.
Parasit Vectors ; 14(1): 294, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34078446

ABSTRACT

BACKGROUND: Glossina (tsetse flies) biologically transmit trypanosomes that infect both humans and animals. Knowledge of their distribution patterns is a key element to better understand the transmission dynamics of trypanosomosis. Tsetse distribution in Rwanda has not been well enough documented, and little is known on their current distribution. This study determined the current spatial distribution, abundance, diversity, and seasonal variations of tsetse flies in and around the Akagera National Park. METHODS: A longitudinal stratified sampling following the seasons was used. Biconical traps were deployed in 55 sites for 6 consecutive days of each study month from May 2018 to June 2019 and emptied every 48 h. Flies were identified using FAO keys, and the number of flies per trap day (FTD) was used to determine the apparent density. Pearson chi-square (χ2) and parametrical tests (t-test and ANOVA) were used to determine the variations between the variables. The significance (p < 0.05) at 95% confidence interval was considered. Logistic regression was used to determine the association between tsetse occurrence and the associated predictors. RESULTS: A total of 39,516 tsetse flies were collected, of which 73.4 and 26.6% were from inside Akagera NP and the interface area, respectively. Female flies accounted for 61.3 while 38.7% were males. Two species were identified, i.e. G. pallidipes [n = 29,121, 7.4 flies/trap/day (FTD)] and G. morsitans centralis (n = 10,395; 2.6 FTD). The statistical difference in numbers was significant between the two species (p = 0.000). The flies were more abundant during the wet season (15.8 FTD) than the dry season (4.2 FTD). Large numbers of flies were trapped around the swamp areas (69.1 FTD) inside the park and in Nyagatare District (11.2 FTD) at the interface. Glossina morsitans was 0.218 times less likely to occur outside the park. The chance of co-existing between the two species reduced outside the protected area (0.021 times). CONCLUSIONS: The occurrence of Glossina seems to be limited to the protected Akagera NP and a narrow band of its surrounding areas. This finding will be crucial to design appropriate control strategies. Glossina pallidipes was found in higher numbers and therefore is conceivably the most important vector of trypanosomosis. Regional coordinated control and regular monitoring of Glossina distribution are recommended.


Subject(s)
Animal Distribution , Animals, Wild/parasitology , Livestock/parasitology , Parks, Recreational , Tsetse Flies/physiology , Animals , Cattle , Female , Insect Vectors/parasitology , Longitudinal Studies , Male , Rwanda , Seasons , Trypanosomiasis, Bovine/epidemiology , Trypanosomiasis, Bovine/transmission
17.
Biomolecules ; 11(4)2021 04 08.
Article in English | MEDLINE | ID: mdl-33917773

ABSTRACT

Olfaction is orchestrated at different stages and involves various proteins at each step. For example, odorant-binding proteins (OBPs) are soluble proteins found in sensillum lymph that might encounter odorants before reaching the odorant receptors. In tsetse flies, the function of OBPs in olfaction is less understood. Here, we investigated the role of OBPs in Glossina fuscipes fuscipes olfaction, the main vector of sleeping sickness, using multidisciplinary approaches. Our tissue expression study demonstrated that GffLush was conserved in legs and antenna in both sexes, whereas GffObp44 and GffObp69 were expressed in the legs but absent in the antenna. GffObp99 was absent in the female antenna but expressed in the male antenna. Short odorant exposure induced a fast alteration in the transcription of OBP genes. Furthermore, we successfully silenced a specific OBP expressed in the antenna via dsRNAi feeding to decipher its function. We found that silencing OBPs that interact with 1-octen-3-ol significantly abolished flies' attraction to 1-octen-3-ol, a known attractant for tsetse fly. However, OBPs that demonstrated a weak interaction with 1-octen-3-ol did not affect the behavioral response, even though it was successfully silenced. Thus, OBPs' selective interaction with ligands, their expression in the antenna and their significant impact on behavior when silenced demonstrated their direct involvement in olfaction.


Subject(s)
Animal Communication , Insect Proteins/metabolism , Receptors, Odorant/metabolism , Tsetse Flies/physiology , Amino Acid Sequence , Animals , Arthropod Antennae/metabolism , Binding Sites , Female , Insect Proteins/antagonists & inhibitors , Insect Proteins/genetics , Male , Molecular Docking Simulation , Molecular Dynamics Simulation , Octanols/chemistry , Octanols/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Receptors, Odorant/antagonists & inhibitors , Receptors, Odorant/genetics , Sequence Alignment
18.
PLoS Negl Trop Dis ; 15(3): e0009026, 2021 03.
Article in English | MEDLINE | ID: mdl-33764969

ABSTRACT

Published analysis of genetic material from field-collected tsetse (Glossina spp, primarily from the Palpalis group) has been used to predict that the distance (δ) dispersed per generation increases as effective population densities (De) decrease, displaying negative density-dependent dispersal (NDDD). Using the published data we show this result is an artefact arising primarily from errors in estimates of S, the area occupied by a subpopulation, and thereby in De. The errors arise from the assumption that S can be estimated as the area ([Formula: see text]) regarded as being covered by traps. We use modelling to show that such errors result in anomalously high correlations between [Formula: see text] and [Formula: see text] and the appearance of NDDD, with a slope of -0.5 for the regressions of log([Formula: see text]) on log([Formula: see text]), even in simulations where we specifically assume density-independent dispersal (DID). A complementary mathematical analysis confirms our findings. Modelling of field results shows, similarly, that the false signal of NDDD can be produced by varying trap deployment patterns. Errors in the estimates of δ in the published analysis were magnified because variation in estimates of S were greater than for all other variables measured, and accounted for the greatest proportion of variation in [Formula: see text]. Errors in census population estimates result from an erroneous understanding of the relationship between trap placement and expected tsetse catch, exacerbated through failure to adjust for variations in trapping intensity, trap performance, and in capture probabilities between geographical situations and between tsetse species. Claims of support in the literature for NDDD are spurious. There is no suggested explanation for how NDDD might have evolved. We reject the NDDD hypothesis and caution that the idea should not be allowed to influence policy on tsetse and trypanosomiasis control.


Subject(s)
Animal Distribution , Data Analysis , Tsetse Flies/physiology , Animals , Artifacts , Models, Biological , Pest Control , Population Density
19.
PLoS Negl Trop Dis ; 15(2): e0009081, 2021 02.
Article in English | MEDLINE | ID: mdl-33571190

ABSTRACT

In the Maasai Steppe, public health and economy are threatened by African Trypanosomiasis, a debilitating and fatal disease to livestock (African Animal Trypanosomiasis -AAT) and humans (Human African Trypanosomiasis-HAT), if not treated. The tsetse fly is the primary vector for both HAT and AAT and climate is an important predictor of their occurrence and the parasites they carry. While understanding tsetse fly distribution is essential for informing vector and disease control strategies, existing distribution maps are old and were based on coarse spatial resolution data, consequently, inaccurately representing vector and disease dynamics necessary to design and implement fit-for-purpose mitigation strategies. Also, the assertion that climate change is altering tsetse fly distribution in Tanzania lacks empirical evidence. Despite tsetse flies posing public health risks and economic hardship, no study has modelled their distributions at a scale needed for local planning. This study used MaxEnt species distribution modelling (SDM) and ecological niche modeling tools to predict potential distribution of three tsetse fly species in Tanzania's Maasai Steppe from current climate information, and project their distributions to midcentury climatic conditions under representative concentration pathways (RCP) 4.5 scenarios. Current climate results predicted that G. m. morsitans, G. pallidipes and G swynnertoni cover 19,225 km2, 7,113 km2 and 32,335 km2 and future prediction indicated that by the year 2050, the habitable area may decrease by up to 23.13%, 12.9% and 22.8% of current habitable area, respectively. This information can serve as a useful predictor of potential HAT and AAT hotspots and inform surveillance strategies. Distribution maps generated by this study can be useful in guiding tsetse fly control managers, and health, livestock and wildlife officers when setting surveys and surveillance programs. The maps can also inform protected area managers of potential encroachment into the protected areas (PAs) due to shrinkage of tsetse fly habitats outside PAs.


Subject(s)
Climate Change , Insect Vectors/physiology , Trypanosomiasis, African/parasitology , Tsetse Flies/physiology , Animals , Animals, Wild , Ecosystem , Humans , Insect Vectors/parasitology , Livestock/parasitology , Livestock/physiology , Seasons , Tanzania/epidemiology , Trypanosoma , Trypanosomiasis, African/epidemiology , Tsetse Flies/parasitology
20.
Parasit Vectors ; 14(1): 46, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33436074

ABSTRACT

BACKGROUND: The main challenge to the successful mass-rearing of the tsetse fly in insectaries, especially in Africa, is a sustainable supply of high-quality blood meals. As such, the collection of high-quality blood in large quantities can be an important constraint to production. One possible strategy to lessen the impact of this constraint is to modify the blood-feeding frequency. In the study reported here, we evaluated the effect of three blood-feeding frequencies on the colony performance of Glossina palpalis gambiensis, a riverine tsetse fly species. METHODS: The effect of three, four and six blood-feedings per week on female survival and productivity were evaluated over a 30-day period. Progeny emergence rate and flight ability were also evaluated. RESULTS: Female survival was significantly higher in flies fed four times per week (87%) than in those fed three (72%) and six times per week (78%; P < 0.05). Productivity was similar between flies fed four and six times per week (457 and 454 larvae) but significantly reduced in flies fed three times per week (280 larvae produced; P < 0.05). Both emergence rate and flight ability rate were also similar between flies fed four times per week (97 and 94%, respectively) and six times per week (96 and 97%, respectively), but they were significantly reduced when flies were fed three times per week (89 and 84%, respectively; P < 0.05). CONCLUSIONS: Blood-feeding frequency could be reduced from six times per week to four times per week without affecting mass-rearing production and progeny quality. The implications of these results on tsetse mass-rearing production are discussed.


Subject(s)
Blood , Feeding Behavior , Tsetse Flies/physiology , Animals , Female , Larva/physiology , Livestock/blood , Livestock/parasitology , Male , Pupa/physiology , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...