Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.833
Filter
1.
Ann Clin Microbiol Antimicrob ; 23(1): 40, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702782

ABSTRACT

BACKGROUND: Pretomanid is a key component of new regimens for the treatment of drug-resistant tuberculosis (TB) which are being rolled out globally. However, there is limited information on the prevalence of pre-existing resistance to the drug. METHODS: To investigate pretomanid resistance rates in China and its underlying genetic basis, as well as to generate additional minimum inhibitory concentration (MIC) data for epidemiological cutoff (ECOFF)/breakpoint setting, we performed MIC determinations in the Mycobacterial Growth Indicator Tube™ (MGIT) system, followed by WGS analysis, on 475 Mycobacterium tuberculosis (MTB) isolated from Chinese TB patients between 2013 and 2020. RESULTS: We observed a pretomanid MIC distribution with a 99% ECOFF equal to 0.5 mg/L. Of the 15 isolates with MIC values > 0.5 mg/L, one (MIC = 1 mg/L) was identified as MTB lineage 1 (L1), a genotype previously reported to be intrinsically less susceptible to pretomanid, two were borderline resistant (MIC = 2-4 mg/L) and the remaining 12 isolates were highly resistant (MIC ≥ 16 mg/L) to the drug. Five resistant isolates did not harbor mutations in the known pretomanid resistant genes. CONCLUSIONS: Our results further support a breakpoint of 0.5 mg/L for a non-L1 MTB population, which is characteristic of China. Further, our data point to an unexpected high (14/475, 3%) pre-existing pretomanid resistance rate in the country, as well as to the existence of yet-to-be-discovered pretomanid resistance genes.


Subject(s)
Antitubercular Agents , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , China/epidemiology , Humans , Antitubercular Agents/pharmacology , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/epidemiology , Prevalence , Nitroimidazoles/pharmacology , Genotype , Mutation , Whole Genome Sequencing
2.
Front Public Health ; 12: 1337357, 2024.
Article in English | MEDLINE | ID: mdl-38689770

ABSTRACT

Introduction: A major sublineage within the Mycobacterium tuberculosis (MTB) LAM family characterized by a new in-frame fusion gene Rv3346c/55c was discovered in Rio de Janeiro (Brazil) in 2007, called RDRio, associated to drug resistance. The few studies about prevalence of MTB RDRio strains in Latin America reported values ranging from 3% in Chile to 69.8% in Venezuela, although no information is available for countries like Ecuador. Methods: A total of 814 MTB isolates from years 2012 to 2016 were screened by multiplex PCR for RDRio identification, followed by 24-loci MIRU-VNTR and spoligotyping. Results: A total number of 17 MTB RDRio strains were identified, representing an overall prevalence of 2.09% among MTB strains in Ecuador. While 10.9% of the MTB isolates included in the study were multidrug resistance (MDR), 29.4% (5/17) of the RDRio strains were MDR. Discussion: This is the first report of the prevalence of MTB RDRio in Ecuador, where a strong association with MDR was found, but also a very low prevalence compared to other countries in Latin America. It is important to improve molecular epidemiology tools as a part of MTB surveillance programs in Latin America to track the transmission of potentially dangerous MTB stains associated to MDR TB like MTB RDRio.


Subject(s)
Genotype , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Ecuador/epidemiology , Humans , Prevalence , Retrospective Studies , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Genetic Variation , Antitubercular Agents/pharmacology , Adult , Male , Female , Middle Aged , Drug Resistance, Multiple, Bacterial/genetics , Adolescent
3.
Sci Rep ; 14(1): 10455, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714745

ABSTRACT

Ethiopia is one of the countries with a high tuberculosis (TB) burden, yet little is known about the spatial distribution of Mycobacterium tuberculosis (Mtb) lineages. This study identifies the spoligotyping of 1735 archived Mtb isolates from the National Drug Resistance Survey, collected between November 2011 and June 2013, to investigate Mtb population structure and spatial distribution. Spoligotype International Types (SITs) and lineages were retrieved from online databases. The distribution of lineages was evaluated using Fisher's exact test and logistic regression models. The Global Moran's Index and Getis-Ord Gi statistic were utilized to identify hotspot areas. Our results showed that spoligotypes could be interpreted and led to 4 lineages and 283 spoligotype patterns in 91% of the isolates, including 4% of those with multidrug/rifampicin resistance (MDR/RR) TB. The identified Mtb lineages were lineage 1 (1.8%), lineage 3 (25.9%), lineage 4 (70.6%) and lineage 7 (1.6%). The proportion of lineages 3 and 4 varied by regions, with lineage 3 being significantly greater than lineage 4 in reports from Gambella (AOR = 4.37, P < 0.001) and Tigray (AOR = 3.44, P = 0.001) and lineage 4 being significantly higher in Southern Nations Nationalities and Peoples Region (AOR = 1.97, P = 0.026) than lineage 3. Hotspots for lineage 1 were located in eastern Ethiopia, while a lineage 7 hotspot was identified in northern and western Ethiopia. The five prevalent spoligotypes, which were SIT149, SIT53, SIT25, SIT37 and SIT26 account for 42.8% of all isolates under investigation, while SIT149, SIT53 and SIT21 account for 52-57.8% of drug-resistant TB cases. TB and drug resistant TB are mainly caused by lineages 3 and 4, and significant proportions of the prevalent spoligotypes also influence drug-resistant TB and the total TB burden. Regional variations in lineages may result from both local and cross-border spread.


Subject(s)
Mycobacterium tuberculosis , Ethiopia/epidemiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Humans , Female , Male , Adult , Middle Aged , Adolescent , Young Adult , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis/epidemiology , Tuberculosis/microbiology , Bacterial Typing Techniques
4.
BMC Infect Dis ; 24(1): 511, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773443

ABSTRACT

INTRODUCTION: This study aimed to analyze the risk factors associated with isoniazid-resistant and rifampicin-susceptible tuberculosis (Hr-TB) in adults. METHOD: The clinical data of 1,844 adult inpatients diagnosed with culture-positive pulmonary tuberculosis (PTB) in Nanjing Second Hospital from January 2019 and December 2021 were collected. All culture positive strain from the patient specimens underwent drug susceptibility testing (DST). Among them, 166 patients with Hr-TB were categorized as the Hr-TB group, while the remaining 1,678 patients were classified as having drug-susceptible tuberculosis (DS-TB). Hierarchical logistic regression was employed for multivariate analysis to identify variables associated with Hr-TB. RESULTS: Multivariate logistic regression analysis revealed that individuals with diabetes mellitus (DM) (OR 1.472, 95% CI 1.037-2.088, p = 0.030) and a history of previous tuberculosis treatment (OR 2.913, 95% CI 1.971-4.306, p = 0.000) were at higher risk of developing adult Hr-TB, with this risk being more pronounced in male patients. Within the cohort, 1,640 patients were newly treated, and among them, DM (OR 1.662, 95% CI 1.123-2.461, p = 0.011) was identified as risk factors for Hr-TB. CONCLUSIONS: Diabetes mellitus is a risk factor for Hr-TB in adults, and the contribution of diabetes as a risk factor was more pronounced in the newly treatment or male subgroup. And previous TB treatment history is also a risk factor for Hr-TB in adults.


Subject(s)
Antitubercular Agents , Isoniazid , Mycobacterium tuberculosis , Rifampin , Tuberculosis, Pulmonary , Humans , Male , Female , Risk Factors , Isoniazid/therapeutic use , Isoniazid/pharmacology , Rifampin/therapeutic use , Rifampin/pharmacology , Middle Aged , Adult , China/epidemiology , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Microbial Sensitivity Tests , Aged , Young Adult , Retrospective Studies , Diabetes Mellitus/epidemiology , Diabetes Mellitus/microbiology
5.
PLoS One ; 19(5): e0303460, 2024.
Article in English | MEDLINE | ID: mdl-38753615

ABSTRACT

BACKGROUND: The emergence of drug-resistant tuberculosis (DR-TB) has been a major obstacle to global tuberculosis control programs, especially in developing countries, including Ethiopia. This study investigated drug resistance patterns and associated mutations of Mycobacterium tuberculosis Complex (MTBC) isolates from the Amhara, Gambella, and Benishangul-Gumuz regions of Ethiopia. METHODS: A cross-sectional study was conducted using 128 MTBC isolates obtained from patients with presumptive tuberculosis (TB). Phenotypic (BACTEC MGIT 960) and genotypic (MTBDRplus and MTBDRsl assays) methods were used for drug susceptibility testing. Data were entered into Epi-info and analyzed using SPSS version 25. Frequencies and proportions were determined to describe drug resistance levels and associated mutations. RESULTS: Of the 127 isolates recovered, 100 (78.7%) were susceptible to four first-line anti-TB drugs. Any drug resistance, polydrug resistance, and multi-drug resistance (MDR) were detected in 21.3% (27), 15.7% (20), and 15% (19) of the isolates, respectively, by phenotypic and/or genotypic methods. Mono-resistance was observed for Isoniazid (INH) (2, 1.6%) and Streptomycin (STR) (2, 1.6%). There were two genotypically discordant RIF-resistant cases and one INH-resistant case. One case of pre-extensively drug-resistant TB (pre-XDR-TB) and one case of extensively drug-resistant TB (XDR-TB) were identified. The most frequent gene mutations associated with INH and rifampicin (RIF) resistance were observed in the katG MUT1 (S315T1) (20, 76.9%) and rpoB (S531L) (10, 52.6%) genes, respectively. Two MDR-TB isolates were resistant to second-line drugs; one had a mutation in the gyrA MUT1 gene, and the other had missing gyrA WT1, gyrA WT3, and rrs WT1 genes without any mutation. CONCLUSIONS: The detection of a significant proportion of DR-TB cases in this study suggests that DR-TB is a major public health problem in Ethiopia. Thus, we recommend the early detection and treatment of DR-TB and universal full first-line drug-susceptibility testing in routine system.


Subject(s)
Antitubercular Agents , Genotype , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis, Pulmonary , Humans , Ethiopia/epidemiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/epidemiology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Male , Female , Adult , Cross-Sectional Studies , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Middle Aged , Phenotype , Mutation , Young Adult , Adolescent , Drug Resistance, Multiple, Bacterial/genetics , Isoniazid/pharmacology , Rifampin/pharmacology , Rifampin/therapeutic use , Bacterial Proteins/genetics
6.
Infect Genet Evol ; 121: 105603, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723983

ABSTRACT

In the mountainous, rural regions of eastern China, tuberculosis (TB) remains a formidable challenge; however, the long-term molecular epidemiological surveillance in these regions is limited. This study aimed to investigate molecular and spatial epidemiology of TB in two mountainous, rural counties of Zhejiang Province, China, from 2015 to 2021, to elucidate the recent transmission and drug-resistance profiles. The predominant Lineage 2 (L2) Beijing family accounted for 80.1% of total 532 sequenced Mycobacterium tuberculosis (Mtb) strains, showing consistent prevalence over seven years. Gene mutations associated with drug resistance were identified in 19.4% (103/532) of strains, including 47 rifampicin or isoniazid-resistant strains, eight multi-drug-resistant (MDR) strains, and five pre-extensively drug-resistant (pre-XDR) strains. Genomic clustering revealed 53 distinct clusters with an overall transmission clustering rate of 23.9% (127/532). Patients with a history of retreatment and those infected with L2 strains had a higher risk of recent transmission. Spatial and epidemiological analysis unveiled significant transmission hotspots, especially in densely populated urban areas, involving various public places such as medical institutions, farmlands, markets, and cardrooms. The study emphasizes the pivotal role of Beijing strains and urban-based TB transmission in the western mountainous regions in Zhejiang, highlighting the urgent requirement for specific interventions to mitigate the impact of TB in these unique communities.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , China/epidemiology , Mycobacterium tuberculosis/genetics , Female , Male , Adult , Middle Aged , Prospective Studies , Incidence , Tuberculosis/epidemiology , Tuberculosis/transmission , Tuberculosis/microbiology , Spatial Analysis , Young Adult , Adolescent , Aged , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/transmission , Tuberculosis, Multidrug-Resistant/microbiology , Molecular Epidemiology , Antitubercular Agents/pharmacology , Genomics/methods , Phylogeny
7.
Nat Commun ; 15(1): 3927, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724531

ABSTRACT

Sputum culture reversion after conversion is an indicator of tuberculosis (TB) treatment failure. We analyze data from the endTB multi-country prospective observational cohort (NCT03259269) to estimate the frequency (primary endpoint) among individuals receiving a longer (18-to-20 month) regimen for multidrug- or rifampicin-resistant (MDR/RR) TB who experienced culture conversion. We also conduct Cox proportional hazard regression analyses to identify factors associated with reversion, including comorbidities, previous treatment, cavitary disease at conversion, low body mass index (BMI) at conversion, time to conversion, and number of likely-effective drugs. Of 1,286 patients, 54 (4.2%) experienced reversion, a median of 173 days (97-306) after conversion. Cavitary disease, BMI < 18.5, hepatitis C, prior treatment with second-line drugs, and longer time to initial culture conversion were positively associated with reversion. Reversion was uncommon. Those with cavitary disease, low BMI, hepatitis C, prior treatment with second-line drugs, and in whom culture conversion is delayed may benefit from close monitoring following conversion.


Subject(s)
Antitubercular Agents , Diarylquinolines , Nitroimidazoles , Oxazoles , Sputum , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Sputum/microbiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Diarylquinolines/therapeutic use , Diarylquinolines/pharmacology , Male , Female , Oxazoles/therapeutic use , Adult , Nitroimidazoles/therapeutic use , Nitroimidazoles/pharmacology , Middle Aged , Prospective Studies , Mycobacterium tuberculosis/drug effects , Drug Repositioning
8.
PLoS One ; 19(5): e0301210, 2024.
Article in English | MEDLINE | ID: mdl-38709710

ABSTRACT

BACKGROUND: Multidrug-resistant tuberculosis (MDR-TB), characterized by isoniazid and rifampicin resistance, is caused by chromosomal mutations that restrict treatment options and complicate tuberculosis management. This study sought to investigate the prevalence of pre-extensively drug-resistant (pre-XDR) and extensively drug-resistant (XDR) tuberculosis, as well as mutation pattern, in Nepalese patients with MDR/rifampicin-resistant (RR)-TB strains. METHODS: A cross-sectional study was conducted on MDR/RR-TB patients at the German Nepal Tuberculosis Project from June 2017 to June 2018. The MTBDRsl line probe assay identified pre-XDR-TB and XDR-TB. Pre-XDR-TB included MDR/RR-TB with resistance to any fluoroquinolone (FLQ), while XDR-TB included MDR/RR-TB with resistance to any FLQ and at least one additional group A drug. Mutation status was determined by comparing bands on reaction zones [gyrA and gyrB for FLQ resistance, rrs for SILD resistance, and eis for low-level kanamycin resistance, according to the GenoType MTBDRsl VER 2.0, Hain Lifescience GmbH, Nehren, Germany definition of pre-XDR and XDR] to the evaluation sheet. SPSS version 17.0 was used for data analysis. RESULTS: Out of a total of 171 patients with MDR/RR-TB, 160 had (93.57%) had MTBC, of whom 57 (35.63%) had pre-XDR-TB and 10 (6.25%) had XDR-TB. Among the pre-XDR-TB strains, 56 (98.25%) were FLQ resistant, while 1 (1.75%) was SLID resistant. The most frequent mutations were found at codons MUT3C (57.14%, 32/56) and MUT1 (23.21%, 13/56) of the gyrA gene. One patient had SLID resistant genotype at the MUT1 codon of the rrs gene (100%, 1/1). XDR-TB mutation bands were mostly detected on MUT1 (30%, 3/10) of the gyrA and rrs, MUT3C (30%, 3/10) of the gyrA, and MUT1 (30%, 3/10) of the rrs. CONCLUSIONS: Pre-XDR-TB had a significantly higher likelihood than XDR-TB, with different specific mutation bands present in gyrA and rrs genes.


Subject(s)
Antitubercular Agents , Extensively Drug-Resistant Tuberculosis , Mutation , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Nepal/epidemiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Male , Female , Adult , Cross-Sectional Studies , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/epidemiology , Extensively Drug-Resistant Tuberculosis/microbiology , Middle Aged , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Microbial Sensitivity Tests , Rifampin/therapeutic use , Rifampin/pharmacology , Isoniazid/therapeutic use , Isoniazid/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Young Adult , Fluoroquinolones/pharmacology , Fluoroquinolones/therapeutic use , Adolescent , Aged
9.
Int J Mycobacteriol ; 13(1): 7-14, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38771273

ABSTRACT

BACKGROUND: The overexpression of efflux pumps (Eps) was reported to contribute to multidrug resistant tuberculosis (MDR-TB). Increases in Eps that expel structurally unrelated drugs contribute to reduced susceptibility by decreasing the intracellular concentration of antibiotics. In the present study, an association of mycobacterial membrane protein (MmpS5-MmpL5) Ep and its gene regulator (Rv0678) was investigated in MDR-tuberculosis isolates. METHODS: MTB strains were isolated from patients at two different intervals, i.e., once when they had persistent symptoms despite 3-15 ≥ months of treatment and once when they had started new combination therapy ≥2-3 months. Sputum specimens were subjected to Xpert MTB/rifampicin test and then further susceptibility testing using proportional method and multiplex polymerase chain reaction (PCR) were performed on them. The isolates were characterized using both 16S-23S RNA and hsp65 genes spacer (PCR-restriction fragment length polymorphism). Whole-genome sequencing (WGS) was investigated on two isolates from culture-positive specimen per patient. The protein structure was simulated using the SWISS-MODEL. The input format used for this web server was FASTA (amino acid sequence). Protein structure was also analysis using Ramachandran plot. RESULTS: WGS documented deletion, insertion, and substitution in transmembrane transport protein MmpL5 (Rv0676) of Eps. Majority of the studied isolates (n = 12; 92.3%) showed a unique deletion mutation at three positions: (a) from amino acid number 771 (isoleucine) to 776 (valine), (b) from amino acid number 785 (valine) to 793 (histidine), and (c) from amino acid number 798 (leucine) to 806 (glycine)." One isolate (7.6%) had no deletion mutation. In all isolates (n = 13; 100%), a large insertion mutation consisting of 94 amino acid was observed "from amino acid number 846 (isoleucine) to amino acid number 939 (leucine)". Thirty-eight substitutions in Rv0676 were detected, of which 92.3% were identical in the studied isolates. WGS of mycobacterial membrane proteins (MmpS5; Rv0677) and its gene regulator (Rv0678) documented no deletion, insertion, and substitution. No differences were observed between MmpS5-MmpL5 and its gene regulator in isolates that were collected at different intervals. CONCLUSIONS: Significant genetic mutation like insertion, deletion, and substitution within transmembrane transport protein MmpL5 (Rv0676) can change the functional balance of Eps and cause a reduction in drug susceptibility. This is the first report documenting a unique amino acid mutation (insertion and deletion ≥4-94) in Rv0676 among drug-resistant MTB. We suggest the changes in Mmpl5 (Rv0676) might occurred due to in-vivo sub-therapeutic drug stress within the host cell. Changes in MmpL5 are stable and detected through subsequent culture-positive specimens.


Subject(s)
Antitubercular Agents , Bacterial Proteins , Membrane Transport Proteins , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Tuberculosis, Multidrug-Resistant/microbiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Antitubercular Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Whole Genome Sequencing , Sputum/microbiology
10.
Int J Mycobacteriol ; 13(1): 22-27, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38771275

ABSTRACT

BACKGROUND: Although Zimbabwe has transitioned out of the 30 high-burden countries, it still remained in the 30 high multidrug-resistant (MDR)/rifampicin-resistant tuberculosis (TB) burden. Rapid detection of rifampicin (RIF) and isoniazid (INH) is essential for the diagnosis of MDR-TB. The World Health Organization has recommended the use of molecular WHO-recommended rapid diagnostic (mWRD) for TB and DR-TB. STANDARD™ M10 MDR-TB assay is a new molecular rapid diagnostic assay developed by SD Biosensor for the detection of Mycobacterium tuberculosis (MTB) and RIF and INF resistance. This study aims to determine the diagnostic accuracy of STANDARD™ M10 MDR-TB assay. METHODS: The study was conducted on 214 samples with different MTB and RIF and INH resistance status. The STANDARD™ M10 MDR-TB assay was performed according to the manufacturer's instructions. Xpert MTB/RIF Ultra, MGIT culture, and phenotypic drug susceptibility testing are used as comparative methods. RESULTS: The sensitivity and specificity of STANDARD™ M10 MDR-TB assay for the detection of MTB are 99% and 97.9%, respectively. The sensitivity and specificity of the assay for detection of MDR-TB were 97.8% and 100%, respectively. CONCLUSION: The STANDARD™ M10 MDR-TB assay demonstrated high diagnostic accuracy in the detection of MTB and RIF and INH resistance. This molecular assay can also be used as an alternative to other mWRD assays.


Subject(s)
Antitubercular Agents , Isoniazid , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Rifampin , Sensitivity and Specificity , Tuberculosis, Multidrug-Resistant , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Rifampin/pharmacology , Zimbabwe , Humans , Isoniazid/pharmacology , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/diagnosis , Antitubercular Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Molecular Diagnostic Techniques/methods
11.
Int J Mycobacteriol ; 13(1): 91-95, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38771285

ABSTRACT

BACKGROUND: Rapid detection of tuberculosis (TB) and its resistance are essential for the prompt initiation of correct drug therapy and for stopping the spread of drug-resistant TB. There is an urgent need for increased use of rapid diagnostic tests to control the threat of increased TB and multidrug-resistant TB (MDR-TB). METHODS: EMPE Diagnostics has developed a multiplex molecular diagnostic platform called mfloDx™ by combining nucleotide-specific padlock probe-dependent rolling circle amplification with sensitive lateral flow biosensors, providing visual signals, similar to a COVID-19 test. The first test kit of this platform, mfloDx™ MDR-TB can identify Mycobacterium tuberculosis (MTB) complex and its clinically significant mutations in the rpoB and katG genes and in the inhA promotor contributing resistance to rifampicin (RIF) and isoniazid (INH), causing MDR-TB. RESULTS: We have evaluated the performance of the mfloDx™ MDR-TB test on 210 sputum samples (110 from suspected TB cases and 100 from TB-negative controls) received from a tertiary care center in India. The clinical sensitivity for detecting MTB compared to acid-fast microscopy and mycobacteria growth indicator tube (MGIT) cultures was 86.4% and 84.9%, respectively. All the 100 control samples were negative indicating excellent specificity. In smear-positive sputum samples, the mfloDx™ MDR-TB test showed a sensitivity of 92.5% and 86.4% against MGIT culture and Xpert MTB/RIF, respectively. The clinical sensitivity for the detection of RIF and INH resistance in comparison with MGIT drug susceptibility testing was 100% and 84.6%, respectively, while the clinical specificity was 100%. CONCLUSION: From the above evaluation, we find mfloDx™ MDR-TB to be a rapid and efficient test to detect TB and its multidrug resistance in 3 h at a low cost making it suitable for resource-limited laboratories.


Subject(s)
Antitubercular Agents , Isoniazid , Mycobacterium tuberculosis , Rifampin , Sensitivity and Specificity , Tuberculosis, Multidrug-Resistant , Rifampin/pharmacology , Humans , Isoniazid/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/diagnosis , Antitubercular Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , Sputum/microbiology , Bacterial Proteins/genetics , India , Molecular Diagnostic Techniques/methods , Catalase , Oxidoreductases
12.
Microbiol Spectr ; 12(5): e0277023, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38597637

ABSTRACT

Treatment decisions for tuberculosis (TB) in the absence of full drug-susceptibility data can result in amplifying resistance and may compromise treatment outcomes. Genomics of Mycobacterium tuberculosis (M.tb) from clinical samples enables detection of drug resistance to multiple drugs. We performed whole-genome sequencing (WGS) for 600 clinical samples from patients with tuberculosis to identify the drug-resistance profile and mutation spectrum. We documented the reasons reported by clinicians for referral. WGS identified a high proportion (51%) of pre-extensively drug-resistant (pre-XDR) cases followed by multidrug-resistant tuberculosis (MDR-TB) (15.5%). This correlates with the primary reason for referral, as non-response to the first-line treatment (67%) and treatment failure or rifampicin resistance (14%). Multivariate analysis indicated that all young age groups (P < 0.05), male gender (P < 0.05), and Beijing strain (P < 0.01) were significant independent predictors of MDR-TB or MDR-TB+ [pre-extensively drug-resistant tuberculosis (XDR-TB) and XDR-TB]. Ser315Thr (72.5%) in the inhA gene and Ser450Leu in the rpoB gene (65.5%) were the most prevalent mutations, as were resistance-conferring mutations to pyrazinamide (41%) and streptomycin (61.33%). Mutations outside the rifampicin resistance-determining region (RRDR), Ile491Phe and Val170Phe, were seen in 1.3% of cases; disputed mutations in rpoB (Asp435Tyr, His445Asn, His445Leu, and Leu430Pro) were seen in 6% of cases, and mutations to newer drugs such as bedaquiline and linezolid in 1.0% and 7.5% of cases, respectively. This study on clinical samples highlights that there is a high proportion of pre-XDR cases and emerging resistance to newer drugs; ongoing transmission of these strains can cause serious threat to public health; and whole-genome sequencing can effectively identify and support precision medicine for TB. IMPORTANCE: The current study is based on real-world data on the TB drug-resistance profile by whole-genome sequencing of 600 clinical samples from patients with TB in India. This study indicates the clinicians' reasons for sending samples for WGS, which is for difficult-to-treat cases and/or relapse and treatment failure. The study reports a significant proportion of cases with pre-XDR-TB strains that warrant policy makers' attention. It reflects the current iterative nature of the diagnostic tests under programmatic conditions that leads to delays in appropriate diagnosis and empirical treatment. India had an estimated burden of 2.95 million TB cases in 2020 and 135,000 multidrug-resistant cases. However, WGS profiles of M.tb from India remains disproportionately poorly represented. This study adds a significant body of data on the mutation profiles seen in M.tb isolated from patients with TB in India, mutations outside the RRDR, disputed mutations, and resistance-conferring mutations to newer drugs such as bedaquiline and linezolid.


Subject(s)
Antitubercular Agents , DNA-Directed RNA Polymerases , Drug Resistance, Multiple, Bacterial , Extensively Drug-Resistant Tuberculosis , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis , Oxidoreductases , Tuberculosis, Multidrug-Resistant , Whole Genome Sequencing , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , India/epidemiology , Male , Female , Adult , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Extensively Drug-Resistant Tuberculosis/microbiology , Extensively Drug-Resistant Tuberculosis/drug therapy , Middle Aged , Drug Resistance, Multiple, Bacterial/genetics , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/drug therapy , Bacterial Proteins/genetics , Young Adult , Adolescent , Aged , Rifampin/pharmacology , Rifampin/therapeutic use
13.
Microbiol Spectr ; 12(5): e0409823, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38602399

ABSTRACT

Targeted next-generation sequencing (tNGS) can be used to perform Mycobacterium tuberculosis (MTB) complex-specific amplification or target capture directly from sputum samples, yielding simultaneous coverage of many genes and DNA regions associated with antimicrobial resistance (AMR). Performance comparisons of tNGS and another molecular testing tool, Xpert MTB/rifampicin (RIF), have been empirical. Here, using a dilution series of a RIF-resistant clinical isolate of MTB, we found that tNGS had a slightly lower limit of bacterial detection (102 CFU/mL) compared with Xpert MTB/RIF (103 CFU/mL) in culture medium. However, the minimum detection limit of the rpoB S450L mutation in this isolate was significantly lower with tNGS (102 CFU/mL) than with Xpert MTB/RIF (106 CFU/mL). Sputum samples collected from 129 suspected pulmonary tuberculosis patients were also prospectively studied with the clinical diagnosis as a reference, revealing that the sensitivity of tNGS (48.6%) was higher than those of culture (46.8%), Xpert MTB/RIF (39.4%), and smear microscopy (34.9%) testing. Notably, AMR analysis of 56 MTB-positive samples as determined by tNGS revealed high mutation frequencies of 96.4%, 35.7%, 26.8%, and 19.6% in the following AMR-associated genes: rrs, rpoB, katG, and pncA, respectively. The findings of this study provide theoretical support for the differential clinical application of tNGS and Xpert MTB/RIF and suggest that tNGS has greater application value in tuberculosis drug resistance monitoring and prevention.IMPORTANCETargeted next-generation sequencing (tNGS) can be used to perform Mycobacterium tuberculosis (MTB) complex-specific amplification or target capture directly from sputum samples, yielding simultaneous coverage of genes and DNA regions associated with antimicrobial resistance (AMR). Performance comparisons of tNGS and Xpert MTB/rifampicin (RIF) have been empirical. The Xpert MTB/RIF assay is a commercial system that uses the nucleic acid amplification detection method for rapid (2 hours) diagnosis of tuberculosis (TB). The cost of the tNGS and Xpert MTB/RIF assays in this study was similar, at USD 98 and USD 70-104 per sample, respectively, but the time required for tNGS (3 days) was much longer than that required for the Xpert MTB/RIF assay. However, tNGS yielded more accurate results and a larger number of AMR-associated gene mutations, which compensated for the extra time and highlighted the greater application value of tNGS in TB drug resistance monitoring and prevention.


Subject(s)
High-Throughput Nucleotide Sequencing , Mycobacterium tuberculosis , Rifampin , Sputum , Tuberculosis, Pulmonary , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Humans , Sputum/microbiology , High-Throughput Nucleotide Sequencing/methods , Rifampin/pharmacology , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Sensitivity and Specificity , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/microbiology , Bacterial Proteins/genetics , Mutation , Drug Resistance, Bacterial/genetics , Molecular Diagnostic Techniques/methods , Microbial Sensitivity Tests , Female , DNA-Directed RNA Polymerases/genetics , Male , Adult , DNA, Bacterial/genetics
14.
Emerg Microbes Infect ; 13(1): 2348505, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38686553

ABSTRACT

China, with the third largest share of global tuberculosis cases, faces a substantial challenge in its healthcare system as a result of the high burden of multidrug-resistant and rifampicin-resistant tuberculosis (MDR/RR-TB). This study employs a genomic epidemiological approach to assess recent tuberculosis transmissions between individuals, identifying potential risk factors and discerning the role of transmitted resistant isolates in the emergence of drug-resistant tuberculosis in China. We conducted a population-based retrospective study on 5052 Mycobacterium tuberculosis (MTB) isolates from 70 surveillance sites using whole genome sequencing (WGS). Minimum spanning tree analysis identified resistance mutations, while epidemiological data analysis pinpointed transmission risk factors. Of the 5052 isolates, 23% (1160) formed 452 genomic clusters, with 85.6% (387) of the transmissions occurring within the same counties. Individuals with younger age, larger family size, new cases, smear positive, and MDR/RR were at higher odds for recent transmission, while higher education (university and above) and occupation as a non-physical workers emerged as protective factors. At least 61.4% (251/409) of MDR/RR-TB were likely a result of recent transmission of MDR/RR isolates, with previous treatment (crude OR = 2.77), smear-positive (cOR = 2.07) and larger family population (cOR = 1.13) established as risk factors. Our findings highlight that local transmission remains the predominant form of TB transmission in China. Correspondingly, drug-resistant tuberculosis is primarily driven by the transmission of resistant tuberculosis isolates. Targeted interventions for high-risk populations to interrupt transmission within the country will likely provide an opportunity to reduce the prevalence of both tuberculosis and drug-resistant tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Whole Genome Sequencing , Humans , China/epidemiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/classification , Male , Adult , Female , Middle Aged , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/transmission , Tuberculosis, Multidrug-Resistant/microbiology , Cross-Sectional Studies , Retrospective Studies , Young Adult , Risk Factors , Adolescent , Aged , Rifampin/pharmacology , Antitubercular Agents/pharmacology , Genome, Bacterial , Drug Resistance, Multiple, Bacterial
15.
Ann Clin Microbiol Antimicrob ; 23(1): 36, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664815

ABSTRACT

BACKGROUND: Tuberculosis (TB) continues to pose a threat to communities worldwide and remains a significant public health issue in several countries. We assessed the role of heteroresistance and efflux pumps in bedaquiline (BDQ)-resistant Mycobacterium tuberculosis isolates. METHODS: Nineteen clinical isolates were included in the study, of which fifteen isolates were classified as MDR or XDR, while four isolates were fully susceptible. To evaluate BDQ heteroresistance, the Microplate Alamar Blue Assay (MABA) method was employed. For screening mixed infections, MIRU-VNTR was performed on clinical isolates. Mutations in the atpE and Rv0678 genes were determined based on next-generation sequencing data. Additionally, real-time PCR was applied to assess the expression of efflux pump genes in the absence and presence of verapamil (VP). RESULTS: All 15 drug-resistant isolates displayed resistance to BDQ. Among the 19 total isolates, 21.05% (4/19) exhibited a heteroresistance pattern to BDQ. None of the isolates carried a mutation of the atpE and Rv0678 genes associated with BDQ resistance. Regarding the MIRU-VNTR analysis, most isolates (94.73%) showed the Beijing genotype. Fifteen (78.9%) isolates showed a significant reduction in BDQ MIC after VP treatment. The efflux pump genes of Rv0676c, Rv1258c, Rv1410c, Rv1634, Rv1819, Rv2459, Rv2846, and Rv3065 were overexpressed in the presence of BDQ. CONCLUSIONS: Our results clearly demonstrated the crucial role of heteroresistance and efflux pumps in BDQ resistance. Additionally, we established a direct link between the Rv0676c gene and BDQ resistance. The inclusion of VP significantly reduced the MIC of BDQ in both drug-susceptible and drug-resistant clinical isolates.


Subject(s)
Antitubercular Agents , Diarylquinolines , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Diarylquinolines/pharmacology , Humans , Antitubercular Agents/pharmacology , Iran , Tuberculosis, Multidrug-Resistant/microbiology , Mutation , Membrane Transport Proteins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Verapamil/pharmacology
16.
Life Sci ; 346: 122632, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38615748

ABSTRACT

Mycobacterium Tuberculosis (Mtb) causing Tuberculosis (TB) is a widespread disease infecting millions of people worldwide. Additionally, emergence of drug resistant tuberculosis is a major challenge and concern in high TB burden countries. Most of the drug resistance in mycobacteria is attributed to developing acquired resistance due to spontaneous mutations or intrinsic resistance mechanisms. In this review, we emphasize on the role of bacterial cell cycle synchronization as one of the intrinsic mechanisms used by the bacteria to cope with stress response and perhaps involved in evolution of its drug resistance. The importance of cell cycle synchronization and its function in drug resistance in cancer cells, malarial and viral pathogens is well understood, but its role in bacterial pathogens has yet to be established. From the extensive literature survey, we could collect information regarding how mycobacteria use synchronization to overcome the stress response. Additionally, it has been observed that most of the microbial pathogens including mycobacteria are responsive to drugs predominantly in their logarithmic phase, while they show resistance to antibiotics when they are in the lag or stationary phase. Therefore, we speculate that Mtb might use this novel strategy wherein they regulate their cell cycle upon antibiotic pressure such that they either enter in their low metabolic phase i.e., either the lag or stationary phase to overcome the antibiotic pressure and function as persister cells. Thus, we propose that manipulating the mycobacterial drug resistance could be possible by fine-tuning its cell cycle.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Humans , Antitubercular Agents/pharmacology , Cell Cycle/drug effects , Drug Resistance, Bacterial , Mycobacterium/drug effects , Mycobacterium/genetics , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis/microbiology , Tuberculosis/drug therapy
17.
PLoS Pathog ; 20(4): e1011574, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598556

ABSTRACT

Drug-resistant tuberculosis (DR-TB) threatens progress in the control of TB. Mathematical models are increasingly being used to guide public health decisions on managing both antimicrobial resistance (AMR) and TB. It is important to consider bacterial heterogeneity in models as it can have consequences for predictions of resistance prevalence, which may affect decision-making. We conducted a systematic review of published mathematical models to determine the modelling landscape and to explore methods for including bacterial heterogeneity. Our first objective was to identify and analyse the general characteristics of mathematical models of DR-mycobacteria, including M. tuberculosis. The second objective was to analyse methods of including bacterial heterogeneity in these models. We had different definitions of heterogeneity depending on the model level. For between-host models of mycobacterium, heterogeneity was defined as any model where bacteria of the same resistance level were further differentiated. For bacterial population models, heterogeneity was defined as having multiple distinct resistant populations. The search was conducted following PRISMA guidelines in five databases, with studies included if they were mechanistic or simulation models of DR-mycobacteria. We identified 195 studies modelling DR-mycobacteria, with most being dynamic transmission models of non-treatment intervention impact in M. tuberculosis (n = 58). Studies were set in a limited number of specific countries, and 44% of models (n = 85) included only a single level of "multidrug-resistance (MDR)". Only 23 models (8 between-host) included any bacterial heterogeneity. Most of these also captured multiple antibiotic-resistant classes (n = 17), but six models included heterogeneity in bacterial populations resistant to a single antibiotic. Heterogeneity was usually represented by different fitness values for bacteria resistant to the same antibiotic (61%, n = 14). A large and growing body of mathematical models of DR-mycobacterium is being used to explore intervention impact to support policy as well as theoretical explorations of resistance dynamics. However, the majority lack bacterial heterogeneity, suggesting that important evolutionary effects may be missed.


Subject(s)
Antitubercular Agents , Models, Theoretical , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Mycobacterium tuberculosis/drug effects , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use
18.
Viruses ; 16(4)2024 04 18.
Article in English | MEDLINE | ID: mdl-38675968

ABSTRACT

Trends in and risk factors for drug resistance in Mycobacterium tuberculosis (M. tuberculosis) in human immunodeficiency virus (HIV)-infected patients with active tuberculosis were analyzed. The clinical data of M. tuberculosis and HIV-coinfected patients treated at the Shanghai Public Health Clinical Center between 2010 and 2022 were collected. The diagnosis of tuberculosis was confirmed by solid or liquid culture. The phenotypic drug susceptibility test was carried out via the proportional method, and the resistance to first-line and second-line drugs was analyzed. Logistic regression analysis was performed to identify associated risk factors for drug resistance in M. tuberculosis. Of the 304 patients with a M. tuberculosis-positive culture and first-line drug susceptibility test results, 114 (37.5%) were resistant to at least one first-line anti-tuberculosis drug. Of the 93 patients with first-line and second-line drug susceptibility test results, 40 (43%) were resistant to at least one anti-tuberculosis drug, and 20 (21.5%), 27 (29.0%), 19 (20.4%), 16 (17.2%), and 14 (15.1%) were resistant to rifampicin, streptomycin, ofloxacin, levofloxacin, and moxifloxacin, respectively; 17 patients (18.3%) had multidrug-resistant tuberculosis (MDR-TB). Between 2010 and 2021, the rate of resistance to streptomycin and rifampicin ranged from 14.3% to 40.0% and from 8.0% to 26.3%, respectively, showing an increasing trend year by year. From 2016 to 2021, the rate of resistance to quinolones fluctuated between 7.7% and 27.8%, exhibiting an overall upward trend. Logistic regression analysis showed that being aged <60 years old was a risk factor for streptomycin resistance, mono-drug resistance, and any-drug resistance (RR 4.139, p = 0.023; RR 7.734, p = 0.047; RR 3.733, p = 0.009). Retreatment tuberculosis was a risk factor for resistance to rifampicin, ofloxacin, of levofloxacin (RR 2.984, p = 0.047; RR 4.517, p = 0.038; RR 6.277, p = 0.014). The drug resistance rates of M. tuberculosis to rifampicin and to quinolones in HIV/AIDS patients were high and have been increasing year by year. Age and a history of previous anti-tuberculosis treatment were the main factors associated with the development of drug resistance in HIV/AIDS patients with tuberculosis.


Subject(s)
Antitubercular Agents , HIV Infections , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Mycobacterium tuberculosis/drug effects , Risk Factors , Female , Male , HIV Infections/complications , HIV Infections/microbiology , HIV Infections/drug therapy , Adult , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Middle Aged , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , China/epidemiology , Coinfection/microbiology , Coinfection/drug therapy , Drug Resistance, Multiple, Bacterial , Young Adult , Drug Resistance, Bacterial , Aged
19.
Biomed Environ Sci ; 37(2): 157-169, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38582978

ABSTRACT

Objective: China is among the 30 countries with a high burden of tuberculosis (TB) worldwide, and TB remains a public health concern. Kashgar Prefecture in the southern Xinjiang Autonomous Region is considered as one of the highest TB burden regions in China. However, molecular epidemiological studies of Kashgar are lacking. Methods: A population-based retrospective study was conducted using whole-genome sequencing (WGS) to determine the characteristics of drug resistance and the transmission patterns. Results: A total of 1,668 isolates collected in 2020 were classified into lineages 2 (46.0%), 3 (27.5%), and 4 (26.5%). The drug resistance rates revealed by WGS showed that the top three drugs in terms of the resistance rate were isoniazid (7.4%, 124/1,668), streptomycin (6.0%, 100/1,668), and rifampicin (3.3%, 55/1,668). The rate of rifampicin resistance was 1.8% (23/1,290) in the new cases and 9.4% (32/340) in the previously treated cases. Known resistance mutations were detected more frequently in lineage 2 strains than in lineage 3 or 4 strains, respectively: 18.6% vs. 8.7 or 9%, P < 0.001. The estimated proportion of recent transmissions was 25.9% (432/1,668). Multivariate logistic analyses indicated that sex, age, occupation, lineage, and drug resistance were the risk factors for recent transmission. Despite the low rate of drug resistance, drug-resistant strains had a higher risk of recent transmission than the susceptible strains (adjusted odds ratio, 1.414; 95% CI, 1.023-1.954; P = 0.036). Among all patients with drug-resistant tuberculosis (DR-TB), 78.4% (171/218) were attributed to the transmission of DR-TB strains. Conclusion: Our results suggest that drug-resistant strains are more transmissible than susceptible strains and that transmission is the major driving force of the current DR-TB epidemic in Kashgar.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Rifampin/pharmacology , Retrospective Studies , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Mutation
20.
Trials ; 25(1): 227, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561815

ABSTRACT

INTRODUCTION: The lack of safe, effective, and simple short-course regimens (SCRs) for multidrug-resistant/rifampicin-resistant tuberculosis (MDR/RR-TB) treatment has significantly impeded TB control efforts in China. METHODS: This phase 4, randomized, open-label, controlled, non-inferiority trial aims to assess the efficacy and safety of a 9-month all-oral SCR containing bedaquiline (BDQ) versus an all-oral SCR without BDQ for adult MDR-TB patients (18-65 years) in China. The trial design mainly mirrors that of the "Evaluation of a Standardized Treatment Regimen of Anti-Tuberculosis Drugs for Patients with MDR-TB" (STREAM) stage 2 study, while also incorporating programmatic data from South Africa and the 2019 consensus recommendations of Chinese MDR/RR-TB treatment experts. Experimental arm participants will receive a modified STREAM regimen C that replaces three group C drugs, ethambutol (EMB), pyrazinamide (PZA), and prothionamide (PTO), with two group B drugs, linezolid (LZD) and cycloserine (CS), while omitting high-dose isoniazid (INH) for confirmed INH-resistant cases. BDQ duration will be extended from 6 to 9 months for participants with Mycobacterium tuberculosis-positive sputum cultures at week 16. The control arm will receive a modified STREAM regimen B without high-dose INH and injectable kanamycin (KM) that incorporates experimental arm LZD and CS dosages, treatment durations, and administration methods. LZD (600 mg) will be given daily for ≥ 24 weeks as guided by observed benefits and harm. The primary outcome measures the proportion of participants with favorable treatment outcomes at treatment completion (week 40), while the same measurement taken at 48 weeks post-treatment completion is the secondary outcome. Assuming an α = 0.025 significance level (one-sided test), 80% power, 15% non-inferiority margin, and 10% lost to follow-up rate, each arm requires 106 participants (212 total) to demonstrate non-inferiority. DISCUSSION: PROSPECT aims to assess the safety and efficacy of a BDQ-containing SCR MDR-TB treatment at seventeen sites across China, while also providing high-quality data to guide SCRs administration under the direction of the China National Tuberculosis Program for MDR-TB. Additionally, PROSPECT will explore the potential benefits of extending the administration of the 9-month BDQ-containing SCR for participants without sputum conversion by week 16. TRIAL REGISTRATION: ClinicalTrials.gov NCT05306223. Prospectively registered on 16 March 2022 at https://clinicaltrials.gov/ct2/show/NCT05306223?term=NCT05306223&draw=1&rank=1 {2}.


Subject(s)
Tuberculosis, Multidrug-Resistant , Tuberculosis , Adult , Humans , Antitubercular Agents , Clinical Trials, Phase IV as Topic , Diarylquinolines/adverse effects , Randomized Controlled Trials as Topic , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...