Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
1.
Int J Rheum Dis ; 27(5): e15174, 2024 May.
Article in English | MEDLINE | ID: mdl-38720423

ABSTRACT

OBJECTIVES: This study investigates the role of TNF-induced protein 3 (TNFAIP3) and CCAAT/enhancer-binding protein ß (C/EBPß) in alveolar macrophages (AMs) of patients with systemic sclerosis-associated interstitial lung disease (SSc-ILD) and their influence on pulmonary fibrosis. METHODS: Transfection of HEK293T cells and AMs with plasmids carrying TNFAIP3 and C/EBPß was performed, followed by co-culturing AMs with pulmonary fibroblasts. Immunoblotting analysis was then utilized to assess the expression of TNFAIP3, C/EBPß, and collagen type 1 (Col1). Quantitative PCR analysis was conducted to quantify the mRNA levels of C/EBPß, IL-10, and TGF-ß1. STRING database analysis, and immunoprecipitation assays were employed to investigate the interactions between TNFAIP3 and C/EBPß. RESULTS: TNFAIP3 expression was significantly reduced in SSc-ILD AMs, correlating with increased Col1 production in fibroblasts. Overexpression of TNFAIP3 inhibited this pro-fibrotic activity. Conversely, C/EBPß expression was elevated in SSc-ILD AMs, and its reduction through TNFAIP3 restoration decreased pro-fibrotic cytokines IL-10 and TGFß1 levels. Protein-protein interaction studies confirmed the regulatory relationship between TNFAIP3 and C/EBPß. CONCLUSIONS: This study highlights the important role of TNFAIP3 in regulating pulmonary fibrosis in SSc-ILD by modulating C/EBPß expression in AMs. These findings suggest that targeting TNFAIP3 could be a potential therapeutic strategy for managing SSc-ILD patients.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta , Coculture Techniques , Fibroblasts , Lung Diseases, Interstitial , Macrophages, Alveolar , Scleroderma, Systemic , Tumor Necrosis Factor alpha-Induced Protein 3 , Female , Humans , Male , Middle Aged , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , Collagen Type I/metabolism , Collagen Type I/genetics , Fibroblasts/metabolism , HEK293 Cells , Interleukin-10/metabolism , Interleukin-10/genetics , Lung/metabolism , Lung/pathology , Lung Diseases, Interstitial/metabolism , Lung Diseases, Interstitial/etiology , Macrophages, Alveolar/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/etiology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/complications , Signal Transduction , Transforming Growth Factor beta1/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Adult , Aged
2.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 1-9, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814241

ABSTRACT

Non-Hodgkin lymphoma (NHL) is a lymphoproliferative disorder derived from either B or T lymphocytes. Among NHL, activated B-cell-like (ABC) diffuse large B-cell lymphoma (DLBCL) and T cell non-Hodgkin lymphomas (T-NHL) are poor prognosis and aggressive subtypes. Macrophages are professional phagocytic cells and dendritic cells (DCs) are professional antigen-presenting cells in immune system. Doxorubicin (Dox) and Etoposide (ET) are the most effective anti-cancer drugs. A20 and CYLD are negative regulators of NF-κB-dependent functions in many cell types. Little is known about the roles of A20 and CYLD in regulating functions of DCs and macrophages from NHL. The present study, therefore, explored whether A20/CYLD expression contributes to functions of DCs and macrophages from NHL. To this end, blood samples of seventy-nine patients with ABC DLBCL and T-NHL were examined. Gene expression profile was determined by quantitative RT-PCR and immunophenotype, cell apoptosis and phagocytosis by flow cytometry. As a result, immunophenotypic analysis showed that the numbers of CD13+CD117-, CD56+CD40+ and CD23+CD40+ expressing cells were significantly elevated in ABC DLBCL cases compared to healthy individuals and T-NHL patients. Interestingly, upon treatment of Dox and ET, the phagocytosis of lymphoma cells was significantly reduced by CD11c+CD123- DCs and the percentage of CD56+ mature DCs was significantly enhanced in ABC DLBCL patients only in the presence of A20 siRNA, but not CYLD siRNA. In conclusion, ABC DLBCL patients with low A20 expression were defective in elimination of lymphoma cells by DCs and linked to killer DC expansion in circulation.


Subject(s)
Dendritic Cells , Lymphoma, Large B-Cell, Diffuse , Phagocytosis , Tumor Necrosis Factor alpha-Induced Protein 3 , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Phagocytosis/drug effects , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Female , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/immunology , Middle Aged , Male , Lymphoma, Non-Hodgkin/pathology , Lymphoma, Non-Hodgkin/immunology , Apoptosis/drug effects , Aged , Adult , Macrophages/metabolism , Macrophages/immunology , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Immunophenotyping
3.
Trends Cell Biol ; 34(5): 360-362, 2024 May.
Article in English | MEDLINE | ID: mdl-38461099

ABSTRACT

Mutations and polymorphisms in A20/TNFAIP3 have been linked to various inflammatory disorders. However, in addition to its well-known role in inflammation, A20 also controls EDAR- and receptor activator of NF-κB (RANK)-induced NF-κB signaling, regulating the development of epidermal skin appendages and bone, respectively. Furthermore, A20 regulates synapse remodeling through a mechanism dependent on NF-κB.


Subject(s)
NF-kappa B , Signal Transduction , Tumor Necrosis Factor alpha-Induced Protein 3 , Humans , Animals , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , NF-kappa B/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Edar Receptor/metabolism , Inflammation/metabolism , Inflammation/pathology , Intracellular Signaling Peptides and Proteins/metabolism
4.
J Clin Immunol ; 44(3): 76, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38451381

ABSTRACT

A20, encoded by TNFAIP3, is a critical negative regulator of immune activation. A20 is a ubiquitin editing enzyme with multiple domains, each of which mediates or stabilizes a key ubiquitin modification. A20 targets diverse proteins that are involved in pleiotropic immunologic pathways. The complexity of A20-mediated immunomodulation is illustrated by the varied effects of A20 deletion in different cell types and disease models. Clinically, the importance of A20 is highlighted by its extensive associations with human disease. A20 germline variants are associated with a wide range of inflammatory diseases, while somatic mutations promote development of B cell lymphomas. More recently, the discovery of A20 haploinsufficiency (HA20) has provided real world evidence for the role of A20 in immune cell function. Originally described as an autosomal dominant form of Behcet's disease, HA20 is now considered a complex inborn error of immunity with a broad spectrum of immunologic and clinical phenotypes.


Subject(s)
Behcet Syndrome , Tumor Necrosis Factor alpha-Induced Protein 3 , Humans , Germ-Line Mutation , Haploinsufficiency , Immunomodulation , Ubiquitins , Tumor Necrosis Factor alpha-Induced Protein 3/chemistry , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism
5.
Biomolecules ; 14(1)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38254713

ABSTRACT

Treatment of aging rats for 6 months with ladostigil (1 mg/kg/day) prevented a decline in recognition and spatial memory and suppressed the overexpression of gene-encoding pro-inflammatory cytokines, TNFα, IL1ß, and IL6 in the brain and microglial cultures. Primary cultures of mouse microglia stimulated by lipopolysaccharides (LPS, 0.75 µg/mL) and benzoyl ATPs (BzATP) were used to determine the concentration of ladostigil that reduces the secretion of these cytokine proteins. Ladostigil (1 × 10-11 M), a concentration compatible with the blood of aging rats in, prevented memory decline and reduced secretion of IL1ß and IL6 by ≈50%. RNA sequencing analysis showed that BzATP/LPS upregulated 25 genes, including early-growth response protein 1, (Egr1) which increased in the brain of subjects with neurodegenerative diseases. Ladostigil significantly decreased Egr1 gene expression and levels of the protein in the nucleus and increased TNF alpha-induced protein 3 (TNFaIP3), which suppresses cytokine release, in the microglial cytoplasm. Restoration of the aberrant signaling of these proteins in ATP/LPS-activated microglia in vivo might explain the prevention by ladostigil of the morphological and inflammatory changes in the brain of aging rats.


Subject(s)
Cytokines , Indans , Lipopolysaccharides , Polyphosphates , Animals , Mice , Rats , Early Growth Response Protein 1/drug effects , Early Growth Response Protein 1/metabolism , Immunologic Factors , Indans/pharmacology , Interleukin-6 , Lipopolysaccharides/pharmacology , Microglia , Tumor Necrosis Factor alpha-Induced Protein 3/drug effects , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor-alpha , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology
6.
Altern Ther Health Med ; 30(2): 171-177, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37856812

ABSTRACT

Tumor necrosis factor alpha-induced protein-3, also called A20, is a zinc-finger protein that participates in various inflammatory responses; however, the putative relationship between A20 and hepatic fibrosis remains unelucidated. Therefore, we investigated the role and mechanism of action of A20 in activating hepatic stellate cells (HSC) during the progression of hepatic fibrosis. Cell counting kit-8 (CCK8), colony growth, transwell assays, cell cycle analysis, and apoptosis assays were performed to explore the effect of A20 on cell function in vitro. An interspecies intravenous injection of the adeno-associated virus was used to assess the in vivo role of A20. The regulation of A20 on p65 was detected using mass spectrometry and immunoprecipitation. Our findings revealed that A20 was highly expressed in the liver tissues of patients with hepatic fibrosis and that the expression level of A20 in the liver tissue was closely correlated with the stage of liver fibrosis. In the LX-2 cell line, the downregulation of A20 upregulated the expression of fibrosis-related proteins and increased the expression of inflammatory factors, indicating the activation of HSC and vice versa. In addition, overexpression of A20 in mice reduced the degree of liver fibrosis in thioacetamide model mice. Finally, co-immunoprecipitation demonstrated that A20 could interact with p65. Hence, A20 inhibits HSC activation by binding to p65.


Subject(s)
NF-kappa B , Tumor Necrosis Factor-alpha , Humans , Mice , Animals , NF-kappa B/metabolism , NF-kappa B/pharmacology , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Signal Transduction , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology
7.
Stem Cells ; 42(4): 360-373, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38153253

ABSTRACT

Recent investigations have shown that the necroptosis of tissue cells in joints is important in the development of osteoarthritis (OA). This study aimed to investigate the potential effects of exogenous skeletal stem cells (SSCs) on the necroptosis of subchondral osteoblasts in OA. Human SSCs and subchondral osteoblasts isolated from human tibia plateaus were used for Western blotting, real-time PCR, RNA sequencing, gene editing, and necroptosis detection assays. In addition, the rat anterior cruciate ligament transection OA model was used to evaluate the effects of SSCs on osteoblast necroptosis in vivo. The micro-CT and pathological data showed that intra-articular injections of SSCs significantly improved the microarchitecture of subchondral trabecular bones in OA rats. Additionally, SSCs inhibited the necroptosis of subchondral osteoblasts in OA rats and necroptotic cell models. The results of bulk RNA sequencing of SSCs stimulated or not by tumor necrosis factor α suggested a correlation of SSCs-derived tumor necrosis factor α-induced protein 3 (TNFAIP3) and cell necroptosis. Furthermore, TNFAIP3-derived from SSCs contributed to the inhibition of the subchondral osteoblast necroptosis in vivo and in vitro. Moreover, the intra-articular injections of TNFAIP3-overexpressing SSCs further improved the subchondral trabecular bone remodeling of OA rats. Thus, we report that TNFAIP3 from SSCs contributed to the suppression of the subchondral osteoblast necroptosis, which suggests that necroptotic subchondral osteoblasts in joints may be possible targets to treat OA by stem cell therapy.


Subject(s)
Osteoarthritis , Tumor Necrosis Factor alpha-Induced Protein 3 , Animals , Humans , Rats , Necroptosis , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/therapy , Osteoblasts/metabolism , Osteoblasts/pathology , Stem Cells/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/pharmacology
8.
Arch Gerontol Geriatr ; 117: 105274, 2024 02.
Article in English | MEDLINE | ID: mdl-37995648

ABSTRACT

BACKGROUND: The aging inflammatory microenvironment surrounding Leydig cells is linked to reduced testosterone levels in males. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) acts as a critical anti-inflammatory factor in various aging-related diseases. This study aims to investigate the protective effect of TNFAIP3 on testosterone production in Leydig cells under an aging inflammatory microenvironment. METHODS: Bioinformatics analysis examined TNFAIP3 expression differences in aging rat testes and validated the findings in aging mouse testes. In vitro models of inflammation were established using two Leydig cell lines, with tumor necrosis factor alpha (TNF-α) as the inflammatory factor. Lentiviral transduction was utilized to manipulate TNFAIP3 expression in these cell lines. Transcriptomic sequencing identified differentially expressed genes in TNFAIP3-overexpressing cells. RESULTS: Bioinformatics analysis and validation experiments revealed increased inflammatory signaling and elevated TNFAIP3 expression in aging rat and mouse testes. TNFAIP3 knockdown worsened testosterone synthesis inhibition and apoptosis in cells, while TNFAIP3 overexpression reversed these effects. Transcriptome analysis identified alterations in the P38MAPK pathway following TNFAIP3 overexpression. TNFAIP3 knockdown enhanced TNF-induced P38MAPK signaling, whereas its overexpression attenuated this effect. TNFAIP3 was found to regulate testosterone synthesis by upregulating CEBPB expression. CONCLUSIONS: TNFAIP3 exhibits inhibitory effects on apoptosis and promotes testosterone production in Leydig cells. The protective influence of TNFAIP3 on Leydig cells within an inflammatory microenvironment is likely mediated through by inhibiting the P38MAPK pathway and upregulating CEBPB expression.


Subject(s)
Leydig Cells , Testosterone , Animals , Humans , Male , Mice , Rats , Aging/physiology , Leydig Cells/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology
9.
J Clin Invest ; 133(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37856217

ABSTRACT

A20 is a ubiquitin-modifying protein that negatively regulates NF-κB signaling. Mutations in A20/TNFAIP3 are associated with a variety of autoimmune diseases, including multiple sclerosis (MS). We found that deletion of A20 in central nervous system (CNS) endothelial cells (ECs) enhances experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. A20ΔCNS-EC mice showed increased numbers of CNS-infiltrating immune cells during neuroinflammation and in the steady state. While the integrity of the blood-brain barrier (BBB) was not impaired, we observed a strong activation of CNS-ECs in these mice, with dramatically increased levels of the adhesion molecules ICAM-1 and VCAM-1. We discovered ICOSL to be expressed by A20-deficient CNS-ECs, which we found to function as adhesion molecules. Silencing of ICOSL in CNS microvascular ECs partly reversed the phenotype of A20ΔCNS-EC mice without reaching statistical significance and delayed the onset of EAE symptoms in WT mice. In addition, blocking of ICOSL on primary mouse brain microvascular ECs impaired the adhesion of T cells in vitro. Taken together, we propose that CNS EC-ICOSL contributes to the firm adhesion of T cells to the BBB, promoting their entry into the CNS and eventually driving neuroinflammation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Neuroinflammatory Diseases , Tumor Necrosis Factor alpha-Induced Protein 3 , Animals , Mice , Blood-Brain Barrier/metabolism , Central Nervous System/metabolism , Endothelial Cells/metabolism , Mice, Inbred C57BL , Multiple Sclerosis/metabolism , Neuroinflammatory Diseases/metabolism , T-Lymphocytes/metabolism , Inducible T-Cell Co-Stimulator Ligand/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism
10.
Immun Inflamm Dis ; 11(10): e970, 2023 10.
Article in English | MEDLINE | ID: mdl-37904691

ABSTRACT

BACKGROUND: Endometritis seriously affects the health of women, and it is important to identify new targets for its treatment. OBJECTIVE: This study aimed to explore the role of TNFAIP3 interacting protein 2 (TNIP2) in endometritis through human endometrial epithelial cells (hEECs) stimulated by lipopolysaccharide (LPS). METHODS: hEECs were induced with LPS to build a cellular model of endometritis. Cell growth and apoptosis were detected by cell counting kit-8 and flow cytometry. The TNIP2 mRNA and protein levels were measured using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, respectively. The caspase3 activity was calculated using a Caspase3 activity kit. Interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha (TNF-α) levels were determined by enzyme-linked-immunosorbent-assay. The reactive oxygen species (ROS), lactate dehydrogenase (LDH), catalase (CAT), and superoxide dismutase (SOD) levels were determined using the corresponding kits. Nuclear factor-kappaB (NF-κB) pathway was determined by western blot assay. RESULTS: TNIP2 was downregulated in the LPS-induced endometritis cell model. Cell viability was reduced, apoptosis was enhanced, and IL-6, IL-1ß, and TNF-α levels increased in LPS-induced hEECs. Additionally, LDH activity and ROS concentration were upregulated, whereas CAT and SOD activities were downregulated in LPS-induced hEECs. These results were reversed by TNIP2 overexpression. Moreover, the results hinted that NF-κB was involved in the effects of TNIP2 on the LPS-induced endometritis cell model. CONCLUSION: TNIP2 alleviated endometritis by inhibiting the NF-κB pathway, suggesting a potential therapeutic target for endometritis.


Subject(s)
Endometritis , NF-kappa B , Humans , Female , NF-kappa B/metabolism , Endometritis/chemically induced , Endometritis/metabolism , Lipopolysaccharides/toxicity , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/pharmacology , Reactive Oxygen Species/metabolism , Superoxide Dismutase/adverse effects , Superoxide Dismutase/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/pharmacology , Adaptor Proteins, Signal Transducing/adverse effects , Adaptor Proteins, Signal Transducing/metabolism
11.
Sci Rep ; 13(1): 17992, 2023 10 21.
Article in English | MEDLINE | ID: mdl-37865713

ABSTRACT

A20 serves as a critical brake on NF-κB-dependent inflammation. In humans, polymorphisms in or near the TNFAIP3/A20 gene have been linked to various inflammatory disorders, including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Experimental gene knockout studies in mice have confirmed A20 as a susceptibility gene for SLE and RA. Here, we examine the significance of protein citrullination and NET formation in the autoimmune pathology of A20 mutant mice because autoimmunity directed against citrullinated antigens released by neutrophil extracellular traps (NETs) is central to the pathogenesis of RA and SLE. Furthermore, genetic variants impairing the deubiquitinase (DUB) function of A20 have been shown to contribute to autoimmune susceptibility. Our findings demonstrate that genetic disruption of A20 DUB function in A20 C103R knockin mice does not result in autoimmune pathology. Moreover, we show that PAD4 deficiency, which abolishes protein citrullination and NET formation, does not prevent the development of autoimmunity in A20 deficient mice. Collectively, these findings provide experimental confirmation that PAD4-dependent protein citrullination and NET formation do not serve as pathogenic mechanisms in the development of RA and SLE pathology in mice with A20 mutations.


Subject(s)
Arthritis, Rheumatoid , Extracellular Traps , Lupus Erythematosus, Systemic , Humans , Animals , Mice , Citrullination , Arthritis, Rheumatoid/metabolism , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Inflammation/metabolism , Autoimmunity/genetics , Extracellular Traps/metabolism
12.
Asian Pac J Cancer Prev ; 24(7): 2485-2491, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37505783

ABSTRACT

BACKGROUND: Activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) is characterized by chronic active B-cell receptor signaling and a constitutive activation of the NF-KB pathway. MYD88 L265P mutation occurs as a driving force of NF-KB overactivity in ABC-DLBCL. Nonetheless, in cases of DLBCL, the MYD88 L265P mutation has not yet been investigated in association with the tumour necrosis factor alpha induced protein3 (TNFAIP3) mutation. OBJECTIVE: To investigate the frequency of MYD88 and TNFAIP3 mutations in DLBCL and their association to the clinico-hematological profile. MATERIAL AND METHODS: We used real-time polymerase chain reaction in order to search for MYD88 L265P and TNFAIP3 mutations in 100 DLBCL patients. RESULTS: MYD88 L265P In 20% of cases, the CT heterozygous genotype was discovered.  CT heterozygous genotype was more common in ABC type, stage IV, greater IPI groups, extra-nodal infiltration, and BM infiltration. It was also linked to a shorter OS. TNFAIP3 mutation GA heterozygous genotype was detected in 18% of the patients, with ABC-DLBCL subtype accounting for 77.8%. The GA heterozygous genotype was usually related with stage IV, extranodal infiltration, and a reduced life expectancy. CONCLUSION: MYD88 L265P and to lesser extent TNFAIP3 mutations are major mutations in ABC- DLBCL and may be predictive factors for poor OS in ABC- DLBCL patients.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Myeloid Differentiation Factor 88 , Tumor Necrosis Factor alpha-Induced Protein 3 , Humans , Egypt/epidemiology , Lymphoma, Large B-Cell, Diffuse/epidemiology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Mutation , Myeloid Differentiation Factor 88/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Prevalence , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism
13.
Arthritis Rheumatol ; 75(12): 2116-2129, 2023 12.
Article in English | MEDLINE | ID: mdl-37327357

ABSTRACT

OBJECTIVE: The aim of the study was to investigate the role of N6 -methyladenosine (m6A) modification in the progression of rheumatoid arthritis (RA). METHODS: Peripheral blood mononuclear cells (PBMCs) from patients with RA and healthy controls were collected. The expression of m6A modification-related proteins and m6A levels were detected using polymerase chain reaction (PCR), western blot, and m6A enzyme-linked immunosorbent assay (ELISA). The roles of methyltransferase-like 14 (METTL14) in the regulation of inflammation in RA was explored using methylated RNA immunoprecipitation (MeRIP) sequencing and RNA immunoprecipitation assays. Collagen antibody-induced arthritis (CAIA) mice were used as an in vivo model to study the role of METTL14 in the inflammation progression of RA. RESULTS: We found that m6A writer METTL14 and m6A levels were decreased in PBMCs of patients with active RA and correlated negatively with the disease activity score using 28 joint counts (DAS28). Knockdown of METTL14 downregulated m6A and promoted the secretion of inflammatory cytokines interleukin 6 (IL-6) and IL-17 in PBMCs of patients with RA. Consistently, METTL14 knockdown promoted joint inflammation accompanied by upregulation of IL-6 and IL-17 in CAIA mice. MeRIP sequencing and functional studies confirmed that tumor necrosis factor α induced protein 3 (TNFAIP3), a key suppressor of the nuclear factor-κB inflammatory pathway, was involved in m6A-regulated PBMCs. Mechanistic investigations revealed that m6A affected TNFAIP3 expression by regulation of messenger RNA stability and translocation in TNFAIP3 protein coding sequence. CONCLUSIONS: Our study highlights the critical roles of m6A on regulation of inflammation in RA progression. Treatment strategies targeting m6A modification may represent a new option for management of RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Humans , Mice , Animals , Interleukin-17/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Interleukin-6/metabolism , Leukocytes, Mononuclear/metabolism , Arthritis, Rheumatoid/metabolism , Inflammation/metabolism , Arthritis, Experimental/metabolism , RNA/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism
14.
Mol Neurobiol ; 60(8): 4753-4760, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37148522

ABSTRACT

Activated toll-like receptor (TLR) signaling has been well investigated in major depressive disorder (MDD). We previously reported that TNFAIP3, TLR4, TNIP2, miR-146a, and miR-155 play important roles in regulating the toll-like receptor 4 (TLR4) signaling pathway and may serve as novel targets in the pathogenesis of MDD. Recently, aberrant histone modification has been implicated in several psychiatric disorders, including schizophrenia and mood disorder; the most thoroughly studied modification is histone 3 lysine 4 tri-methylation (H3K4me3). In this work, we aimed to explore H3K4me3 differences in the promotors of genes encoding the abovementioned factors in patients with MDD, and whether they were altered after antidepressant treatment. A total of 30 MDD patients and 28 healthy controls were recruited. Peripheral blood mononuclear cells (PBMCs) were collected. The levels of H3K4me3 in the promoters of TNFAIP3, TLR4, TNIP2, miR-146a, and miR-155 were measured through chromatin immunoprecipitation (ChIP) followed by DNA methylation assay. Analysis of covariance was used to evaluate between-group differences after adjusting for age, sex, BMI, and smoking. In comparison with healthy controls, patients with MDD showed significantly lower H3K4me3 levels in the promoters of TNFAIP3, TLR4, TNIP2, miR-146a, and miR-155 in PBMCs. These levels were not significantly altered after completion of a 4-week antidepressant treatment. To explore the association between depression severity and H3K4me3 levels, a multiple linear regression model was generated. The results revealed that levels of H3K4me3 in the TNIP2 promoters a negative correlation with the 17-item Hamilton Depression Rating Scale (HAND-17) score, whereas that of TLR4 had a positive correlation with this score. The present results suggest that decreased H3K4me3 levels in the promoters of the genes encoding TNFAIP3, TLR4, miR-146a, miR-155, and TNIP2 are involved in psychopathology of major depressive disorder.


Subject(s)
Depressive Disorder, Major , MicroRNAs , Humans , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Depressive Disorder, Major/drug therapy , Leukocytes, Mononuclear/metabolism , Histone Code , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , MicroRNAs/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/therapeutic use , Adaptor Proteins, Signal Transducing/metabolism
15.
Front Immunol ; 14: 1166928, 2023.
Article in English | MEDLINE | ID: mdl-37056760

ABSTRACT

Allergic airway diseases are characterized by excessive and prolonged type 2 immune responses to inhaled allergens. Nuclear factor κB (NF-κB) is a master regulator of the immune and inflammatory response, which has been implicated to play a prominent role in the pathogenesis of allergic airway diseases. The potent anti-inflammatory protein A20, termed tumor necrosis factor-α-inducible protein 3 (TNFAIP3), exerts its effects by inhibiting NF-κB signaling. The ubiquitin editing abilities of A20 have attracted much attention, resulting in its identification as a susceptibility gene in various autoimmune and inflammatory disorders. According to the results of genome-wide association studies, several TNFAIP3 gene locus nucleotide polymorphisms have been correlated to allergic airway diseases. In addition, A20 has been found to play a pivotal role in immune regulation in childhood asthma, particularly in the protection against environmentally mediated allergic diseases. The protective effects of A20 against allergy were observed in conditional A20-knockout mice in which A20 was depleted in the lung epithelial cells, dendritic cells, or mast cells. Furthermore, A20 administration significantly decreased inflammatory responses in mouse models of allergic airway diseases. Here, we review emerging findings elucidating the cellular and molecular mechanisms by which A20 regulates inflammatory signaling in allergic airway diseases, as well as discuss its potential as a therapeutic target.


Subject(s)
Asthma , NF-kappa B , Animals , Mice , Asthma/drug therapy , Asthma/genetics , Epithelial Cells/metabolism , Genome-Wide Association Study , NF-kappa B/metabolism , Signal Transduction , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism
16.
Sci Total Environ ; 878: 163069, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-36996991

ABSTRACT

The threat to public health posed by rapidly increasing levels of cadmium (Cd) in the environment is receiving worldwide attention. Although, Cd is known to be absorbed into the body and causes non-negligible damage to the liver, the detailed mechanisms underlying its hepatoxicity are incompletely understood. In the present study, investigated the effect of TNFAIP3 and α-ketoglutarate (AKG) on Cd-induced liver inflammation and hepatocyte death. Male C57BL/6 mice were exposed to cadmium chloride (1.0 mg/kg) while being fed a diet with 2 % AKG for two weeks. We found that Cd induced hepatocyte injury and inflammatory infiltration. In addition, TNFAIP3 expression was inhibited in the liver tissues and cells of CdCl2-treated mice. Mouse hepatocyte-specific TNFAIP3 overexpression by tail vein injection of an adeno-associated virus (AAV) vector effectively alleviated Cd-induced hepatic necrosis and inflammation, which was mediated by the NF-κB signaling pathway. Notably, this inhibitory effect of TNFAIP3 on Cd-induced liver injury was dependent on AKG. Exogenous addition of AKG prevented Cd exposure-induced increases in serum ALT, AST and LDH levels, production of pro-inflammatory cytokines, activation of the NF-κB signaling pathway, and even significantly reduced Cd-induced oxidative stress and hepatocyte death. Mechanistically, AKG exerted its anti-inflammatory effect by promoting the hydroxylation and degradation of HIF1A to reduce its Cd-induced overexpression in vivo and in vitro, avoiding the inhibition of the TNFAIP3 promoter by HIF1A. Moreover, the protective effect of AKG was significantly weaker in Cd-treated primary hepatocytes transfected with HIF1A pcDNA. Overall, our results reveal a novel mechanism of Cd-induced hepatotoxicity.


Subject(s)
Cadmium , NF-kappa B , Male , Mice , Animals , Cadmium/metabolism , Ketoglutaric Acids/metabolism , Ketoglutaric Acids/pharmacology , Mice, Inbred C57BL , Hepatocytes , Inflammation/chemically induced , Liver/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/pharmacology
17.
Front Immunol ; 14: 1119473, 2023.
Article in English | MEDLINE | ID: mdl-36726689

ABSTRACT

Influenza A virus (IAV) infection leads to severe inflammation, and while epithelial-driven inflammatory responses occur via activation of NF-κB, the factors that modulate inflammation, particularly the negative regulators are less well-defined. In this study we show that A20 is a crucial molecular switch that dampens IAV-induced inflammatory responses. Chronic exposure to low-dose LPS environment can restrict this excessive inflammation. The mechanisms that this environment provides to suppress inflammation remain elusive. Here, our evidences show that chronic exposure to low-dose LPS suppressed IAV infection or LPS stimulation-induced inflammation in vitro and in vivo. Chronic low-dose LPS environment increases A20 expression, which in turn positively regulates PPAR-α and -γ, thus dampens the NF-κB signaling pathway and NLRP3 inflammasome activation. Knockout of A20 abolished the inhibitory effect on inflammation. Thus, A20 and its induced PPAR-α and -γ play a key role in suppressing excessive inflammatory responses in the chronic low-dose LPS environment.


Subject(s)
Influenza, Human , NF-kappa B , Humans , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Peroxisome Proliferator-Activated Receptors , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Inflammation/metabolism
18.
JCI Insight ; 8(4)2023 02 22.
Article in English | MEDLINE | ID: mdl-36633909

ABSTRACT

Newborns are at high risk of developing neonatal sepsis, particularly if born prematurely. This has been linked to divergent requirements the immune system has to fulfill during intrauterine compared with extrauterine life. By transcriptomic analysis of fetal and adult neutrophils, we shed new light on the molecular mechanisms of neutrophil maturation and functional adaption during fetal ontogeny. We identified an accumulation of differentially regulated genes within the noncanonical NF-κB signaling pathway accompanied by constitutive nuclear localization of RelB and increased surface expression of TNF receptor type II in fetal neutrophils, as well as elevated levels of lymphotoxin α in fetal serum. Furthermore, we found strong upregulation of the negative inflammatory regulator A20 (Tnfaip3) in fetal neutrophils, which was accompanied by pronounced downregulation of the canonical NF-κB pathway. Functionally, overexpressing A20 in Hoxb8 cells led to reduced adhesion of these neutrophil-like cells in a flow chamber system. Conversely, mice with a neutrophil-specific A20 deletion displayed increased inflammation in vivo. Taken together, we have uncovered constitutive activation of the noncanonical NF-κB pathway with concomitant upregulation of A20 in fetal neutrophils. This offers perfect adaption of neutrophil function during intrauterine fetal life but also restricts appropriate immune responses particularly in prematurely born infants.


Subject(s)
NF-kappa B , Neutrophil Infiltration , Tumor Necrosis Factor alpha-Induced Protein 3 , Animals , Humans , Mice , Inflammation , Neonatal Sepsis/genetics , Neonatal Sepsis/metabolism , Neutrophil Infiltration/genetics , NF-kappa B/metabolism , Signal Transduction/physiology , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism
19.
Genes Genomics ; 45(5): 657-671, 2023 05.
Article in English | MEDLINE | ID: mdl-36583816

ABSTRACT

BACKGROUND: The pathological mechanism of intervertebral disc degeneration (IDD) is an unanswered question that we are committed to exploring. A20 is an anti-inflammatory protein of nucleus pulposus (NP) cells and plays a protective role in intervertebral disc degeneration. OBJECTIVE: This study aims to investigate the molecular mechanism by which A20 attenuates disc degeneration. METHODS: The proteins of interest were measured by immunoblotting, immunofluorescence, ELISA assay, and immunohistochemical technique to conduct related experiments. Immunofluorescence assays and mitochondrial membrane potential (JC-1) were used to assess mitophagy and mitochondrial fitness, respectively. RESULTS: Here, we demonstrated that A20 promoted mitophagy, attenuated pyroptosis, and inhibited the degradation of the extracellular matrix, consequently significantly ameliorating disc degeneration. Mechanistically, A20 reduces pyroptosis and further suppresses cellular mTOR activity. On the one hand, A20-induced mTOR inhibition triggers BNIP3-mediated mitophagy to ensure mitochondrial fitness under LPS stimulation, as a result of mitigating mitochondrial dysfunction induced by LPS. On the other hand, A20-induced mTOR inhibition reduces the loss of mitochondrial membrane potential and the generation of Mitochondrial ROS. CONCLUSION: The study revealed that A20 promotes BNIP3-mediated mitophagy by suppressing mTOR pathway activation against LPS-induced pyroptosis.


Subject(s)
Intervertebral Disc Degeneration , Mitophagy , Humans , Apoptosis , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Lipopolysaccharides , Membrane Proteins/metabolism , Proto-Oncogene Proteins , TOR Serine-Threonine Kinases , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism
20.
Apoptosis ; 28(3-4): 498-513, 2023 04.
Article in English | MEDLINE | ID: mdl-36587050

ABSTRACT

Osteoblasts are important regulators of bone formation, but their roles in ankylosing spondylitis (AS) remain unclear. This study aims to explore the role of long non-coding RNA (lncRNA) maternally expressed 3 (MEG3) MEG3 in AS. Serum from AS patients as well as AS mesenchymal stem cells (ASMSCs) and healthy donors mesenchymal stem cells (HDMSCs) was collected. Accordingly, poorly expressed MEG3 and TNF alpha induced protein 3 (TNFAIP3) as well as overexpressed microRNA-125a-5p (miR-125a-5p) were noted in the serum of AS patients and in ASMSCs during the osteogenic induction process. Meanwhile, the interaction among MEG3, miR-125a-5p, and TNFAIP3 was determined and their effect on osteoblast activity was examined in vitro and in vivo. Overexpression of MEG3 and TNFAIP3 or inhibition of miR-125a-5p was found to inactivate the Wnt/ß-catenin pathway, thus suppressing osteogenic differentiation of MSCs. MEG3 competitively bound to miR-125a-5p to increase TNFAIP3 expression, thereby inactivating the Wnt/ß-catenin pathway and repressing the osteogenic differentiation of MSCs. In proteoglycan (PG)-induced AS mouse models, MEG3 also reduced osteogenic activity of MSCs to inhibit AS progression through the miR-125a-5p/TNFAIP3/Wnt/ß-catenin axis. Therefore, up-regulation of MEG3 or depletion of miR-125a-5p holds potential of alleviating AS, which sheds light on a new therapeutic strategy for AS treatment.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , Spondylitis, Ankylosing , Animals , Mice , Apoptosis , beta Catenin/metabolism , Cell Differentiation/genetics , MicroRNAs/metabolism , Osteogenesis/genetics , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/pharmacology , Wnt Signaling Pathway/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...