Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147.434
Filter
1.
Mol Biol Rep ; 51(1): 712, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824221

ABSTRACT

INTRODUCTION: Coronary artery disease (CAD) in young adults can have devastating consequences. The cardiac developmental gene MEIS1 plays important roles in vascular networks and heart development. This gene effects on the regeneration capacity of the heart. Considering role of MEIS1 in cardiac tissue development and the progression of myocardial infarction this study investigated the expression levels of the MEIS1, HIRA, and Myocardin genes in premature CAD patients compared to healthy subjects and evaluated the relationships between these genes and possible inflammatory factors. METHODS AND RESULTS: The study conducted a case-control design involving 35 CAD patients and 35 healthy individuals. Peripheral blood mononuclear cells (PBMCs) were collected, and gene expression analysis was performed using real-time PCR. Compared with control group, the number of PBMCs in the CAD group exhibited greater MEIS1 and HIRA gene expression, with fold changes of 2.45 and 3.6. The expression of MEIS1 exhibited a negative correlation with IL-10 (r= -0.312) expression and positive correlation with Interleukin (IL)-6 (r = 0.415) and tumor necrosis factor (TNF)-α (r = 0.534) gene expression. Moreover, there was an inverse correlation between the gene expression of HIRA and that of IL-10 (r= -0.326), and a positive correlation was revealed between the expression of this gene and that of the IL-6 (r = 0.453) and TNF-α (r = 0.572) genes. CONCLUSION: This research demonstrated a disparity in expression levels of MEIS1, HIRA, and Myocardin, between CAD and healthy subjects. The results showed that, MEIS1 and HIRA play significant roles in regulating the synthesis of proinflammatory cytokines, namely, TNF-α and IL-6.


Subject(s)
Coronary Artery Disease , Myeloid Ecotropic Viral Integration Site 1 Protein , Nuclear Proteins , Trans-Activators , Adult , Female , Humans , Male , Middle Aged , Case-Control Studies , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Coronary Artery Disease/genetics , Gene Expression/genetics , Gene Expression Regulation/genetics , Interleukin-10/genetics , Interleukin-6/genetics , Interleukin-6/metabolism , Leukocytes, Mononuclear/metabolism , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
2.
Am J Case Rep ; 25: e943709, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824385

ABSTRACT

BACKGROUND Antibodies against tumor necrosis factor alpha (anti-TNF-alpha) are currently widely used in the treatment of inflammatory bowel diseases (IBD), despite a number of reported adverse effects. Diverse neurologic syndromes, including the Guillain-Barre syndrome (GBS), an immune-mediated disease characterized by evolving ascending limb weakness, sensory loss, and areflexia, have been described in association with anti-TNF-alpha therapy. CASE REPORT A 45-year-old White woman was in follow-up with fistulizing ileocolonic Crohn disease using combination therapy (infliximab plus azathioprine) as CD maintenance therapy. After 3 years of this immunosuppressive therapy, she presented with symmetrical and ascending paresis in the lower limbs, and later in the upper limbs, in addition to reduced reflexes in the knees, 1 day after an infliximab infusion. The patient was hospitalized and treatment for CD was suspended. Neurophysiology studies demonstrated a pattern compatible with acute inflammatory demyelinating polyradiculopathy, with predominantly motor involvement, consistent with Guillain-Barre syndrome (GBS). Clinical, laboratory, and imaging exams were unremarkable. She was treated with intravenous immunoglobulins, with a progressive and complete resolution of neurological symptoms. After 1-year follow-up, she presented with active Crohn disease, and we opted for treating her with vedolizumab, with which she achieved clinical and endoscopic remission. CONCLUSIONS Patients receiving biological therapy with anti-TNF-alpha agents should be monitored for central or peripheral neurological signs and symptoms. The development of GBS can be secondary to anti-TNF-alpha treatment. The positive temporal relationship with TNF-alpha therapy and onset of neurological symptoms reinforces this possibility.


Subject(s)
Crohn Disease , Guillain-Barre Syndrome , Infliximab , Tumor Necrosis Factor-alpha , Humans , Guillain-Barre Syndrome/chemically induced , Guillain-Barre Syndrome/diagnosis , Female , Crohn Disease/drug therapy , Crohn Disease/complications , Middle Aged , Infliximab/adverse effects , Infliximab/therapeutic use , Tumor Necrosis Factor-alpha/antagonists & inhibitors
4.
Arch Esp Urol ; 77(4): 353-358, 2024 May.
Article in English | MEDLINE | ID: mdl-38840277

ABSTRACT

BACKGROUND: Interstitial cystitis/bladder pain syndrome (IC/BPS) is a common chronic disease, and its aetiology and pathogenesis remain unclear. This study aimed to identify potential urine and serum biomarkers in patients with IC/BPS to further understand the pathogenesis and diagnosis of the disease. METHODS: Patients with IC/BPS diagnosed and treated in the First Hospital of Hebei Medical University from 1 July 2021 to 30 July 2023 were selected. The urine and serum biomarkers of 50 patients with IC/BPS were investigated and compared with the urine and serum samples of 50 healthy controls. IBM SPSS Statistics 26.0 was used for statistical analysis of the recorded data by using chi-square test, T-test and logistic regression analysis. RESULTS: Overall, 50 patients with IC/BPS (mean age, 54.20 ± 8.15 years) were included in the study. Those with history of urinary diseases, anxiety or depression were susceptible to IC/BPS. Levels of interleukin (IL)-6, tumor necrosis factor-α (TNF-α), nerve growth factor, and prostaglandin E2 (PGE2) in urine, as well as IL-8, TNF-α, and PGE2 in serum, were found to significantly increase in patients with interstitial cystitis/bladder pain syndrome (IC/BPS). These differences were statistically significant (p < 0.05). Multifactor analysis showed that anxiety, depression, IL-6, IL-8, TNF-α and PEG2 are risk factors for patients with IC/BPS. CONCLUSIONS: Multiple biomarkers were identified in the urine and serum of patients with IC/BPS, suggesting a potential close relationship to the pathogenesis of IC/BPS.


Subject(s)
Biomarkers , Cystitis, Interstitial , Humans , Cystitis, Interstitial/blood , Cystitis, Interstitial/urine , Biomarkers/blood , Biomarkers/urine , Middle Aged , Female , Male , Adult , Tumor Necrosis Factor-alpha/blood , Interleukin-6/blood , Interleukin-6/urine
5.
Clin Interv Aging ; 19: 981-991, 2024.
Article in English | MEDLINE | ID: mdl-38827237

ABSTRACT

Background: Dexmedetomidine (Dex) may have anti-inflammatory properties and potentially reduce the incidence of postoperative organ injury. Objective: To investigate whether Dex protects pulmonary and renal function via its anti-inflammatory effects in elderly patients undergoing prolonged major hepatobiliary and pancreatic surgery. Design and Setting: Between October 2019 and December 2020, this randomized controlled trial was carried out at a tertiary hospital in Chongqing, China. Patients: 86 patients aged 60-75 who underwent long-duration (> 4 hrs) hepatobiliary and pancreatic surgery without significant comorbidities were enrolled and randomly assigned into two groups at a 1:1 ratio. Interventions: Patients were given either Dex or an equivalent volume of 0.9% saline (Placebo) with a loading dose of 1 µg kg-1 for 10 min, followed by 0.5 µg kg-1 hr-1 for maintenance until the end of surgery. Main Outcome Measures: The changes in serum concentrations of interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) were primary outcomes. Results: At one hour postoperatively, serum IL-6 displayed a nine-fold increase (P<0.05) in the Placebo group. Administration of Dex decreased IL-6 to 278.09 ± 45.43 pg/mL (95% CI: 187.75 to 368.43) compared to the Placebo group (P=0.019; 432.16 ± 45.43 pg/mL, 95% CI: 341.82 to 522.50). However, no significant differences in TNF-α were observed between the two groups. The incidence of postoperative acute kidney injury was twice as high in the Placebo group (9.30%) compared to the Dex group (4.65%), and the incidence of postoperative acute lung injury was 23.26% in the Dex group, lower than that in the Placebo group (30.23%), although there was no statistical significance between the two groups. Conclusion: Dex administration in elderly patients undergoing major hepatobiliary and pancreatic surgery reduces inflammation and potentially protects kidneys and lungs. Registration: Chinese Clinical Trials Registry, identifier: ChiCTR1900024162, on 28 June 2019.


Subject(s)
Dexmedetomidine , Interleukin-6 , Postoperative Complications , Tumor Necrosis Factor-alpha , Humans , Dexmedetomidine/administration & dosage , Dexmedetomidine/pharmacology , Male , Female , Aged , Postoperative Complications/prevention & control , Middle Aged , Interleukin-6/blood , Tumor Necrosis Factor-alpha/blood , Inflammation/prevention & control , China , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Double-Blind Method , Biliary Tract Surgical Procedures/adverse effects , Acute Kidney Injury/prevention & control , Acute Kidney Injury/etiology
6.
Front Public Health ; 12: 1369675, 2024.
Article in English | MEDLINE | ID: mdl-38827614

ABSTRACT

Background: Coronary heart disease (CHD) is the leading cause of death in both developed and many developing countries. Exercise training is a fundamental component of cardiac rehabilitation programs for patients with CHD. This study aims to investigate the effects of a Tai Chi rehabilitation program, which is provided through a hybrid online and offline mode, on oxidative stress and inflammatory responses in patients with CHD. Methods: A total of 34 patients with coronary heart disease were randomly assigned to two groups: an experiment group (n = 14, age 62.07 ± 9.076 years) and a control group (n = 20, age 61.90 ± 9.700 years). The experiment group underwent a 12-week Tai Chi cardiac rehabilitation program (TCCRP), while the control group followed a conventional exercise rehabilitation program (CERP) consisting of 1-h sessions, 3 times per week, for a total of 36 sessions. Participants were studied at baseline and post-intervention. The main assessments include the levels of Malondialdehyde (MDA), Superoxide dismutase (SOD), Tumor necrosis factor (TNF-α) and Interleukin-10 (IL - 10) in blood samples. Pearson correlation analysis was used, and the differences between the two groups were subsequently tested using two-way repeated ANOVA. Statistical significance was defined as a two-sided p-value of <0.05. Results: The key finding of the study reveals that MDA was significantly reduced by 1.027 nmoL/mL. Additionally, the TCCRP showed significant improvements in SOD and IL-10, with values of 10.110 U/mL and 2.441 pg./mL, respectively. Notably, a significant positive correlation was found between SOD and IL-10 (r = 0.689, p = 0.006), while MDA showed a significant positive correlation with TNF-a (r = 0.542, p = 0.045). In contrast, the ECRP group only showed a significant improvement in SOD. Conclusion: The study conducted a 12-week program on TCCRP, which utilized a hybrid online and offline model for individuals with coronary heart disease. The program showed promising results in alleviating oxidative stress and inflammation, possibly by regulating the balance between oxidative and antioxidative factors, as well as pro-inflammatory and anti-inflammatory factors.


Subject(s)
Coronary Disease , Inflammation , Interleukin-10 , Malondialdehyde , Oxidative Stress , Tai Ji , Humans , Male , Middle Aged , Coronary Disease/rehabilitation , Female , Interleukin-10/blood , Malondialdehyde/blood , Tumor Necrosis Factor-alpha/blood , Aged , Superoxide Dismutase/blood
7.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 92-96, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836675

ABSTRACT

The currest study aimed to measure the effects of laparoscopic radical gastrectomy on inflammatory response along with immune function in gastric cancer (GC) patients. Seventy patients with GC in our hospital were retrospectively chosen to be the study objects and separated into control group (CG, 35 cases) and observation group (OG, 35 cases). Patients in the OG received radical laparotomy. Patients in the OG received laparoscopic radical gastrectomy. The surgical indicators, postoperative recovery indicators, inflammatory factors, immune function, incidence of adverse reactions along with quality of life of patients in both groups were compared. In contrast to the CG, the operation time of the OG presented as shorter (P<0.05), and the amount of intraoperative blood loss together with postoperative VAS score in the OG presented lower (P<0.05), but the number of lymph nodes dissection presented not statistically significant between 2 groups (P>0.05). The postoperative exhaust time, feeding time as well as hospital stay in the OG presented shorter relative to the CG (P<0.05). The serum levels of CRP, and IL-6 together with TNF-α presented elevated in both groups after surgery, and those in the OG presented lower when compared with the CG (P<0.05). The serum levels of IgA, and IgG together with IgM presented declined in both groups after surgery, and those in the OG presented higher when compared with the CG (P<0.05). The incidence of postoperative complications in the OG presented reduction relative to the CG (P<0.05). The GLQI scores of the OG presented significantly higher relative to the CG at discharge (P<0.05). Compared with radical gastrectomy, laparoscopic radical gastrectomy is more suitable for the treatment of GC, which can reduce the inflammatory response and promote the immune function of GC patients.


Subject(s)
Gastrectomy , Inflammation , Laparoscopy , Stomach Neoplasms , Humans , Stomach Neoplasms/surgery , Stomach Neoplasms/immunology , Gastrectomy/methods , Gastrectomy/adverse effects , Laparoscopy/adverse effects , Laparoscopy/methods , Male , Female , Middle Aged , Inflammation/immunology , Aged , Quality of Life , Retrospective Studies , C-Reactive Protein/metabolism , Postoperative Complications/immunology , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Tumor Necrosis Factor-alpha/blood , Interleukin-6/blood
9.
Physiol Rep ; 12(11): e16050, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839736

ABSTRACT

In posterior spine surgery, retractors exert pressure on paraspinal muscles, elevating intramuscular pressure and compromising blood flow, potentially causing muscle injury during ischemia-reperfusion. Ginkgo biloba extract (EGb 761), known for its antioxidant and free radical scavenging properties and its role in treating cerebrovascular diseases, is investigated for its protective effects against muscle ischemia-reperfusion injury in vitro and in vivo. Animals were randomly divided into the control group, receiving normal saline, and experimental groups, receiving varying doses of EGb761 (25/50/100/200 mg/kg). A 2-h hind limb tourniquet-induced ischemia was followed by reperfusion. Blood samples collected pre-ischemia and 24 h post-reperfusion, along with muscle tissue samples after 24 h, demonstrated that EGb761 at 1000 µg/mL effectively inhibited IL-6 and TNF-α secretion in RAW 264.7 cells without cytotoxicity. EGb761 significantly reduced nitric oxide (NO) and malondialdehyde (MDA) levels, myeloperoxidase (MPO) activity, and increased glutathione (GSH) levels compared to the control after 24 h. Muscle tissue sections revealed more severe damage in the control group, indicating EGb761's potential in mitigating inflammatory responses and oxidative stress during ischemia-reperfusion injury, effectively protecting against muscle damage.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Ginkgo biloba , Hindlimb , Muscle, Skeletal , Plant Extracts , Reperfusion Injury , Animals , Ginkgo biloba/chemistry , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Plant Extracts/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/blood supply , Mice , Hindlimb/blood supply , Male , Rats , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Interleukin-6/metabolism , Rats, Sprague-Dawley , Ginkgo Extract
10.
Sci Rep ; 14(1): 12665, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830927

ABSTRACT

Quantum dots, which won the Nobel Prize in Chemistry, have recently gained significant attention in precision medicine due to their unique properties, such as size-tunable emission, high photostability, efficient light absorption, and vibrant luminescence. Consequently, there is a growing demand to identify new types of quantum dots from various sources and explore their potential applications as stimuli-responsive biosensors, biomolecular imaging probes, and targeted drug delivery agents. Biomass-waste-derived carbon quantum dots (CQDs) are an attractive alternative to conventional QDs, which often require expensive and toxic precursors, as they offer several merits in eco-friendly synthesis, preparation from renewable sources, and cost-effective production. In this study, we evaluated three CQDs derived from biomass waste for their potential application as non-toxic bioimaging agents in various cell lines, including human dermal fibroblasts, HeLa, cardiomyocytes, induced pluripotent stem cells, and an in-vivo medaka fish (Oryzias latipes) model. Confocal microscopic studies revealed that CQDs could assist in visualizing inflammatory processes in the cells, as they were taken up more by cells treated with tumor necrosis factor-α than untreated cells. In addition, our quantitative real-time PCR gene expression analysis has revealed that citric acid-based CQDs can potentially reduce inflammatory markers such as Interleukin-6. Our studies suggest that CQDs have potential as theragnostic agents, which can simultaneously identify and modulate inflammatory markers and may lead to targeted therapy for immune system-associated diseases.


Subject(s)
Biomass , Carbon , Fluorescent Dyes , Inflammation , Quantum Dots , Quantum Dots/chemistry , Carbon/chemistry , Humans , Animals , Fluorescent Dyes/chemistry , HeLa Cells , Inflammation/metabolism , Oryzias , Tumor Necrosis Factor-alpha/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects
11.
Sci Rep ; 14(1): 12830, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834656

ABSTRACT

Sudden aggravations of chronic inflammatory airway diseases are difficult-to-foresee life-threatening episodes for which advanced prognosis-systems are highly desirable. Here we present an experimental chip-based fluidic system designed for the rapid and sensitive measurement of biomarkers prognostic for potentially imminent asthma or COPD exacerbations. As model biomarkers we chose three cytokines (interleukin-6, interleukin-8, tumor necrosis factor alpha), the bacterial infection marker C-reactive protein and the bacterial pathogen Streptococcus pneumoniae-all relevant factors in exacerbation episodes. Assay protocols established in laboratory environments were adapted to 3D-printed fluidic devices with emphasis on short processing times, low reagent consumption and a low limit of detection in order to enable the fluidic system to be used in point-of-care settings. The final device demonstrator was validated with patient sample material for its capability to detect endogenous as well as exogenous biomarkers in parallel.


Subject(s)
Biomarkers , Point-of-Care Systems , Pulmonary Disease, Chronic Obstructive , Streptococcus pneumoniae , Humans , Pulmonary Disease, Chronic Obstructive/diagnosis , Streptococcus pneumoniae/isolation & purification , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Cytokines/metabolism , Asthma/diagnosis , Lab-On-A-Chip Devices , Interleukin-6 , Prognosis , Tumor Necrosis Factor-alpha/analysis
12.
Adv Rheumatol ; 64(1): 46, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849923

ABSTRACT

BACKGROUND: Fibroblast-like synoviocytes (FLSs) are involved in osteoarthritis (OA) pathogenesis through pro-inflammatory cytokine production. TAK-242, a TLR4 blocker, has been found to have a significant impact on the gene expression profile of pro-inflammatory cytokines such as IL1-ß, IL-6, TNF-α, and TLR4, as well as the phosphorylation of Ikßα, a regulator of the NF-κB signaling pathway, in OA-FLSs. This study aims to investigate this effect because TLR4 plays a crucial role in inflammatory responses. MATERIALS AND METHODS: Ten OA patients' synovial tissues were acquired, and isolated FLSs were cultured in DMEM in order to assess the effectiveness of TAK-242. The treated FLSs with TAK-242 and Lipopolysaccharides (LPS) were analyzed for the mRNA expression level of IL1-ß, IL-6, TNF-α, and TLR4 levels by Real-Time PCR. Besides, we used western blot to assess the protein levels of Ikßα and pIkßα. RESULTS: The results represented that TAK-242 effectively suppressed the gene expression of inflammatory cytokines IL1-ß, IL-6, TNF-α, and TLR4 which were overexpressed upon LPS treatment. Additionally, TAK-242 inhibited the phosphorylation of Ikßα which was increased by LPS treatment. CONCLUSION: According to our results, TAK-242 shows promising inhibitory effects on TLR4-mediated inflammatory responses in OA-FLSs by targeting the NF-κB pathway. TLR4 inhibitors, such as TAK-242, may be useful therapeutic agents to reduce inflammation and its associated complications in OA patients, since traditional and biological treatments may not be adequate for all of them.


Subject(s)
Cytokines , Interleukin-1beta , Interleukin-6 , Lipopolysaccharides , NF-kappa B , Signal Transduction , Sulfonamides , Synoviocytes , Toll-Like Receptor 4 , Tumor Necrosis Factor-alpha , Humans , Signal Transduction/drug effects , Synoviocytes/drug effects , Synoviocytes/metabolism , NF-kappa B/metabolism , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Toll-Like Receptor 4/metabolism , Cytokines/metabolism , Interleukin-6/metabolism , Interleukin-1beta/metabolism , Tumor Necrosis Factor-alpha/metabolism , Lipopolysaccharides/pharmacology , Fibroblasts/metabolism , Fibroblasts/drug effects , Osteoarthritis/metabolism , Osteoarthritis/drug therapy , Cells, Cultured , Phosphorylation , RNA, Messenger/metabolism , Male , Female , Middle Aged
13.
Sci Rep ; 14(1): 12935, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839973

ABSTRACT

The inhibition of tumor necrosis factor (TNF)-α trimer formation renders it inactive for binding to its receptors, thus mitigating the vicious cycle of inflammation. We designed a peptide (PIYLGGVFQ) that simulates a sequence strand of human TNFα monomer using a series of in silico methods, such as active site finding (Acsite), protein-protein interaction (PPI), docking studies (GOLD and Flex-X) followed by molecular dynamics (MD) simulation studies. The MD studies confirmed the intermolecular interaction of the peptide with the TNFα. Fluorescence-activated cell sorting and fluorescence microscopy revealed that the peptide effectively inhibited the binding of TNF to the cell surface receptors. The cell culture assays showed that the peptide significantly inhibited the TNFα-mediated cell death. In addition, the nuclear translocation of the nuclear factor kappa B (NFκB) was significantly suppressed in the peptide-treated A549 cells, as observed in immunofluorescence and gel mobility-shift assays. Furthermore, the peptide protected against joint damage in the collagen-induced arthritis (CIA) mouse model, as revealed in the micro focal-CT scans. In conclusion, this TNFα antagonist would be helpful for the prevention and repair of inflammatory bone destruction and subsequent loss in the mouse model of CIA as well as human rheumatoid arthritis (RA) patients. This calls upon further clinical investigation to utilize its potential effect as an antiarthritic drug.


Subject(s)
Peptides , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Mice , Peptides/pharmacology , Peptides/chemistry , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Molecular Docking Simulation , A549 Cells , Molecular Dynamics Simulation , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Male , Antirheumatic Agents/pharmacology , Antirheumatic Agents/chemistry , Antirheumatic Agents/therapeutic use , Protein Binding , Disease Models, Animal
14.
Virol J ; 21(1): 134, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849961

ABSTRACT

BACKGROUND: The coronavirus pandemic that started in 2019 has caused the highest mortality and morbidity rates worldwide. Data on the role of long non-coding RNAs (lncRNAs) in coronavirus disease 2019 (COVID-19) is scarce. We aimed to elucidate the relationship of three important lncRNAs in the inflammatory states, H19, taurine upregulated gene 1 (TUG1), and colorectal neoplasia differentially expressed (CRNDE) with key factors in inflammation and fibrosis induction including signal transducer and activator of transcription3 (STAT3), alpha smooth muscle actin (α-SMA), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) in COVID-19 patients with moderate to severe symptoms. METHODS: Peripheral blood mononuclear cells from 28 COVID-19 patients and 17 healthy controls were collected. The real-time quantitative polymerase chain reaction (RT-qPCR) was performed to evaluate the expression of RNAs and lncRNAs. Western blotting analysis was also performed to determine the expression levels of STAT3 and α-SMA proteins. Machine learning and receiver operating characteristic (ROC) curve analysis were carried out to evaluate the distinguishing ability of lncRNAs. RESULTS: The expression levels of H19, TUG1, and CRNDE were significantly overexpressed in COVID-19 patients compared to healthy controls. Moreover, STAT3 and α-SMA expression levels were remarkedly increased at both transcript and protein levels in patients with COVID-19 compared to healthy subjects and were correlated with Three lncRNAs. Likewise, IL-6 and TNF-α were considerably upregulated in COVID-19 patients. Machine learning and ROC curve analysis showed that CRNDE-H19 panel has the proper ability to distinguish COVID-19 patients from healthy individuals (area under the curve (AUC) = 0.86). CONCLUSION: The overexpression of three lncRNAs in COVID-19 patients observed in this study may align with significant manifestations of COVID-19. Furthermore, their co-expression with STAT3 and α-SMA, two critical factors implicated in inflammation and fibrosis induction, underscores their potential involvement in exacerbating cardiovascular, pulmonary and common symptoms and complications associated with COVID-19. The combination of CRNDE and H19 lncRNAs seems to be an impressive host-based biomarker panel for screening and diagnosis of COVID-19 patients from healthy controls. Research into lncRNAs can provide a robust platform to find new viral infection-related mediators and propose novel therapeutic strategies for viral infections and immune disorders.


Subject(s)
COVID-19 , Machine Learning , RNA, Long Noncoding , SARS-CoV-2 , STAT3 Transcription Factor , Humans , RNA, Long Noncoding/genetics , COVID-19/diagnosis , COVID-19/virology , COVID-19/genetics , Male , Female , Middle Aged , SARS-CoV-2/genetics , STAT3 Transcription Factor/genetics , Adult , ROC Curve , Leukocytes, Mononuclear/virology , Interleukin-6/genetics , Interleukin-6/blood , Aged , Actins/genetics , Tumor Necrosis Factor-alpha/genetics
15.
JCI Insight ; 9(11)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855871

ABSTRACT

Human cytomegalovirus (HCMV) infection in infants infected in utero can lead to a variety of neurodevelopmental disorders. However, mechanisms underlying altered neurodevelopment in infected infants remain poorly understood. We have previously described a murine model of congenital HCMV infection in which murine CMV (MCMV) spreads hematogenously and establishes a focal infection in all regions of the brain of newborn mice, including the cerebellum. Infection resulted in disruption of cerebellar cortical development characterized by reduced cerebellar size and foliation. This disruption was associated with altered cell cycle progression of the granule cell precursors (GCPs), which are the progenitors that give rise to granule cells (GCs), the most abundant neurons in the cerebellum. In the current study, we have demonstrated that MCMV infection leads to prolonged GCP cell cycle, premature exit from the cell cycle, and reduced numbers of GCs resulting in cerebellar hypoplasia. Treatment with TNF-α neutralizing antibody partially normalized the cell cycle alterations of GCPs and altered cerebellar morphogenesis induced by MCMV infection. Collectively, our results argue that virus-induced inflammation altered the cell cycle of GCPs resulting in a reduced numbers of GCs and cerebellar cortical hypoplasia, thus providing a potential mechanism for altered neurodevelopment in fetuses infected with HCMV.


Subject(s)
Cell Cycle , Cerebellum , Cytomegalovirus Infections , Disease Models, Animal , Animals , Cytomegalovirus Infections/virology , Cytomegalovirus Infections/pathology , Mice , Cerebellum/virology , Cerebellum/pathology , Cerebellum/growth & development , Cerebellum/abnormalities , Female , Cytomegalovirus , Neural Stem Cells/virology , Muromegalovirus/physiology , Animals, Newborn , Humans , Neurons/virology , Tumor Necrosis Factor-alpha/metabolism , Developmental Disabilities , Nervous System Malformations
16.
J Extracell Vesicles ; 13(6): e12462, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840457

ABSTRACT

Ulcerative colitis (UC) manifests clinically with chronic intestinal inflammation and microflora dysbiosis. Although biologics can effectively control inflammation, efficient delivery to the colon and colon epithelial cells remains challenging. Milk-derived extracellular vesicles (EV) show promise as an oral delivery tool, however, the ability to load biologics into EV presents challenges to therapeutic applications. Here, we demonstrate that fusing cell-penetrating peptide (TAT) to green fluorescent protein (GFP) enabled biologics loading into EV and protected against degradation in the gastrointestinal environment in vitro and in vivo after oral delivery. Oral administration of EV loaded with anti-tumour necrosis factor-α (TNF-α) nanobody (VHHm3F) (EVVHH) via TAT significantly reduced tissue TNF-α levels and alleviated pathologies in mice with acute UC, compared to VHH alone. In mice with chronic UC, simultaneously introducing VHH and an antimicrobial peptide LL37 into EV (EVLV), then administering orally improved intestinal barrier, inflammation and microbiota balance, resulted in relief of UC-induced depression and anxiety. Collectively, we demonstrated that oral delivery of EVLV effectively alleviated UC in mice and TAT efficiently loaded biologics into EV to confer protection from degradation in the gastrointestinal tract. This therapeutic strategy is promising for UC and is a simple and generalizable approach towards drug-loaded orally-administrable EV treatment for other diseases.


Subject(s)
Colitis, Ulcerative , Extracellular Vesicles , Milk , Single-Domain Antibodies , Tumor Necrosis Factor-alpha , Animals , Colitis, Ulcerative/drug therapy , Extracellular Vesicles/metabolism , Mice , Tumor Necrosis Factor-alpha/metabolism , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/therapeutic use , Antimicrobial Peptides/pharmacology , Cathelicidins , Mice, Inbred C57BL , Disease Models, Animal , Gastrointestinal Microbiome/drug effects , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/therapeutic use , Cell-Penetrating Peptides/pharmacology , Humans , Administration, Oral , Male , Female
17.
PLoS One ; 19(6): e0303374, 2024.
Article in English | MEDLINE | ID: mdl-38843156

ABSTRACT

The objective of this study is to investigate the effects of a moderate intensity physical training protocol, on alveolar bone morphology of rats submitted to ligature-induced periodontitis. Twenty-eight male Wistar rats were divided into four groups, considering the presence/absence of periodontitis and presence/absence of training. The training protocol was performed on a treadmill, 30 min/day, 5 days a week, for 4 weeks. In the experimental periodontal breakdown, with/without training, ligatures were placed on the lower first molars on the 14th day of the experiment, and were followed until the end of the protocol. At the end of the experiment, animals were euthanized and samples of plasma and mandibles were collected for immunoenzymatic evaluation of interleukins (IL)-1ß, IL-6, TNF-α and IL-10, evaluation of serum concentrations of C-reactive protein, analysis of lipid peroxidation (LPO) and reduced glutathione, histological and microtomographic analyses were performed. Physical training resulted in a reduced levels of IL-1ß, IL-6, TNF-α C-reactive protein and LPO and an increase in the levels of IL-10 in rats with periodontitis (p<0.05); a reduction in the inflammatory infiltrate and decreased fiber degradation was identified in histological analysis. Additionally, it was shown a decrease in vertical bone loss and an increase in the bone volume/trabecular volume ratio was identified in periodontitis+physical training group (p<0.05). Based on the results, the practice of frequent physical exercise, at moderate intensity, can contribute to the reduction of damage related to the disproportionate inflammatory response in periodontitis.


Subject(s)
Lipid Peroxidation , Oxidative Stress , Periodontitis , Physical Conditioning, Animal , Rats, Wistar , Animals , Periodontitis/metabolism , Periodontitis/pathology , Male , Rats , C-Reactive Protein/metabolism , Alveolar Bone Loss/pathology , Alveolar Bone Loss/metabolism , Glutathione/metabolism , Disease Models, Animal , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/metabolism , Cytokines/metabolism , Cytokines/blood
18.
Iran J Med Sci ; 49(5): 322-331, 2024 May.
Article in English | MEDLINE | ID: mdl-38751871

ABSTRACT

Background: Cytokine release syndrome (CRS) is the leading cause of mortality in advanced stages of coronavirus patients. This study examined the prophylactic effects of fraxin, quercetin, and a combination of fraxin+quercetin (FQ) on lipopolysaccharide-induced mice. Methods: Sixty mice were divided into six groups (n=10) as follows: control, LPS only, fraxin (120 mg/Kg), quercetin (100 mg/Kg), dexamethasone (5 mg/Kg), and FQ. All treatments were administered intraperitoneally (IP) one hour before induction by LPS (5 mg/Kg) IP injection. Twenty-four hours later, the mice were euthanized. Interleukin one beta (IL-1ß), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were quantified using an enzyme-linked immunosorbent assay (ELISA), and lung and kidney tissues were examined for histopathological alterations. This study was conducted at Al-Nahrain University, Baghdad, Iraq, in 2022. Results: FQ reduced IL-1ß (P<0.001). All treatments significantly suppressed IL-6, fraxin, quercetin, dexamethasone, and FQ, all with P<0.001. The TNF-α level was reduced more with dexamethasone (P<0.001) and quercetin (P<0.001). Histopathological scores were significantly reduced mainly by quercetin and FQ in the lungs with scores of 12.30±0.20 (P=0.093), and 15.70±0.20 (P=0.531), respectively. The scores were 13±0.26 (P=0.074) and 15±0.26 (P=0.222) for quercetin and FQ in the kidneys, respectively. Conclusion: All used treatments reduced proinflammatory cytokine levels and protected against LPS-induced tissue damage.


Subject(s)
Cytokine Release Syndrome , Lipopolysaccharides , Quercetin , Animals , Quercetin/pharmacology , Quercetin/therapeutic use , Mice , Cytokine Release Syndrome/drug therapy , Lipopolysaccharides/pharmacology , COVID-19 Drug Treatment , Male , COVID-19 , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Interleukin-6/blood , Interleukin-6/analysis , Cytokines/drug effects , Interleukin-1beta , Tumor Necrosis Factor-alpha , Disease Models, Animal , Lung/drug effects , Lung/pathology , Coumarins
19.
Sci Rep ; 14(1): 11079, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745047

ABSTRACT

N-acetyl glucosamine (NAG) is a natural amino sugar found in various human tissues with previously described anti-inflammatory effects. Various chemical modifications of NAG have been made to promote its biomedical applications. In this study, we synthesized two bi-deoxygenated NAG, BNAG1 and BNAG2 and investigated their anti-inflammatory properties, using an in vivo and in vitro inflammation mouse model induced by lipopolysaccharide (LPS). Among the parent molecule NAG, BNAG1 and BNAG2, BNAG1 showed the highest inhibition against serum levels of IL-6 and TNF α and the leukocyte migration to lungs and peritoneal cavity in LPS challenged mice, as well as IL-6 and TNF α production in LPS-stimulated primary peritoneal macrophages. BNAG2 displayed an anti-inflammatory effect which was comparable to NAG. These findings implied potential application of these novel NAG derivatives, especially BNAG1, in treatment of certain inflammation-related diseases.


Subject(s)
Acetylglucosamine , Anti-Inflammatory Agents , Lipopolysaccharides , Macrophages, Peritoneal , Tumor Necrosis Factor-alpha , Animals , Acetylglucosamine/pharmacology , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Interleukin-6/blood , Inflammation/drug therapy , Male , Disease Models, Animal
20.
Mol Biol Rep ; 51(1): 643, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727775

ABSTRACT

BACKGROUND: Baicalein is the main active flavonoid in Scutellariae Radix and is included in shosaikoto, a Kampo formula used for treating hepatitis and jaundice. However, little is known about its hepatoprotective effects against hepatic ischemia-reperfusion injury (HIRI), a severe clinical condition directly caused by interventional procedures. We aimed to investigate the hepatoprotective effects of baicalein against HIRI and partial hepatectomy (HIRI + PH) and its potential underlying mechanisms. METHODS AND RESULTS: Male Sprague-Dawley rats received either baicalein (5 mg/kg) or saline intraperitoneally and underwent a 70% hepatectomy 15 min after hepatic ischemia. After reperfusion, liver and blood samples were collected. Survival was monitored 30 min after hepatic ischemia and hepatectomy. In interleukin 1ß (IL-1ß)-treated primary cultured rat hepatocytes, the influence of baicalein on inflammatory mediator production and the associated signaling pathway was analyzed. Baicalein suppressed apoptosis and neutrophil infiltration, which are the features of HIRI + PH treatment-induced histological injury. Baicalein also reduced the mRNA expression of the proinflammatory cytokine tumor necrosis factor-α (TNF-α). In addition, HIRI + PH treatment induced liver enzyme deviations in the serum and hypertrophy of the remnant liver, which were suppressed by baicalein. In the lethal HIRI + PH treatment group, baicalein significantly reduced mortality. In IL-1ß-treated rat hepatocytes, baicalein suppressed TNF-α and chemokine mRNA expression as well as the activation of nuclear factor-kappa B (NF-κB) and Akt. CONCLUSIONS: Baicalein treatment attenuates HIRI + PH-induced liver injury and may promote survival. This potential hepatoprotection may be partly related to suppressing inflammatory gene induction through the inhibition of NF-κB activity and Akt signaling in hepatocytes.


Subject(s)
Apoptosis , Disease Models, Animal , Flavanones , Hepatectomy , Hepatocytes , Interleukin-1beta , Liver , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Flavanones/pharmacology , Flavanones/therapeutic use , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Hepatectomy/methods , Male , Rats , Liver/drug effects , Liver/metabolism , Liver/pathology , Hepatocytes/drug effects , Hepatocytes/metabolism , Apoptosis/drug effects , Interleukin-1beta/metabolism , NF-kappa B/metabolism , Protective Agents/pharmacology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Proto-Oncogene Proteins c-akt/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...