Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36.129
Filter
1.
Mol Biol Rep ; 51(1): 701, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822973

ABSTRACT

BACKGROUND: Disabled 2 (DAB2) is a multifunctional protein that has emerged as a critical component in the regulation of tumor growth. Its dysregulation is implicated in various types of cancer, underscoring its importance in understanding the molecular mechanisms underlying tumor development and progression. This review aims to unravel the intricate molecular mechanisms by which DAB2 exerts its tumor-suppressive functions within cancer signaling pathways. METHODS AND RESULTS: We conducted a comprehensive review of the literature focusing on the structure, expression, physiological functions, and tumor-suppressive roles of DAB2. We provide an overview of the structure, expression, and physiological functions of DAB2. Evidence supporting DAB2's role as a tumor suppressor is explored, highlighting its ability to inhibit cell proliferation, induce apoptosis, and modulate key signaling pathways involved in tumor suppression. The interaction between DAB2 and key oncogenes is examined, elucidating the interplay between DAB2 and oncogenic signaling pathways. We discuss the molecular mechanisms underlying DAB2-mediated tumor suppression, including its involvement in DNA damage response and repair, regulation of cell cycle progression and senescence, and modulation of epithelial-mesenchymal transition (EMT). The review explores the regulatory networks involving DAB2, covering post-translational modifications, interactions with other tumor suppressors, and integration within complex signaling networks. We also highlight the prognostic significance of DAB2 and its role in pre-clinical studies of tumor suppression. CONCLUSION: This review provides a comprehensive understanding of the molecular mechanisms by which DAB2 exerts its tumor-suppressive functions. It emphasizes the significance of DAB2 in cancer signaling pathways and its potential as a target for future therapeutic interventions.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Neoplasms , Signal Transduction , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Animals , Epithelial-Mesenchymal Transition/genetics , Disease Progression , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , Apoptosis/genetics
2.
PLoS One ; 19(6): e0304770, 2024.
Article in English | MEDLINE | ID: mdl-38829888

ABSTRACT

Age-related hearing loss is a complex disease caused by a combination of genetic and environmental factors, and a study have conducted animal experiments to explore the association between BCL11B heterozygosity and age-related hearing loss. The present study used established genetic models to examine the association between BCL11B gene polymorphisms and age-related hearing loss. A total of 410 older adults from two communities in Qingdao, China, participated in this study. The case group comprised individuals aged ≥ 60 years with age-related hearing loss, and the control group comprised individuals without age-related hearing loss from the same communities. The groups were matched 1:1 for age and sex. The individual characteristics of the participants were analyzed descriptively using the Mann-Whitney U test and the chi-square test. To explore the association between BCL11B gene polymorphisms and age-related hearing loss, conditional logistic regression was performed to construct genetic models for two single-nucleotide-polymorphisms (SNPs) of BCL11B, and haplotype analysis was conducted to construct their haplotype domains. Two SNP sites of the BCL11B gene, four genetic models of rs1152781 (additive, dominant, recessive, and codominant), and five genetic models of rs1152783 (additive, dominant, recessive, codominant, and over dominant) were significantly associated with age-related hearing loss in the models both unadjusted and adjusted for all covariates (P < 0.05). Additionally, a linkage disequilibrium between rs1152781 and rs1152783 was revealed through haplotype analysis. Our study revealed that BCL11B gene polymorphisms were significantly associated with age-related hearing loss.


Subject(s)
Haplotypes , Polymorphism, Single Nucleotide , Repressor Proteins , Tumor Suppressor Proteins , Humans , Male , Female , Aged , China/epidemiology , Case-Control Studies , Middle Aged , Repressor Proteins/genetics , Tumor Suppressor Proteins/genetics , Hearing Loss/genetics , Hearing Loss/epidemiology , Genetic Predisposition to Disease , Aged, 80 and over , Presbycusis/genetics , Presbycusis/epidemiology , Linkage Disequilibrium
3.
Cancer Med ; 13(11): e7395, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38872370

ABSTRACT

BACKGROUND AND AIMS: Pancreatic cancer is one of the most lethal malignancies, partly due to resistance to conventional chemotherapy. The chemoresistance of malignant tumors is associated with epithelial-mesenchymal transition (EMT) and the stemness of cancer cells. The aim of this study is to investigate the availability and functional mechanisms of trefoil factor family 1 (TFF1), a tumor-suppressive protein in pancreatic carcinogenesis, to treat pancreatic cancer. METHODS: To investigate the role of endogenous TFF1 in human and mice, specimens of human pancreatic cancer and genetically engineered mouse model of pancreatic cancer (KPC/TFF1KO; Pdx1-Cre/LSL-KRASG12D/LSL-p53R172H/TFF1-/-) were analyzed by immunohistochemistry (IHC). To explore the efficacy of extracellular administration of TFF1, recombinant and chemically synthesized TFF1 were administered to pancreatic cancer cell lines, a xenograft mouse model and a transgenic mouse model. RESULTS: The deficiency of TFF1 was associated with increased EMT of cancer cells in mouse models of pancreatic cancer, KPC. The expression of TFF1 in cancer cells was associated with better survival rate of the patients who underwent chemotherapy, and loss of TFF1 deteriorated the benefit of gemcitabine in KPC mice. Extracellular administration of TFF1 inhibited gemcitabine-induced EMT, Wnt pathway activation and cancer stemness, eventually increased apoptosis of pancreatic cancer cells in vitro. In vivo, combined treatment of gemcitabine and subcutaneous administration of TFF1 arrested tumor growth in xenograft mouse model and resulted in the better survival of KPC mice by inhibiting EMT and cancer stemness. CONCLUSION: These results indicate that TFF1 can contribute to establishing a novel strategy to treat pancreatic cancer patients by enhancing chemosensitivity.


Subject(s)
Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Neoplastic Stem Cells , Pancreatic Neoplasms , Trefoil Factor-1 , Animals , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Trefoil Factor-1/metabolism , Trefoil Factor-1/genetics , Humans , Mice , Epithelial-Mesenchymal Transition/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Cell Line, Tumor , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Xenograft Model Antitumor Assays , Gemcitabine , Mice, Transgenic , Female , Male , Cell Proliferation/drug effects , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic/drug effects
4.
Front Immunol ; 15: 1381735, 2024.
Article in English | MEDLINE | ID: mdl-38840923

ABSTRACT

Background: Acute liver injury (ALI), which is a type of inflammation-mediated hepatocellular injury, is a clinical syndrome that results from hepatocellular apoptosis and hemorrhagic necrosis. Apoptosis stimulating protein of p53-2 (ASPP2) is a proapoptotic member of the p53 binding protein family. However, the role of ASPP2 in the pathogenesis of ALI and its regulatory mechanisms remain unclear. Methods: The expression of ASPP2 were compared between liver biopsies derived from patients with CHB, patients with ALI, and normal controls. Acute liver injury was modelled in mice by administration of D-GalN/LPS. Liver injury was demonstrated by serum transaminases and histological assessment of liver sections. ASPP2-knockdown mice (ASPP2+/-) were used to determine its role in acute liver injury. Mouse bone marrow macrophages (BMMs) were isolated from wildtype and ASPP2+/- mice and stimulated with LPS, and the supernatant was collected to incubate with the primary hepatocytes. Quantitative real-time PCR and western blot were used to analyze the expression level of target. Results: The expression of ASPP2 was significantly upregulated in the liver tissue of ALI patients and acute liver injury mice. ASPP2+/- mice significantly relieved liver injury through reducing liver inflammation and decreasing hepatocyte apoptosis. Moreover, the conditioned medium (CM) of ASPP2+/- bone marrow-derived macrophages (BMMs) protected hepatocytes against apoptosis. Mechanistically, we revealed that ASPP2 deficiency in BMMs specifically upregulated IL-6 through autophagy activation, which decreased the level of TNF-α to reduce hepatocytes apoptosis. Furthermore, up-regulation of ASPP2 sensitizes hepatocytes to TNF-α-induced apoptosis. Conclusion: Our novel findings show the critical role of ASPP2 in inflammatory immunoregulatory mechanism of ALI and provide a rationale to target ASPP2 as a refined therapeutic strategy to ameliorate acute liver injury.


Subject(s)
Apoptosis Regulatory Proteins , Apoptosis , Animals , Humans , Mice , Male , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Mice, Knockout , Liver/pathology , Liver/metabolism , Liver/immunology , Hepatocytes/metabolism , Hepatocytes/pathology , Mice, Inbred C57BL , Disease Models, Animal , Inflammation/immunology , Inflammation/metabolism , Female , Lipopolysaccharides , Middle Aged , Macrophages/immunology , Macrophages/metabolism , Adult , Tumor Suppressor Proteins
5.
PLoS One ; 19(6): e0302643, 2024.
Article in English | MEDLINE | ID: mdl-38829901

ABSTRACT

BACKGROUND: The A allele of rs373863828 in CREB3 regulatory factor is associated with high Body Mass Index, but lower odds of type 2 diabetes. These associations have been replicated elsewhere, but to date all studies have been cross-sectional. Our aims were (1) to describe the development of type 2 diabetes and change in fasting glucose between 2010 and 2018 among a longitudinal cohort of adult Samoans without type 2 diabetes or who were not using diabetes medications at baseline, and (2) to examine associations between fasting glucose rate-of-change (mmol/L per year) and the A allele of rs373863828. METHODS: We describe and test differences in fasting glucose, the development of type 2 diabetes, body mass index, age, smoking status, physical activity, urbanicity of residence, and household asset scores between 2010 and 2018 among a cohort of n = 401 adult Samoans, selected to have a ~2:2:1 ratio of GG:AG: AA rs373863828 genotypes. Multivariate linear regression was used to test whether fasting glucose rate-of-change was associated with rs373863828 genotype, and other baseline variables. RESULTS: By 2018, fasting glucose and BMI significantly increased among all genotype groups, and a substantial portion of the sample developed type 2 diabetes mellitus. The A allele was associated with a lower fasting glucose rate-of-change (ß = -0.05 mmol/L/year per allele, p = 0.058 among women; ß = -0.004 mmol/L/year per allele, p = 0.863 among men), after accounting for baseline variables. Mean fasting glucose and mean BMI increased over an eight-year period and a substantial number of individuals developed type 2 diabetes by 2018. However, fasting glucose rate-of-change, and type 2 diabetes development was lower among females with AG and AA genotypes. CONCLUSIONS: Further research is needed to understand the effect of the A allele on fasting glucose and type 2 diabetes development. Based on our observations that other risk factors increased over time, we advocate for the continued promotion for diabetes prevention and treatment programming, and the reduction of modifiable risk factors, in this setting.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Fasting , Humans , Female , Diabetes Mellitus, Type 2/genetics , Male , Middle Aged , Blood Glucose/metabolism , Adult , Fasting/blood , Mutation, Missense , Polymorphism, Single Nucleotide , Alleles , Samoa , Cohort Studies , Body Mass Index , Genotype , Longitudinal Studies , Cross-Sectional Studies , Aged , Tumor Suppressor Proteins
6.
Biochim Biophys Acta Gen Subj ; 1868(8): 130648, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830559

ABSTRACT

KANK1 was found as a tumor suppressor gene based on frequent deletions in renal cell carcinoma and the inhibitory activity of tumor cell proliferation. Previously, we reported that knockdown of KANK1 induced centrosomal amplification, leading to abnormal cell division, through the hyperactivation of RhoA small GTPase. Here, we investigated the loss of KANK1 function by performing CRISPR/Cas9-based genome editing to knockout the gene. After several rounds of genome editing, however, there were no cell lines with complete loss of KANK1, and the less the wild-type KANK1 dosage, the greater the number of cells with abnormal numbers of centrosomes and rates of cell-doubling and apoptosis, suggesting the involvement of KANK1 haploinsufficiency in centrosome aberrations. The rescue of KANK1-knockdown cells with a KANK1-expressing plasmid restored the rates of cells exhibiting centrosomal amplification to the control level. RNA-sequencing analysis of the cells with reduced dosages of functional KANK1 revealed potential involvement of other cell proliferation-related genes, such as EGR1, MDGA2, and BMP3, which have been reported to show haploinsufficiency when they function. When EGR1 protein expression was reduced by siRNA technology, the number of cells exhibiting centrosomal amplification increased, along with the reduction of KANK1 protein expression, suggesting their functional relationship. Thus, KANK1 haploinsufficiency may contribute to centrosome aberrations through the network of haploinsufficiency-related genes.


Subject(s)
Adaptor Proteins, Signal Transducing , Centrosome , Cytoskeletal Proteins , Haploinsufficiency , Centrosome/metabolism , Humans , Haploinsufficiency/genetics , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Proliferation/genetics , CRISPR-Cas Systems , Gene Editing , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
7.
BMC Cancer ; 24(1): 687, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840077

ABSTRACT

Background The methylation of SHOX2 and RASSF1A shows promise as a potential biomarker for the early screening of lung cancer, offering a solution to remedy the limitations of morphological diagnosis. The aim of this study is to diagnose lung adenocarcinoma by measuring the methylation levels of SHOX2 and RASSF1A, and provide an accurate pathological diagnosis to predict the invasiveness of lung cancer prior to surgery.Material and methods The methylation levels of SHOX2 and RASSF1A were quantified using a LungMe® test kit through methylation-specific PCR (MS-PCR). The diagnostic efficacy of SHOX2 and RASSF1A and the cutoff values were validated using ROC curve analysis. The hazardous factors influencing the invasiveness of lung adenocarcinoma were calculated using multiple regression.Results: The cutoff values of SHOX2 and RASSF1A were 8.3 and 12.0, respectively. The sensitivities of LungMe® in IA, MIA and AIS patients were 71.3% (122/171), 41.7% (15/36), and 16.1% (5/31) under the specificity of 94.1% (32/34) for benign lesions. Additionally, the methylation level of SHOX2, RASSF1A and LungMe® correlated with the high invasiveness of clinicopathological features, such as age, gender, tumor size, TNM stage, pathological type, pleural invasion and STAS. The tumor size, age, CTR values and LungMe® methylation levels were identified as independent hazardous factors influencing the invasiveness of lung adenocarcinoma.Conclusion: SHOX2 and RASSF1A combined methylation can be used as an early detection indicator of lung adenocarcinoma. SHOX2 and RASSF1A combined (LungMe®) methylation is significantly correlated to age, gender, tumor size, TNM stage, pathological type, pleural invasion and STAS. The SHOX2 and RASSF1A methylation levels, tumor size and CTR values could predict the invasiveness of the tumor prior to surgery, thereby providing guidance for the surgical procedure.


Subject(s)
Adenocarcinoma of Lung , Biomarkers, Tumor , DNA Methylation , Homeodomain Proteins , Lung Neoplasms , Neoplasm Staging , Tumor Suppressor Proteins , Humans , Tumor Suppressor Proteins/genetics , Male , Female , Middle Aged , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Aged , Homeodomain Proteins/genetics , Biomarkers, Tumor/genetics , Adult , ROC Curve
8.
BMC Med Genomics ; 17(1): 152, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831322

ABSTRACT

OBJECTIVE: To investigate the role of BTG2 in periodontitis and diabetic kidney disease (DKD) and its potential underlying mechanism. METHODS: Gene expression data for periodontitis and DKD were acquired from the Gene Expression Omnibus (GEO) database. Differential expression analysis identified co-expressed genes between these conditions. The Nephroseq V5 online nephropathy database validated the role of these genes in DKD. Pearson correlation analysis identified genes associated with our target gene. We employed Gene Set Enrichment Analysis (GSEA) and Protein-Protein Interaction (PPI) networks to elucidate potential mechanisms. Expression levels of BTG2 mRNA were examined using quantitative polymerase Chain Reaction (qPCR) and immunofluorescence assays. Western blotting quantified proteins involved in epithelial-to-mesenchymal transition (EMT), apoptosis, mTORC1 signaling, and autophagy. Additionally, wound healing and flow cytometric apoptosis assays evaluated podocyte migration and apoptosis, respectively. RESULTS: Analysis of GEO database data revealed BTG2 as a commonly differentially expressed gene in both DKD and periodontitis. BTG2 expression was reduced in DKD compared to normal conditions and correlated with proteinuria. GSEA indicated enrichment of BTG2 in the EMT and mTORC1 signaling pathways. The PPI network highlighted BTG2's relevance to S100A9, S100A12, and FPR1. Immunofluorescence assays demonstrated significantly lower BTG2 expression in podocytes under high glucose (HG) conditions. Reduced BTG2 expression in HG-treated podocytes led to increased levels of EMT markers (α-SMA, vimentin) and the apoptotic protein Bim, alongside a decrease in nephrin. Lower BTG2 levels were associated with increased podocyte mobility and apoptosis, as well as elevated RPS6KB1 and mTOR levels, but reduced autophagy marker LC3. CONCLUSION: Our findings suggest that BTG2 is a crucial intermediary gene linking DKD and periodontitis. Modulating autophagy via inhibition of the mTORC1 signaling pathway, and consequently suppressing EMT, may be pivotal in the interplay between periodontitis and DKD.


Subject(s)
Apoptosis , Diabetic Nephropathies , Epithelial-Mesenchymal Transition , Periodontitis , Tumor Suppressor Proteins , Periodontitis/genetics , Periodontitis/metabolism , Periodontitis/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Humans , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Immediate-Early Proteins/metabolism , Immediate-Early Proteins/genetics , Podocytes/metabolism , Podocytes/pathology , Signal Transduction , Autophagy , Protein Interaction Maps , Mechanistic Target of Rapamycin Complex 1/metabolism , Cell Movement
9.
Nat Commun ; 15(1): 4883, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849395

ABSTRACT

The human methyltransferase and transcriptional coactivator MLL4 and its paralog MLL3 are frequently mutated in cancer. MLL4 and MLL3 monomethylate histone H3K4 and contain a set of uncharacterized PHD fingers. Here, we report a novel function of the PHD2 and PHD3 (PHD2/3) fingers of MLL4 and MLL3 that bind to ASXL2, a component of the Polycomb repressive H2AK119 deubiquitinase (PR-DUB) complex. The structure of MLL4 PHD2/3 in complex with the MLL-binding helix (MBH) of ASXL2 and mutational analyses reveal the molecular mechanism which is conserved in homologous ASXL1 and ASXL3. The native interaction of the Trithorax MLL3/4 complexes with the PR-DUB complex in vivo depends solely on MBH of ASXL1/2, coupling the two histone modifying activities. ChIP-seq analysis in embryonic stem cells demonstrates that MBH of ASXL1/2 is required for the deubiquitinase BAP1 recruitment to MLL4-bound active enhancers. Our findings suggest an ASXL1/2-dependent functional link between the MLL3/4 and PR-DUB complexes.


Subject(s)
DNA-Binding Proteins , Histone-Lysine N-Methyltransferase , Protein Binding , Repressor Proteins , Tumor Suppressor Proteins , Ubiquitin Thiolesterase , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Humans , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Animals , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mice , Enhancer Elements, Genetic , HEK293 Cells , PHD Zinc Fingers , Histones/metabolism
10.
Sci Signal ; 17(840): eadn8376, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861613

ABSTRACT

Uveal melanoma (UM) is the deadliest form of eye cancer in adults. Inactivating mutations and/or loss of expression of the gene encoding BRCA1-associated protein 1 (BAP1) in UM tumors are associated with an increased risk of metastasis. To investigate the mechanisms underlying this risk, we explored the functional consequences of BAP1 deficiency. UM cell lines expressing mutant BAP1 grew more slowly than those expressing wild-type BAP1 in culture and in vivo. The ability of BAP1 reconstitution to restore cell proliferation in BAP1-deficient cells required its deubiquitylase activity. Proteomic analysis showed that BAP1-deficient cells had decreased phosphorylation of ribosomal S6 and its upstream regulator, p70S6K1, compared with both wild-type and BAP1 reconstituted cells. In turn, expression of p70S6K1 increased S6 phosphorylation and proliferation of BAP1-deficient UM cells. Consistent with these findings, BAP1 mutant primary UM tumors expressed lower amounts of p70S6K1 target genes, and S6 phosphorylation was decreased in BAP1 mutant patient-derived xenografts (PDXs), which grew more slowly than wild-type PDXs in the liver (the main metastatic site of UM) in mice. BAP1-deficient UM cells were also more resistant to amino acid starvation, which was associated with diminished phosphorylation of S6. These studies demonstrate that BAP1 deficiency slows the proliferation of UM cells through regulation of S6 phosphorylation. These characteristics may be associated with metastasis by ensuring survival during amino acid starvation.


Subject(s)
Cell Proliferation , Melanoma , Signal Transduction , Tumor Suppressor Proteins , Ubiquitin Thiolesterase , Uveal Neoplasms , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Uveal Neoplasms/genetics , Uveal Neoplasms/metabolism , Uveal Neoplasms/pathology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Humans , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Animals , Cell Line, Tumor , Mice , Phosphorylation , Stress, Physiological , Ribosomal Protein S6/metabolism , Ribosomal Protein S6/genetics , Mutation
11.
Oncol Res ; 32(6): 1037-1045, 2024.
Article in English | MEDLINE | ID: mdl-38827324

ABSTRACT

Background: The dysregulation of Isocitrate dehydrogenase (IDH) and the subsequent production of 2-Hydroxyglutrate (2HG) may alter the expression of epigenetic proteins in Grade 4 astrocytoma. The interplay mechanism between IDH, O-6-methylguanine-DNA methyltransferase (MGMT)-promoter methylation, and protein methyltransferase proteins-5 (PRMT5) activity, with tumor progression has never been described. Methods: A retrospective cohort of 34 patients with G4 astrocytoma is classified into IDH-mutant and IDH-wildtype tumors. Both groups were tested for MGMT-promoter methylation and PRMT5 through methylation-specific and gene expression PCR analysis. Inter-cohort statistical significance was evaluated. Results: Both IDH-mutant WHO grade 4 astrocytomas (n = 22, 64.7%) and IDH-wildtype glioblastomas (n = 12, 35.3%) had upregulated PRMT5 gene expression except in one case. Out of the 22 IDH-mutant tumors, 10 (45.5%) tumors showed MGMT-promoter methylation and 12 (54.5%) tumors had unmethylated MGMT. All IDH-wildtype tumors had unmethylated MGMT. There was a statistically significant relationship between MGMT-promoter methylation and IDH in G4 astrocytoma (p-value = 0.006). Statistically significant differences in progression-free survival (PFS) were also observed among all G4 astrocytomas that expressed PRMT5 and received either temozolomide (TMZ) or TMZ plus other chemotherapies, regardless of their IDH or MGMT-methylation status (p-value=0.0014). Specifically, IDH-mutant tumors that had upregulated PRMT5 activity and MGMT-promoter methylation, who received only TMZ, have exhibited longer PFS. Conclusions: The relationship between PRMT5, MGMT-promoter, and IDH is not tri-directional. However, accumulation of D2-hydroxyglutarate (2-HG), which partially activates 2-OG-dependent deoxygenase, may not affect their activities. In IDH-wildtype glioblastomas, the 2HG-2OG pathway is typically inactive, leading to PRMT5 upregulation. TMZ alone, compared to TMZ-plus, can increase PFS in upregulated PRMT5 tumors. Thus, using a PRMT5 inhibitor in G4 astrocytomas may help in tumor regression.


Subject(s)
Astrocytoma , DNA Methylation , DNA Modification Methylases , DNA Repair Enzymes , Disease Progression , Isocitrate Dehydrogenase , Mutation , Promoter Regions, Genetic , Protein-Arginine N-Methyltransferases , Tumor Suppressor Proteins , Humans , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , Isocitrate Dehydrogenase/genetics , Male , Female , Astrocytoma/genetics , Astrocytoma/pathology , Middle Aged , Adult , Retrospective Studies , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Neoplasm Grading , Aged , Temozolomide/therapeutic use , Temozolomide/pharmacology , Gene Expression Regulation, Neoplastic
12.
J Mol Neurosci ; 74(2): 56, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802701

ABSTRACT

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that presents a significant global health challenge. To explore drugs targeting key genes in AD, R software was used to analyze the data of single nuclei transcriptome from human cerebral frontal cortex in AD, and the differentially expressed genes (DEGs) were screened. Then the gene ontology (GO) analysis, Kyoto gene and genome encyclopedia (KEGG) pathway enrichment and protein-protein interaction (PPI) network were analyzed. The hub genes were calculated by Cytoscape software. Molecular docking and molecular dynamics simulation were used to evaluate and visualize the binding between candidate drugs and key genes. A total of 564 DEGs were screened, and the hub genes were ISG15, STAT1, MX1, IFIT3, IFIT2, RSAD2, IFIT1, IFI44, IFI44L and DDX58. Enrichment terms mainly included response to virus, IFN-γ signaling pathway and virus infection. Diclofenac had good binding effect with IFI44 and IFI44L. Potential drugs may act on key gene targets and then regulate biological pathways such as virus response and IFN-γ-mediated signal pathway, so as to achieve anti-virus, improve immune balance and reduce inflammatory response, and thus play a role in anti-AD.


Subject(s)
Alzheimer Disease , Molecular Docking Simulation , Alzheimer Disease/genetics , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Transcriptome , Protein Interaction Maps , Tumor Suppressor Proteins
13.
Int J Biol Sci ; 20(7): 2576-2591, 2024.
Article in English | MEDLINE | ID: mdl-38725862

ABSTRACT

We showed that microtubule-associated tumor suppressor gene (MTUS1/ATIP) downregulation correlated with poor survival in head and neck squamous cell carcinoma (HNSCC) patients and that MTUS1/ATIP1 was the most abundant isoform in HNSCC tissue. However, the location and function of MTUS1/ATIP1 have remain unclear. In this study, we confirmed that MTUS1/ATIP1 inhibited proliferation, growth and metastasis in HNSCC in cell- and patient-derived xenograft models in vitro and in vivo. MTUS1/ATIP1 localized in the outer mitochondrial membrane, influence the morphology, movement and metabolism of mitochondria and stimulated oxidative stress in HNSCC cells by directly interacting with MFN2. MTUS1/ATIP1 activated ROS, recruiting Bax to mitochondria, facilitating cytochrome c release to the cytosol to activate caspase-3, and inducing GSDME-dependent pyroptotic death in HNSCC cells. Our findings showed that MTUS1/ATIP1 localized in the outer mitochondrial membrane in HNSCC cells and mediated anticancer effects through ROS-induced pyroptosis, which may provide a novel therapeutic strategy for HNSCC treatment.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mitochondria , Pyroptosis , Squamous Cell Carcinoma of Head and Neck , Tumor Suppressor Proteins , Animals , Humans , Mice , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Proliferation , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Mice, Nude , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Reactive Oxygen Species/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics
14.
Sci Rep ; 14(1): 12363, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811596

ABSTRACT

Radiotherapy is the standard treatment for glioblastoma (GBM), but the overall survival rate for radiotherapy treated GBM patients is poor. The use of adjuvant and concomitant temozolomide (TMZ) improves the outcome; however, the effectiveness of this treatment varies according to MGMT levels. Herein, we evaluated whether MGMT expression affected the radioresponse of human GBM, GBM stem-like cells (GSCs), and melanoma. Our results indicated a correlation between MGMT promoter methylation status and MGMT expression. MGMT-producing cell lines ACPK1, GBMJ1, A375, and MM415 displayed enhanced radiosensitivity when MGMT was silenced using siRNA or when inhibited by lomeguatrib, whereas the OSU61, NSC11, WM852, and WM266-4 cell lines, which do not normally produce MGMT, displayed reduced radiosensitivity when MGMT was overexpressed. Mechanistically lomeguatrib prolonged radiation-induced γH2AX retention in MGMT-producing cells without specific cell cycle changes, suggesting that lomeguatrib-induced radiosensitization in these cells is due to radiation-induced DNA double-stranded break (DSB) repair inhibition. The DNA-DSB repair inhibition resulted in cell death via mitotic catastrophe in MGMT-producing cells. Overall, our results demonstrate that MGMT expression regulates radioresponse in GBM, GSC, and melanoma, implying a role for MGMT as a target for radiosensitization.


Subject(s)
DNA Modification Methylases , DNA Repair Enzymes , Glioblastoma , Melanoma , Radiation Tolerance , Tumor Suppressor Proteins , Humans , Glioblastoma/genetics , Glioblastoma/radiotherapy , Glioblastoma/metabolism , Glioblastoma/pathology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Melanoma/radiotherapy , DNA Modification Methylases/metabolism , DNA Modification Methylases/genetics , Cell Line, Tumor , Radiation Tolerance/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/radiation effects , Neoplastic Stem Cells/pathology , Promoter Regions, Genetic , DNA Methylation , DNA Repair , DNA Breaks, Double-Stranded/radiation effects , Gene Expression Regulation, Neoplastic , Temozolomide/pharmacology , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Purines
15.
Nat Metab ; 6(5): 847-860, 2024 May.
Article in English | MEDLINE | ID: mdl-38811804

ABSTRACT

Adipose tissues serve as an energy reservoir and endocrine organ, yet the mechanisms that coordinate these functions remain elusive. Here, we show that the transcriptional coregulators, YAP and TAZ, uncouple fat mass from leptin levels and regulate adipocyte plasticity to maintain metabolic homeostasis. Activating YAP/TAZ signalling in adipocytes by deletion of the upstream regulators Lats1 and Lats2 results in a profound reduction in fat mass by converting mature adipocytes into delipidated progenitor-like cells, but does not cause lipodystrophy-related metabolic dysfunction, due to a paradoxical increase in circulating leptin levels. Mechanistically, we demonstrate that YAP/TAZ-TEAD signalling upregulates leptin expression by directly binding to an upstream enhancer site of the leptin gene. We further show that YAP/TAZ activity is associated with, and functionally required for, leptin regulation during fasting and refeeding. These results suggest that adipocyte Hippo-YAP/TAZ signalling constitutes a nexus for coordinating adipose tissue lipid storage capacity and systemic energy balance through the regulation of adipocyte plasticity and leptin gene transcription.


Subject(s)
Adaptor Proteins, Signal Transducing , Adipocytes , Adipose Tissue , Energy Metabolism , Hippo Signaling Pathway , Leptin , Protein Serine-Threonine Kinases , Signal Transduction , YAP-Signaling Proteins , Animals , Leptin/metabolism , Protein Serine-Threonine Kinases/metabolism , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , YAP-Signaling Proteins/metabolism , Adipose Tissue/metabolism , Adipocytes/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Trans-Activators/metabolism , Trans-Activators/genetics
16.
Commun Biol ; 7(1): 549, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724689

ABSTRACT

Amphiphysin 2 (BIN1) is a membrane and actin remodeling protein mutated in congenital and adult centronuclear myopathies. Here, we report an unexpected function of this N-BAR domain protein BIN1 in filopodia formation. We demonstrated that BIN1 expression is necessary and sufficient to induce filopodia formation. BIN1 is present at the base of forming filopodia and all along filopodia, where it colocalizes with F-actin. We identify that BIN1-mediated filopodia formation requires IRSp53, which allows its localization at negatively-curved membrane topologies. Our results show that BIN1 bundles actin in vitro. Finally, we identify that BIN1 regulates the membrane-to-cortex architecture and functions as a molecular platform to recruit actin-binding proteins, dynamin and ezrin, to promote filopodia formation.


Subject(s)
Actins , Adaptor Proteins, Signal Transducing , Nerve Tissue Proteins , Pseudopodia , Tumor Suppressor Proteins , Pseudopodia/metabolism , Actins/metabolism , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Cell Membrane/metabolism , Mice , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
17.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791122

ABSTRACT

High-resolution melting (HRM) is a cost-efficient tool for targeted DNA methylation analysis. HRM yields the average methylation status across all CpGs in PCR products. Moreover, it provides information on the methylation pattern, e.g., the occurrence of monoallelic methylation. HRM assays have to be calibrated by analyzing DNA methylation standards of known methylation status and mixtures thereof. In general, DNA methylation levels determined by the classical calibration approach, including the whole temperature range in between normalization intervals, are in good agreement with the mean of the DNA methylation status of individual CpGs determined by pyrosequencing (PSQ), the gold standard of targeted DNA methylation analysis. However, the classical calibration approach leads to highly inaccurate results for samples with heterogeneous DNA methylation since they result in more complex melt curves, differing in their shape compared to those of DNA standards and mixtures thereof. Here, we present a novel calibration approach, i.e., temperature-wise calibration. By temperature-wise calibration, methylation profiles over temperature are obtained, which help in finding the optimal calibration range and thus increase the accuracy of HRM data, particularly for heterogeneous DNA methylation. For explaining the principle and demonstrating the potential of the novel calibration approach, we selected the promoter and two enhancers of MGMT, a gene encoding the repair protein MGMT.


Subject(s)
DNA Methylation , Nucleic Acid Denaturation , Calibration , Humans , Promoter Regions, Genetic , DNA Modification Methylases/genetics , Tumor Suppressor Proteins/genetics , Temperature , DNA Repair Enzymes/genetics , CpG Islands , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards , DNA/genetics
18.
Nat Commun ; 15(1): 4614, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816354

ABSTRACT

ARID1B haploinsufficiency in humans causes Coffin-Siris syndrome, associated with developmental delay, facial dysmorphism, and intellectual disability. The role of ARID1B has been widely studied in neuronal development, but whether it also regulates stem cells remains unknown. Here, we employ scRNA-seq and scATAC-seq to dissect the regulatory functions and mechanisms of ARID1B within mesenchymal stem cells (MSCs) using the mouse incisor model. We reveal that loss of Arid1b in the GLI1+ MSC lineage disturbs MSCs' quiescence and leads to their proliferation due to the ectopic activation of non-canonical Activin signaling via p-ERK. Furthermore, loss of Arid1b upregulates Bcl11b, which encodes a BAF complex subunit that modulates non-canonical Activin signaling by directly regulating the expression of activin A subunit, Inhba. Reduction of Bcl11b or non-canonical Activin signaling restores the MSC population in Arid1b mutant mice. Notably, we have identified that ARID1B suppresses Bcl11b expression via specific binding to its third intron, unveiling the direct inter-regulatory interactions among BAF subunits in MSCs. Our results demonstrate the vital role of ARID1B as an epigenetic modifier in maintaining MSC homeostasis and reveal its intricate mechanistic regulatory network in vivo, providing novel insights into the linkage between chromatin remodeling and stem cell fate determination.


Subject(s)
DNA-Binding Proteins , Mesenchymal Stem Cells , Repressor Proteins , Signal Transduction , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Proliferation , Activins/metabolism , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Humans , Zinc Finger Protein GLI1
19.
Sci Rep ; 14(1): 12470, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816374

ABSTRACT

Atrial fibrosis serves as an arrhythmogenic substrate in atrial fibrillation (AF) and contributes to AF persistence. Treating atrial fibrosis is challenging because atrial fibroblast activity is multifactorial. We hypothesized that the primary cilium regulates the profibrotic response of AF atrial fibroblasts, and explored therapeutic potentials of targeting primary cilia to treat fibrosis in AF. We included 25 patients without AF (non-AF) and 26 persistent AF patients (AF). Immunohistochemistry using a subset of the patients (non-AF: n = 10, AF: n = 10) showed less ciliated fibroblasts in AF versus non-AF. Acetylated α-tubulin protein levels were decreased in AF, while the gene expressions of AURKA and NEDD9 were highly increased in AF patients' left atrium. Loss of primary cilia in human atrial fibroblasts through IFT88 knockdown enhanced expression of ECM genes, including FN1 and COL1A1. Remarkably, restoration or elongation of primary cilia by an AURKA selective inhibitor or lithium chloride, respectively, prevented the increased expression of ECM genes induced by different profibrotic cytokines in atrial fibroblasts of AF patients. Our data reveal a novel mechanism underlying fibrotic substrate formation via primary cilia loss in AF atrial fibroblasts and suggest a therapeutic potential for abrogating atrial fibrosis by restoring primary cilia.


Subject(s)
Atrial Fibrillation , Aurora Kinase A , Cilia , Fibroblasts , Fibrosis , Heart Atria , Humans , Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , Atrial Fibrillation/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Cilia/metabolism , Cilia/pathology , Heart Atria/metabolism , Heart Atria/pathology , Male , Female , Middle Aged , Aurora Kinase A/metabolism , Aurora Kinase A/genetics , Aurora Kinase A/antagonists & inhibitors , Aged , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Tubulin/metabolism , Cells, Cultured , Tumor Suppressor Proteins
20.
Cell Death Dis ; 15(5): 379, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816421

ABSTRACT

CSMD1 (Cub and Sushi Multiple Domains 1) is a well-recognized regulator of the complement cascade, an important component of the innate immune response. CSMD1 is highly expressed in the central nervous system (CNS) where emergent functions of the complement pathway modulate neural development and synaptic activity. While a genetic risk factor for neuropsychiatric disorders, the role of CSMD1 in neurodevelopmental disorders is unclear. Through international variant sharing, we identified inherited biallelic CSMD1 variants in eight individuals from six families of diverse ancestry who present with global developmental delay, intellectual disability, microcephaly, and polymicrogyria. We modeled CSMD1 loss-of-function (LOF) pathogenesis in early-stage forebrain organoids differentiated from CSMD1 knockout human embryonic stem cells (hESCs). We show that CSMD1 is necessary for neuroepithelial cytoarchitecture and synchronous differentiation. In summary, we identified a critical role for CSMD1 in brain development and biallelic CSMD1 variants as the molecular basis of a previously undefined neurodevelopmental disorder.


Subject(s)
Intellectual Disability , Membrane Proteins , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Female , Male , Neurodevelopmental Disorders/genetics , Alleles , Malformations of Cortical Development/genetics , Malformations of Cortical Development/pathology , Child , Child, Preschool , Cell Differentiation/genetics , Tumor Suppressor Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...