Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biol ; 41(12): e0025121, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34543116

ABSTRACT

Toll-like receptors (TLRs) and interleukin-1 (IL-1) receptors regulate immune and inflammatory responses by activating the NF-κB pathway. Here, we report that B-cell-specific loss of dynein light chain 1 (DYNLL1, LC8) or its designated transcription factor ASCIZ (ATMIN) leads to severely reduced in vivo antibody responses to TLR4-dependent but not T-cell-dependent antigens in mice. This defect was independent of DYNLL1's established roles in modulating BIM-dependent apoptosis and 53BP1-dependent antibody class-switch recombination. In B cells and fibroblasts, the ASCIZ-DYNLL1 axis was required for TLR4-, IL-1-, and CD40-mediated NF-κB pathway activation but dispensable for antigen receptor and tumor necrosis factor α (TNF-α) signaling. In contrast to previous reports that overexpressed DYNLL1 directly inhibits the phosphorylation and degradation of the NF-κB inhibitor IκBα, we found here that under physiological conditions, DYNLL1 is required for signal-specific activation of the NF-κB pathway upstream of IκBα. Our data identify DYNLL1 as a signal-specific regulator of the NF-κB pathway and indicate that it may act as a universal modulator of TLR4 (and IL-1) signaling with wide-ranging roles in inflammation and immunity.


Subject(s)
Antibody Formation/immunology , Cytoplasmic Dyneins/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 4/immunology , Transcription Factors/metabolism , Animals , B-Lymphocytes/immunology , CD40 Antigens/metabolism , Cells, Cultured , Cytoplasmic Dyneins/genetics , Immunoglobulin Class Switching/immunology , Mice , Mice, Inbred C57BL , NF-KappaB Inhibitor alpha/metabolism , T-Lymphocytes/immunology , Transcription Factors/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Suppressor p53-Binding Protein 1/immunology
2.
J Immunol ; 202(10): 2924-2944, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30988120

ABSTRACT

Clonal expansion of B cell chronic lymphocytic leukemia (B-CLL) occurs within lymphoid tissue pseudofollicles. IL-15, a stromal cell-associated cytokine found within spleens and lymph nodes of B-CLL patients, significantly boosts in vitro cycling of blood-derived B-CLL cells following CpG DNA priming. Both IL-15 and CpG DNA are elevated in microbe-draining lymphatic tissues, and unraveling the basis for IL-15-driven B-CLL growth could illuminate new therapeutic targets. Using CpG DNA-primed human B-CLL clones and approaches involving both immunofluorescent staining and pharmacologic inhibitors, we show that both PI3K/AKT and JAK/STAT5 pathways are activated and functionally important for IL-15→CD122/ɣc signaling in ODN-primed cells expressing activated pSTAT3. Furthermore, STAT5 activity must be sustained for continued cycling of CFSE-labeled B-CLL cells. Quantitative RT-PCR experiments with inhibitors of PI3K and STAT5 show that both contribute to IL-15-driven upregulation of mRNA for cyclin D2 and suppression of mRNA for DNA damage response mediators ATM, 53BP1, and MDC1. Furthermore, protein levels of these DNA damage response molecules are reduced by IL-15, as indicated by Western blotting and immunofluorescent staining. Bioinformatics analysis of ENCODE chromatin immunoprecipitation sequencing data from cell lines provides insight into possible mechanisms for STAT5-mediated repression. Finally, pharmacologic inhibitors of JAKs and STAT5 significantly curtailed B-CLL cycling when added either early or late in a growth response. We discuss how the IL-15-induced changes in gene expression lead to rapid cycling and possibly enhanced mutagenesis. STAT5 inhibitors might be an effective modality for blocking B-CLL growth in patients.


Subject(s)
Cyclin D2/immunology , DNA Damage/immunology , Interleukin-15/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Proto-Oncogene Proteins c-akt/immunology , STAT5 Transcription Factor/immunology , Signal Transduction/immunology , Adaptor Proteins, Signal Transducing/immunology , Adult , Aged , Aged, 80 and over , Ataxia Telangiectasia Mutated Proteins/immunology , Cell Cycle Proteins/immunology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/immunology , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Middle Aged , Tumor Suppressor p53-Binding Protein 1/immunology , Up-Regulation/immunology
3.
Proc Natl Acad Sci U S A ; 114(7): E1196-E1204, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28137874

ABSTRACT

Class-switch recombination (CSR) alters the Ig isotype to diversify antibody effector functions. IgD CSR is a rare event, and its regulation is poorly understood. We report that deficiency of 53BP1, a DNA damage-response protein, caused age-dependent overproduction of secreted IgD resulting from increased IgD CSR exclusively within B cells of mucosa-associated lymphoid tissues. IgD overproduction was dependent on activation-induced cytidine deaminase, hematopoietic MyD88 expression, and an intact microbiome, against which circulating IgD, but not IgM, was reactive. IgD CSR occurred via both alternative nonhomologous end-joining and homologous recombination pathways. Microbiota-dependent IgD CSR also was detected in nasal-associated lymphoid tissue of WT mice. These results identify a pathway, present in WT mice and hyperactivated in 53BP1-deficient mice, by which microbiota signal via Toll-like receptors to elicit IgD CSR.


Subject(s)
Immunoglobulin Class Switching , Immunoglobulin D/immunology , Lymphoid Tissue/immunology , Microbiota/immunology , Mucous Membrane/immunology , Animals , Cytidine Deaminase/genetics , Cytidine Deaminase/immunology , Cytidine Deaminase/metabolism , DNA End-Joining Repair , Female , Immunoglobulin D/genetics , Immunoglobulin D/metabolism , Lymphoid Tissue/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Microbiota/genetics , Mucous Membrane/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Myeloid Differentiation Factor 88/metabolism , Recombination, Genetic , Tumor Suppressor p53-Binding Protein 1/deficiency , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/immunology
4.
Sci Rep ; 6: 22275, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26925533

ABSTRACT

Carbon ion radiotherapy shows great potential as a cure for X-ray-resistant tumors. Basic research suggests that the strong cell-killing effect induced by carbon ions is based on their ability to cause complex DNA double-strand breaks (DSBs). However, evidence supporting the formation of complex DSBs in actual patients is lacking. Here, we used advanced high-resolution microscopy with deconvolution to show that complex DSBs are formed in a human tumor clinically treated with carbon ion radiotherapy, but not in a tumor treated with X-ray radiotherapy. Furthermore, analysis using a physics model suggested that the complexity of radiotherapy-induced DSBs is related to linear energy transfer, which is much higher for carbon ion beams than for X-rays. Visualization of complex DSBs in clinical specimens will help us to understand the anti-tumor effects of carbon ion radiotherapy.


Subject(s)
DNA Breaks, Double-Stranded , DNA/ultrastructure , Heavy Ion Radiotherapy , Uterine Cervical Neoplasms/radiotherapy , Adult , Aged , Biopsy , Cell Death/radiation effects , DNA Breaks, Double-Stranded/radiation effects , Female , Humans , Linear Energy Transfer , Microscopy , Tumor Burden/radiation effects , Tumor Suppressor p53-Binding Protein 1/immunology , Uterine Cervical Neoplasms/ultrastructure , X-Ray Therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...