Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
1.
Mol Cancer ; 23(1): 92, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715072

ABSTRACT

Breast cancer, the most frequent female malignancy, is often curable when detected at an early stage. The treatment of metastatic breast cancer is more challenging and may be unresponsive to conventional therapy. Immunotherapy is crucial for treating metastatic breast cancer, but its resistance is a major limitation. The tumor microenvironment (TME) is vital in modulating the immunotherapy response. Various tumor microenvironmental components, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), are involved in TME modulation to cause immunotherapy resistance. This review highlights the role of stromal cells in modulating the breast tumor microenvironment, including the involvement of CAF-TAM interaction, alteration of tumor metabolism leading to immunotherapy failure, and other latest strategies, including high throughput genomic screening, single-cell and spatial omics techniques for identifying tumor immune genes regulating immunotherapy response. This review emphasizes the therapeutic approach to overcome breast cancer immune resistance through CAF reprogramming, modulation of TAM polarization, tumor metabolism, and genomic alterations.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Immunotherapy , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Breast Neoplasms/immunology , Breast Neoplasms/drug therapy , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Female , Immunotherapy/methods , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology , Animals , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/drug effects
2.
J Clin Invest ; 134(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38690738

ABSTRACT

Targeting tumor-associated macrophages (TAMs) is an emerging approach being tested in multiple clinical trials. TAMs, depending on their differentiation state, can exhibit pro- or antitumorigenic functions. For example, the M2-like phenotype represents a protumoral state that can stimulate tumor growth, angiogenesis, metastasis, therapy resistance, and immune evasion by expressing immune checkpoint proteins. In this issue of the JCI, Vaccaro and colleagues utilized an innovative drug screen approach to demonstrate that targeting driver oncogenic signaling pathways concurrently with anti-CD47 sensitizes tumor cells, causing them to undergo macrophage-induced phagocytosis. The combination treatment altered expression of molecules on the tumor cells that typically limit phagocytosis. It also reprogrammed macrophages to an M1-like antitumor state. Moreover, the approach was generalizable to tumor cells with different oncogenic pathways, opening the door to precision oncology-based rationale combination therapies that have the potential to improve outcomes for patients with oncogene-driven lung cancers and likely other cancer types.


Subject(s)
CD47 Antigen , Tumor-Associated Macrophages , Humans , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , CD47 Antigen/metabolism , CD47 Antigen/antagonists & inhibitors , Animals , Phagocytosis/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Macrophages/metabolism , Macrophages/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism
3.
Cancer Immunol Immunother ; 73(7): 128, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743074

ABSTRACT

The majority of the immune cell population in the tumor microenvironment (TME) consists of tumor-associated macrophages (TAM), which are the main players in coordinating tumor-associated inflammation. TAM has a high plasticity and is divided into two main phenotypes, pro-inflammatory M1 type and anti-inflammatory M2 type, with tumor-suppressive and tumor-promoting functions, respectively. Considering the beneficial effects of M1 macrophages for anti-tumor and the high plasticity of macrophages, the conversion of M2 TAM to M1 TAM is feasible and positive for tumor treatment. This study sought to evaluate whether the glycopeptide derived from simulated digested Codonopsis pilosula extracts could regulate the polarization of M2-like TAM toward the M1 phenotype and the potential regulatory mechanisms. The results showed that after glycopeptide dCP1 treatment, the mRNA relative expression levels of some M2 phenotype marker genes in M2-like TAM in simulated TME were reduced, and the relative expression levels of M1 phenotype marker genes and inflammatory factor genes were increased. Analysis of RNA-Seq of M2-like TAM after glycopeptide dCP1 intervention showed that the gene sets such as glycolysis, which is associated with macrophage polarization in the M1 phenotype, were significantly up-regulated, whereas those of gene sets such as IL-6-JAK-STAT3 pathway, which is associated with polarization in the M2 phenotype, were significantly down-regulated. Moreover, PCA analysis and Pearson's correlation also indicated that M2-like TAM polarized toward the M1 phenotype at the transcriptional level after treatment with the glycopeptide dCP1. Lipid metabolomics was used to further explore the efficacy of the glycopeptide dCP1 in regulating the polarization of M2-like TAM to the M1 phenotype. It was found that the lipid metabolite profiles in dCP1-treated M2-like TAM showed M1 phenotype macrophage lipid metabolism profiles compared with blank M2-like TAM. Analysis of the key differential lipid metabolites revealed that the interconversion between phosphatidylcholine (PC) and diacylglycerol (DG) metabolites may be the central reaction of the glycopeptide dCP1 in regulating the conversion of M2-like TAM to the M1 phenotype. The above results suggest that the glycopeptide dCP1 has the efficacy to regulate the polarization of M2-like TAM to M1 phenotype in simulated TME.


Subject(s)
Codonopsis , Phenotype , Tumor Microenvironment , Tumor-Associated Macrophages , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Animals , Mice , Tumor Microenvironment/drug effects , Humans , Glycopeptides/metabolism , Glycopeptides/pharmacology , Macrophage Activation/drug effects , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/immunology
4.
J Mater Chem B ; 12(20): 4809-4823, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38695349

ABSTRACT

Tumor-associated macrophages (TAMs) are predominantly present in the tumor microenvironment (TME) and play a crucial role in shaping the efficacy of tumor immunotherapy. These TAMs primarily exhibit a tumor-promoting M2-like phenotype, which is associated with the suppression of immune responses and facilitation of tumor progression. Interestingly, recent research has highlighted the potential of repolarizing TAMs from an M2 to a pro-inflammatory M1 status-a shift that has shown promise in impeding tumor growth and enhancing immune responsiveness. This concept is particularly intriguing as it offers a new dimension to cancer therapy by targeting the tumor microenvironment, which is a significant departure from traditional approaches that focus solely on tumor cells. However, the clinical application of TAM-modulating agents is often challenged by issues such as insufficient tumor accumulation and off-target effects, limiting their effectiveness and safety. In this regard, nanomaterials have emerged as a novel solution. They serve a dual role: as delivery vehicles that can enhance the accumulation of therapeutic agents in the tumor site and as TAM-modulators. This dual functionality of nanomaterials is a significant advancement as it addresses the key limitations of current TAM-modulating strategies and opens up new avenues for more efficient and targeted therapies. This review provides a comprehensive overview of the latest mechanisms and strategies involving nanomaterials in modulating macrophage polarization within the TME. It delves into the intricate interactions between nanomaterials and macrophages, elucidating how these interactions can be exploited to drive macrophage polarization towards a phenotype that is more conducive to anti-tumor immunity. Additionally, the review explores the burgeoning field of TAM-associated nanomedicines in combination with tumor immunotherapy. This combination approach is particularly promising as it leverages the strengths of both nanomedicine and immunotherapy, potentially leading to synergistic effects in combating cancer.


Subject(s)
Immunotherapy , Nanostructures , Tumor Microenvironment , Tumor-Associated Macrophages , Humans , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism , Immunotherapy/methods , Nanostructures/chemistry , Tumor Microenvironment/drug effects , Animals , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
5.
ACS Appl Mater Interfaces ; 16(20): 25665-25675, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38735053

ABSTRACT

Tumor-associated macrophages (TAMs) usually adopt a tumor-promoting M2-like phenotype, which largely impedes the immune response and therapeutic efficacy of solid tumors. Repolarizing TAMs from M2 to the antitumor M1 phenotype is crucial for reshaping the tumor immunosuppressive microenvironment (TIME). Herein, we developed self-assembled nanoparticles from the polymeric prodrug of resiquimod (R848) to reprogram the TIME for robust cancer immunotherapy. The polymeric prodrug was constructed by conjugating the R848 derivative to terminal amino groups of the linear dendritic polymer composed of linear poly(ethylene glycol) and lysine dendrimer. The amphiphilic prodrug self-assembled into nanoparticles (PLRS) of around 35 nm with a spherical morphology. PLRS nanoparticles could be internalized by antigen-presenting cells (APCs) in vitro and thus efficiently repolarized macrophages from M2 to M1 and facilitated the maturation of APCs. In addition, PLRS significantly inhibited tumor growth in the 4T1 orthotopic breast cancer model with much lower systemic side effects. Mechanistic studies suggested that PLRS significantly stimulated the TIME by repolarizing TAMs into the M1 phenotype and increased the infiltration of cytotoxic T cells into the tumor. This study provides an effective polymeric prodrug-based strategy to improve the therapeutic efficacy of R848 in cancer immunotherapy.


Subject(s)
Imidazoles , Immunotherapy , Nanoparticles , Prodrugs , Prodrugs/chemistry , Prodrugs/pharmacology , Prodrugs/therapeutic use , Animals , Mice , Imidazoles/chemistry , Imidazoles/pharmacology , Nanoparticles/chemistry , Female , Mice, Inbred BALB C , Cell Line, Tumor , Humans , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , RAW 264.7 Cells , Polyethylene Glycols/chemistry , Tumor Microenvironment/drug effects , Dendrimers/chemistry , Dendrimers/pharmacology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism
6.
Nat Commun ; 15(1): 4485, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802355

ABSTRACT

Although Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have been approved in multiple diseases, including BRCA1/2 mutant breast cancer, responses are usually transient requiring the deployment of combination therapies for optimal efficacy. Here we thus explore mechanisms underlying sensitivity and resistance to PARPi using two intrinsically PARPi sensitive (T22) and resistant (T127) syngeneic murine breast cancer models in female mice. We demonstrate that tumor associated macrophages (TAM) potentially contribute to the differential sensitivity to PARPi. By single-cell RNA-sequencing, we identify a TAM_C3 cluster, expressing genes implicated in anti-inflammatory activity, that is enriched in PARPi resistant T127 tumors and markedly decreased by PARPi in T22 tumors. Rps19/C5aR1 signaling is selectively elevated in TAM_C3. C5aR1 inhibition or transferring C5aR1hi cells increases and decreases PARPi sensitivity, respectively. High C5aR1 levels in human breast cancers are associated with poor responses to immune checkpoint blockade. Thus, targeting C5aR1 may selectively deplete pro-tumoral macrophages and engender sensitivity to PARPi and potentially other therapies.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Poly(ADP-ribose) Polymerase Inhibitors , Receptor, Anaphylatoxin C5a , Tumor-Associated Macrophages , Animals , Female , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Humans , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Cell Line, Tumor , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/metabolism , Receptor, Anaphylatoxin C5a/genetics , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects , Macrophages/metabolism , Macrophages/drug effects
7.
Int J Biol Macromol ; 269(Pt 2): 132089, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705331

ABSTRACT

Pro-inflammatory M1 macrophages possess the ability to change the immunosuppressive tumor microenvironment by releasing various inflammatory factors simultaneously, which can effectively inhibit tumor progression and relapse. Promoting macrophage polarization towards M1 may be an effective way to treat Melanoma. However, the risk of cytokine storm caused by the proliferation and excessive activation of M1 macrophages greatly limits it as a biosafety therapeutic strategy in anti-tumor immunotherapy. Therefore, how to engineer natural M1 macrophage to a biocompatible biomaterial that maintains the duration time of tumor suppressive property duration time still remains a huge challenge. To achieve this goal, we developed an injectable macroporous hydrogel (M1LMHA) using natural M1 macrophage lysates and alginate as raw materials. M1LMHA had excellent biocompatibility, adjustable degradation rate and could sustainably release varieties of natural inflammatory factors, such as tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), and interleukin-12 (IL-12), etc. M1LMHA could repolarize anti-inflammatory M2 macrophages to M1 macrophages by the synergistic effect of released tiny inflammatory factors via the NF-κB pathway. This study supported that M1LMHA might be an effective and safe tool to activate tumor-associated immune cells, improving the efficiency of anti-tumor immunotherapy.


Subject(s)
Alginates , Hydrogels , Tumor-Associated Macrophages , Alginates/chemistry , Alginates/pharmacology , Mice , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Melanoma/therapy , Melanoma/immunology , Melanoma/drug therapy , Melanoma/pathology , Porosity , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , RAW 264.7 Cells , Cytokines/metabolism , Cell Line, Tumor , Tumor Microenvironment/drug effects
8.
J Cancer Res Ther ; 20(2): 695-705, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38687942

ABSTRACT

BACKGROUND: Tumor-associated macrophages (TAMs) are intimately involved in cancer radiochemotherapy resistance. However, the mechanism by which macrophages affect radiosensitivity through autophagy remains unclear. The purpose of our study was to investigate how activating autophagy in type-II macrophages (M2) by using rapamycin (RAP) would affect the radiosensitivity of colorectal cancer (CRC) xenografts. MATERIALS AND METHODS: A nude mouse CRC model was established by injecting LoVo CRC cells. After tumor formation, supernatant from M2 cells (autophagy-unactivated), autophagy-activated M2 cells, or autophagy-downregulated M2 cells was injected peritumorally. All tumor-bearing mice were irradiated with 8-Gy X-rays twice, and the radiosensitivity of CRC xenografts was analyzed in each group. RESULTS: The mass, volume, and microvessel density (MVD) of tumors in the autophagy-unactivated M2 group significantly increased; however, supernatant from M2 cells that were autophagy-activated by rapamycin significantly decreased tumor weight, volume, and MVD compared with negative control. Combining bafilomycin A1 (BAF-A1) with RAP treatment restored the ability of the M2 supernatant to increase tumor mass, volume, and MVD. Immunohistochemical and Western blot results showed that compared with the negative control group, supernatant from M2 cells that were not activated by autophagy downregulated the expression of Livin and Survivin in tumor tissues; activation of M2 autophagy further downregulated the protein levels. CONCLUSIONS: Therefore, autophagy-activated M2 supernatant can downregulate the expression of the antiapoptotic genes Livin and Survivin in CRC xenografts, improving the radiosensitivity of CRC by inducing apoptosis in combination with radiotherapy and inhibiting the growth of transplanted tumors.


Subject(s)
Autophagy , Colorectal Neoplasms , Mice, Nude , Radiation Tolerance , Sirolimus , Xenograft Model Antitumor Assays , Animals , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/therapy , Colorectal Neoplasms/radiotherapy , Colorectal Neoplasms/metabolism , Mice , Autophagy/drug effects , Autophagy/radiation effects , Humans , Radiation Tolerance/drug effects , Sirolimus/pharmacology , Sirolimus/therapeutic use , Cell Line, Tumor , Apoptosis/drug effects , Apoptosis/radiation effects , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/radiation effects , Survivin/metabolism , Survivin/genetics , Mice, Inbred BALB C , Male
9.
Expert Opin Drug Deliv ; 21(4): 663-677, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38680108

ABSTRACT

BACKGROUND: Chemo-immunotherapy modifies the tumor microenvironment to enhance the immune response and improve chemotherapy. This study introduces a dual-armed chemo-immunotherapy strategy combating breast tumor progression while re-polarizing Tumor-Associated Macrophage (TAM) using prodigiosin-loaded mannan-coated magnetic nanoparticles (PG@M-MNPs). METHODS: The physicochemical properties of one-step synthetized M-MNPs were analyzed, including X-ray diffraction, FTIR, DLS, VSM, TEM, zeta potential analysis, and drug loading content were carried out. Biocompatibility, cancer specificity, cellular uptake, and distribution of PG@M-MNPs were investigated using fluorescence and confocal laser scanning microscopy, and flow cytometry. Furthermore, the expression levels of IL-6 and ARG-1 after treatment with PG and PG@M-MNPs on M1 and M2 macrophage subsets were studied. RESULTS: The M-MNPs were successfully synthesized and characterized, demonstrating a size below 100 nm. The release kinetics of PG from M-MNPs showed sustained and controlled patterns, with enzyme-triggered release. Cytotoxicity assessments revealed an enhanced selectivity of PG@M-MNPs against cancer cells and minimal effects on normal cells. Additionally, immuno-modulatory activity demonstrates the potential of PG@M-MNPs to change the polarization dynamics of macrophages. CONCLUSION: These findings highlight the potential of a targeted approach to breast cancer treatment, offering new avenues for improved therapeutic outcomes and patient survival.


Subject(s)
Breast Neoplasms , Liver Neoplasms , Magnetite Nanoparticles , Mannose , Tumor Microenvironment , Tumor-Associated Macrophages , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Humans , Female , Magnetite Nanoparticles/chemistry , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Mannose/chemistry , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Cell Line, Tumor , Immunomodulation/drug effects , Animals , Particle Size , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Immunotherapy/methods , Mannans/chemistry , Mannans/administration & dosage , Mice , Drug Delivery Systems
10.
ACS Nano ; 18(17): 11165-11182, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38626338

ABSTRACT

Glioblastoma (GBM) is an aggressive brain cancer that is highly resistant to treatment including chimeric antigen receptor (CAR)-T cells. Tumor-associated microglia and macrophages (TAMs) are major contributors to the immunosuppressive GBM microenvironment, which promotes tumor progression and treatment resistance. Hence, the modulation of TAMs is a promising strategy for improving the immunotherapeutic efficacy of CAR-T cells against GBM. Molecularly targeting drug pexidartinib (PLX) has been reported to re-educate TAMs toward the antitumorigenic M1-like phenotype. Here, we developed a cell-drug integrated technology to reversibly conjugate PLX-containing liposomes (PLX-Lip) to CAR-T cells and establish tumor-responsive integrated CAR-T cells (PLX-Lip/AZO-T cells) as a combination therapy for GBM. We used a mouse model of GBM to show that PLX-Lip was stably maintained on the surface of PLX-Lip/AZO-T cells in circulation and these cells could transmigrate across the blood-brain barrier and deposit PLX-Lip at the tumor site. The uptake of PLX-Lip by TAMs effectively re-educated them into the M1-like phenotype, which in turn boosted the antitumor function of CAR-T cells. GBM tumor growth was completely eradicated in 60% of the mice after receiving PLX-Lip/AZO-T cells and extended their overall survival time beyond 50 days; in comparison, the median survival time of mice in other treatment groups did not exceed 35 days. Overall, we demonstrated the successful fusion of CAR-T cells and small-molecule drugs with the cell-drug integrated technology. These integrated CAR-T cells provided a superior combination strategy for GBM treatment and presented a reference for the construction of integrated cell-based drugs.


Subject(s)
Aminopyridines , Brain Neoplasms , Glioblastoma , Microglia , Receptors, Chimeric Antigen , Glioblastoma/therapy , Glioblastoma/pathology , Glioblastoma/immunology , Glioblastoma/drug therapy , Animals , Mice , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Humans , Microglia/drug effects , Microglia/metabolism , Microglia/immunology , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Liposomes/chemistry , Pyrroles/chemistry , Pyrroles/pharmacology , Immunotherapy , Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Cell Line, Tumor , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism , Immunotherapy, Adoptive , T-Lymphocytes/immunology , T-Lymphocytes/drug effects
11.
ACS Nano ; 18(17): 11025-11041, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38626916

ABSTRACT

ALK-positive NSCLC patients demonstrate initial responses to ALK tyrosine kinase inhibitor (TKI) treatments, but eventually develop resistance, causing rapid tumor relapse and poor survival rates. Growing evidence suggests that the combination of drug and immune therapies greatly improves patient survival; however, due to the low immunogenicity of the tumors, ALK-positive patients do not respond to currently available immunotherapies. Tumor-associated macrophages (TAMs) play a crucial role in facilitating lung cancer growth by suppressing tumoricidal immune activation and absorbing chemotherapeutics. However, they can also be programmed toward a pro-inflammatory tumor suppressive phenotype, which represents a highly active area of therapy development. Iron loading of TAMs can achieve such reprogramming correlating with an improved prognosis in lung cancer patients. We previously showed that superparamagnetic iron oxide nanoparticles containing core-cross-linked polymer micelles (SPION-CCPMs) target macrophages and stimulate pro-inflammatory activation. Here, we show that SPION-CCPMs stimulate TAMs to secrete reactive nitrogen species and cytokines that exert tumoricidal activity. We further show that SPION-CCPMs reshape the immunosuppressive Eml4-Alk lung tumor microenvironment (TME) toward a cytotoxic profile hallmarked by the recruitment of CD8+ T cells, suggesting a multifactorial benefit of SPION-CCPM application. When intratracheally instilled into lung cancer-bearing mice, SPION-CCPMs delay tumor growth and, after first line therapy with a TKI, halt the regrowth of relapsing tumors. These findings identify SPIONs-CCPMs as an adjuvant therapy, which remodels the TME, resulting in a delay in the appearance of resistant tumors.


Subject(s)
Crizotinib , Lung Neoplasms , Magnetic Iron Oxide Nanoparticles , Tumor Microenvironment , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Tumor Microenvironment/drug effects , Animals , Magnetic Iron Oxide Nanoparticles/chemistry , Humans , Mice , Crizotinib/pharmacology , Crizotinib/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Cell Line, Tumor , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism , Cell Proliferation/drug effects , Female
12.
Biomaterials ; 308: 122568, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38615488

ABSTRACT

The crosstalk between breast cancer cells and tumor associated macrophages (TAMs) greatly contributes to tumor progression and immunosuppression. In this work, cat eye syndrome chromosome region candidate 2 (CECR2) is identified to overexpress in breast cancer patients, which can recognize v-rel avian reticuloendotheliosis viral oncogene homolog A (RelA) and activate nuclear factor κB (NF-κB) to release colony stimulating factor-1 (CSF-1). Pharmacological inhibition of CECR2 by the bromodomain competitor (Bromosporine, Bro) can downregulate CSF-1 to inhibit M2 type TAMs. To amplify the immunotherapeutic effect, a chimeric peptide-based and optical controlled CECR2 competitor (designated as N-PB) is constructed to enhance the nuclear targeted delivery of Bro and initiate an immunogenic cell death (ICD). In vivo results indicate a favorable breast cancer targeting ability and primary tumor suppression effect of N-PB under optical irradiation. Importantly, N-PB downregulates CSF-1 by competitive inhibition of CECR2 and NF-κB(RelA) interactions, thus inhibiting immunosuppressive M2-like TAMs while improving the antitumorigenic M1-like phenotype. Ultimately, the systemic anti-tumor immunity is activated to suppress the metastatic breast cancer in an optical controlled manner. This study provides a promising therapeutic target and reliable strategy for metastatic breast cancer treatment by interrupting immunosuppressive crosstalk between tumor cells and macrophages.


Subject(s)
Breast Neoplasms , Down-Regulation , Immunotherapy , Macrophage Colony-Stimulating Factor , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Breast Neoplasms/drug therapy , Female , Animals , Humans , Immunotherapy/methods , Down-Regulation/drug effects , Macrophage Colony-Stimulating Factor/metabolism , Cell Line, Tumor , Mice , Mice, Inbred BALB C , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Cell Nucleus/metabolism , Transcription Factor RelA/metabolism , Neoplasm Metastasis
13.
Int J Biol Macromol ; 269(Pt 1): 131826, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679256

ABSTRACT

The tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) is characterized by deposition of desmoplastic matrix (including collagen and hyaluronic acid). And the interactions between tumor-associated macrophages (TAMs) and tumor cells play a crucial role in progression of PDAC. Hence, the appropriate model of tumor cell-macrophage interaction within the unique PDAC TME is of significantly important. To this end, a 3D tumor niche based on dual-crosslinking gelatin methacrylate and hyaluronic acid methacrylate hydrogels was constructed to simulate the desmoplastic tumor matrix with matching compressive modulus and composition. The bionic 3D tumor niche creates an immunosuppressive microenvironment characterized by the downregulation of M1 markers and upregulation of M2 markers in TAMs. Mechanistically, RNA-seq analysis revealed that the PI3K-AKT signaling pathway might modulate the phenotypic balance and recruitment of macrophages through regulating SELE and VCAM-1. Furthermore, GO and GSEA revealed the biological process of leukocyte migration and the activation of cytokine-associated signaling were involved. Finally, the 3D tumor-macrophage niches with three different ratios were fabricated which displayed increased M2-like polarization and stemness. The utilization of the 3D tumor niche has the potential to provide a more accurate investigation of the interplay between PDAC tumor cells and macrophages within an in vivo setting.


Subject(s)
Carcinoma, Pancreatic Ductal , Gelatin , Hyaluronic Acid , Methacrylates , Tumor Microenvironment , Tumor-Associated Macrophages , Gelatin/chemistry , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Humans , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/drug effects , Tumor Microenvironment/drug effects , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Methacrylates/chemistry , Methacrylates/pharmacology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Hydrogels/chemistry , Cell Line, Tumor , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Signal Transduction/drug effects
14.
Int J Nanomedicine ; 19: 3589-3605, 2024.
Article in English | MEDLINE | ID: mdl-38645464

ABSTRACT

Purpose: This study aimed to develop a novel and feasible modification strategy to improve the solubility and antitumor activity of resiquimod (R848) by utilizing the supramolecular effect of 2-hydroxypropyl-beta-cyclodextrin (2-HP-ß-CD). Methods: R848-loaded PLGA nanoparticles modified with 2-HP-ß-CD (CD@R848@NPs) were synthesized using an enhanced emulsification solvent-evaporation technique. The nanoparticles were then characterized in vitro by several methods, such as scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, particle size analysis, and zeta potential analysis. Then, the nanoparticles were loaded with IR-780 dye and imaged using an in vivo imaging device to evaluate their biodistribution. Additionally, the antitumor efficacy and underlying mechanism of CD@R848@NPs in combination with an anti-TNFR2 antibody were investigated using an MC-38 colon adenocarcinoma model in vivo. Results: The average size of the CD@R848@NPs was 376 ± 30 nm, and the surface charge was 21 ± 1 mV. Through this design, the targeting ability of 2-HP-ß-CD can be leveraged and R848 is delivered to tumor-supporting M2-like macrophages in an efficient and specific manner. Moreover, we used an anti-TNFR2 antibody to reduce the proportion of Tregs. Compared with plain PLGA nanoparticles or R848, CD@R848@NPs increased penetration in tumor tissues, dramatically reprogrammed M1-like macrophages, removed tumors and prolonged patient survival. Conclusion: The new nanocapsule system is a promising strategy for targeting tumor, reprogramming tumor -associated macrophages, and enhancement immunotherapy.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin , Colonic Neoplasms , Imidazoles , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Tumor-Associated Macrophages , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/pharmacokinetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Animals , Nanoparticles/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Tumor-Associated Macrophages/drug effects , Cell Line, Tumor , Mice , Humans , Tissue Distribution , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/administration & dosage , Particle Size , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics
15.
J Med Chem ; 67(8): 6854-6879, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38593344

ABSTRACT

Blocking CSF-1/CSF-1R pathway has emerged as a promising strategy to remodel tumor immune microenvironment (TME) by reprogramming tumor-associated macrophages (TAMs). In this work, a novel CSF-1R inhibitor C19 with a highly improved pharmacokinetic profile and in vivo anticolorectal cancer (CRC) efficiency was successfully discovered. C19 could effectively reprogram M2-like TAMs to M1 phenotype and reshape the TME by inducing the recruitment of CD8+ T cells into tumors and reducing the infiltration of immunosuppressive Tregs/MDSCs. Deeper mechanistic studies revealed that C19 facilitated the infiltration of CD8+ T cells by enhancing the secretion of chemokine CXCL9, thus significantly potentiating the anti-CRC efficiency of PD-1 blockade. More importantly, C19 combined with PD-1 mAb could induce durable antitumor immune memory, effectively overcoming the recurrence of CRC. Taken together, our findings suggest that C19 is a promising therapeutic option for sensitizing CRC to anti-PD-1 therapy.


Subject(s)
Colorectal Neoplasms , Immunotherapy , Receptor, Macrophage Colony-Stimulating Factor , Colorectal Neoplasms/drug therapy , Animals , Humans , Mice , Immunotherapy/methods , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Tumor Microenvironment/drug effects , Mice, Inbred BALB C , Cell Line, Tumor , Female , Drug Discovery , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Male , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology
16.
Chem Biol Drug Des ; 103(3): e14507, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38538070

ABSTRACT

Non-small cell lung cancer (NSCLC) is an aggressive and devastating cancer due to its metastasis induced by increased invasion. Lentinan is a polysaccharide exerting antitumor roles in multiple cancers, including lung cancer. However, the influence of lentinan on cell invasion in NSCLC remains unclear. Cell invasion was detected by transwell analysis. Matrix metallopeptidase 9 (MMP9) levels were measured through immunofluorescence staining. The markers arginase-1 (Arg-1), CD206 and interleukin (IL)-10 (IL-10) of M2 macrophages, Wnt3a, and ß-catenin levels were measured by western blot or enzyme linked immunosorbent assay. Lentinan did not affect cell viability and proliferation in NSCLC cells. Lentinan suppressed cell invasion and reduced the expression and secretion of MMP9. Lentinan attenuated also M2 polarization of tumor-associated macrophages. Moreover, lentinan mitigated the M2 macrophage conditioned medium-mediated cell invasion and MMP9 alterations in NSCLC cells. Lentinan inhibited the activation of the Wnt/ß-catenin signaling in NSCLC cells. The activated Wnt/ß-catenin pathway reversed the suppressive effects of lentinan on cell invasion and MMP9 level in NSCLC cells. In conclusion, lentinan reduces cell invasion in NSCLC cells by inhibiting the M2 polarization of tumor-associated macrophages and the Wnt/ß-catenin signaling.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lentinan , Lung Neoplasms , Humans , beta Catenin/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Lentinan/pharmacology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Matrix Metalloproteinase 9 , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology
17.
Phytomedicine ; 128: 155532, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493722

ABSTRACT

BACKGROUND: The tumor microenvironment (TME) of hepatocellular carcinoma is heterogeneous enough to be prone to drug resistance and multidrug resistance during treatment, and reprogramming of cholesterol metabolism in TME mediates tumor-associated macrophages (TAMs) polarization, which has an impact on the regulation of malignant tumor progression. Arenobufagin (ARBU) was extracted and isolated from toad venom (purity ≥98 %), which is the main active ingredient of the traditional Chinese medicine Chan'su with good anti-tumor effects. PURPOSE: To investigate the regulatory effect of ARBU on lipid metabolism in tumor microenvironment, interfere with macrophage polarization, and determine its mechanism of action on liver cancer progression. METHODS: In this study, the inhibitory effect of ARBU on the proliferation of Hepa1-6 in C57 mice and the safety of administration were evaluated by establishing a transplanted tumor model of Hepa1-6 hepatocellular carcinoma mice and using 5-FU as a positive control drug. In addition, we constructed a co-culture system of Hepa1-6 cells and primary mouse macrophages to study the effects of ARBU on the polarization phenotypic transformation of macrophages and the proliferation and migration of hepatoma cells. The influence of ARBU on the metabolism of lipids in the hepatocellular carcinoma mouse model was investigated by combining it with lipidomics technology. The influence of ARBU on the PCSK9/LDL-R signaling pathway and macrophage polarization, which regulate cholesterol metabolism, was tested by using qRT-PCR, gene editing, IF, and WB. CONCLUSION: ARBU significantly inhibited the proliferation of Hepa1-6 in vivo and in vitro, regulated cholesterol metabolism, and promoted the M1-type polarization of macrophages in the tumor microenvironment. ARBU inhibits cholesterol synthesis in the TME through the PCSK9/LDL-R signaling pathway, thereby blocking macrophage M2 polarization, promoting apoptosis of the tumor cells, and inhibiting their proliferation and migration.


Subject(s)
Bufanolides , Carcinoma, Hepatocellular , Cell Proliferation , Cholesterol , Liver Neoplasms , Mice, Inbred C57BL , Proprotein Convertase 9 , Tumor Microenvironment , Tumor-Associated Macrophages , Animals , Bufanolides/pharmacology , Carcinoma, Hepatocellular/drug therapy , Proprotein Convertase 9/metabolism , Liver Neoplasms/drug therapy , Tumor-Associated Macrophages/drug effects , Tumor Microenvironment/drug effects , Mice , Cholesterol/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Male , Cell Movement/drug effects , Amphibian Venoms/pharmacology
18.
Adv Sci (Weinh) ; 11(18): e2310163, 2024 May.
Article in English | MEDLINE | ID: mdl-38460167

ABSTRACT

Intrinsic immunosuppressive tumor microenvironment (ITM) and insufficient tumor infiltration of T cells severely impede the progress of glioblastoma (GBM) immunotherapy. In this study, it is identify that inhibiting the expression of glucose transporter 1 (GLUT1) can facilitate the prevention of lactate excretion from tumor glycolysis, which significantly alleviates the lactate-driven ITM by reducing immunosuppressive tumor-associated macrophages (TAMs) and regulatory T cells (Tregs). Simultaneously, the findings show that the generated inflammatory cytokine IFN-γ during immune activation aggravates the immune escape by upregulating immune checkpoint programmed death-ligand 1 (PD-L1) in tumor cells and TAMs. Therefore, an injectable thermogel loaded with a GLUT1 inhibitor BAY-876 and a PD-1/PD-L1 blocker BMS-1 (Gel@B-B) for dual-regulation of metabolism and immunity of GBM is developed. Consequently, in situ injection of Gel@B-B significantly delays tumor growth and prolongs the survival of the orthotopic GBM mouse model. By actively exposing tumor antigens to antigen-presenting cells, the GBM vaccine combined with Gel@B-B is found to significantly increase the fraction of effector T cells (Th1/CTLs) in the tumor microenvironment, thereby remarkably mitigating tumor recurrence long-term. This study may provide a promising strategy for GBM immunotherapy.


Subject(s)
B7-H1 Antigen , Glioblastoma , Immunotherapy , Lactic Acid , Tumor Microenvironment , Glioblastoma/immunology , Glioblastoma/therapy , Glioblastoma/drug therapy , Animals , Mice , Immunotherapy/methods , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , B7-H1 Antigen/immunology , B7-H1 Antigen/antagonists & inhibitors , Disease Models, Animal , Humans , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , Cell Line, Tumor , Gels , Immune Checkpoint Inhibitors/pharmacology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects
19.
Int Immunopharmacol ; 132: 111960, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38554440

ABSTRACT

Scorpion venoms identified as agents with anti-tumor and anti-angiogenic features. Tumor microenvironment (TME) plays a pivotal role in the process of tumorigenesis, tumor development, and polarization of M2 phenotype tumor associated macrophages (TAMs). M2 polarized cells are associated with tumor growth, invasion, and metastasis. The fractionation process was performed by gel filtration chromatography on a Sephadex G50 column. To elucidate whether scorpion venom can alter macrophage polarization, we treated interleukin (IL)-4-polarized M2 cells with isolated fractions from Mesobuthus eupeus. Next, we evaluated the cytokine production and specific markers expression for M2 and M1 phenotype using enzyme linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (PCR), respectively. The phagocytic capacity of macrophages was also assessed. In addition, the migration assay and MTT analysis were performed to investigate the effects of reprogrammed macrophages on the CT-26 colon cancer cells. The results indicated that F1 fraction of venom significantly upregulated the levels and expression of M1-associated cytokines and markers, including tumor necrosis factor-alpha (TNF-α) (p < 0.001), IL-1 (p < 0.01), interferon regulatory factor 5 (IRF5) (p < 0.0001), induced nitric oxide synthase (iNOS) (p < 0.0001), and CD86 (p < 0.0001), and downregulated M2-related markers, including transforming growth factor-beta (TGF-ß) (p < 0.05), IL-10 (p < 0.05), Fizz1 (p < 0.0001), arginase-1 (Arg-1) (p < 0.0001), and CD206 (p < 0.001). The macrophage phagocytic capacity was enhanced after treatment with F1 fraction (p < 0.01). Moreover, incubation of CT-26 cell line with conditioned media of F1-treated macrophages suppressed migration (p < 0.0001) and proliferation (p < 0.01) of tumor cells. In conclusion, our findings demonstrated the potential of Mesobuthus eupeus venom in M2-to-M1 macrophage polarization as a promising therapeutic approach against proliferation and metastasis of colon cancer cells.


Subject(s)
Animals, Poisonous , Cytokines , Scorpion Venoms , Animals , Scorpion Venoms/pharmacology , Mice , Cell Line, Tumor , Cytokines/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/immunology , Antineoplastic Agents/pharmacology , Scorpions , Macrophages/drug effects , Macrophages/immunology , Cell Movement/drug effects , Phagocytosis/drug effects , Tumor Microenvironment/drug effects , Macrophage Activation/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism , Mice, Inbred BALB C , RAW 264.7 Cells , Humans , Phenotype
20.
Mol Cancer Ther ; 23(5): 672-682, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38315993

ABSTRACT

Head and neck cancer (HNC) is prevalent worldwide, and treatment options are limited. Momordicine-I (M-I), a natural component from bitter melon, shows antitumor activity against these cancers, but its mechanism of action, especially in the tumor microenvironment (TME), remains unclear. In this study, we establish that M-I reduces HNC tumor growth in two different immunocompetent mouse models using MOC2 and SCC VII cells. We demonstrate that the anticancer activity results from modulating several molecules in the monocyte/macrophage clusters in CD45+ populations in MOC2 tumors by single-cell RNA sequencing. Tumor-associated macrophages (TAM) often pose a barrier to antitumor effects, but following M-I treatment, we observe a significant reduction in the expression of Sfln4, a myeloid cell differentiation factor, and Cxcl3, a neutrophil chemoattractant, in the monocyte/macrophage populations. We further find that the macrophages must be in close contact with the tumor cells to inhibit Sfln4 and Cxcl3, suggesting that these TAMs are impacted by M-I treatment. Coculturing macrophages with tumor cells shows inhibition of Agr1 expression following M-I treatment, which is indicative of switching from M2 to M1 phenotype. Furthermore, the total B-cell population in M-I-treated tumors is significantly lower, whereas spleen cells also show similar results when cocultured with MOC2 cells. M-I treatment also inhibits PD1, PD-L1, and FoxP3 expression in tumors. Collectively, these results uncover the potential mechanism of M-I by modulating immune cells, and this new insight can help to develop M-I as a promising candidate to treat HNCs, either alone or as adjuvant therapy.


Subject(s)
B-Lymphocytes , Head and Neck Neoplasms , Animals , Mice , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/immunology , Humans , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor Microenvironment/drug effects , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Cell Line, Tumor , Cell Proliferation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...