Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.126
Filter
1.
J Genet ; 1032024.
Article in English | MEDLINE | ID: mdl-38831648

ABSTRACT

We present here the complete mitochondrial sequence of the critically endangered Malaysian giant turtle, Orlitia borneensis. The assembled mitochondrial genome includes 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA genes (rRNAs), and one control region. This mitochondrial genome has been archived in the NCBI GenBank with accession number OQ808845. The Batagur control region is relatively smaller than O. borneensis and closer to Aldabrachelys gigantea, which suggests potentially that O. borneensis has undergone an expansion in the control region.


Subject(s)
Endangered Species , Genome, Mitochondrial , RNA, Transfer , Turtles , Animals , Turtles/genetics , RNA, Transfer/genetics , Phylogeny , Malaysia , RNA, Ribosomal/genetics , DNA, Mitochondrial/genetics
2.
Mol Biol Rep ; 51(1): 634, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727746

ABSTRACT

BACKGROUND: The Chinese soft-shelled turtle, Pelodiscus sinensis, exhibits distinct sexual dimorphism, with the males growing faster and larger than the females. During breeding, all-male offspring can be obtained using 17ß-estradiol (E2). However, the molecular mechanisms underlying E2-induced sexual reversal have not yet been elucidated. Previous studies have investigated the molecular sequence and expression characteristics of estrogen receptors (ERs). METHODS AND RESULTS: In this study, primary liver cells and embryos of P. sinensis were treated with ER agonists or inhibitors. Cell incubation experiments revealed that nuclear ERs (nERs) were the main pathway for the transmission of estrogen signals. Our results showed that ERα agonist (ERα-ag) upregulated the expression of Rspo1, whereas ERα inhibitor (ERα-Inh) downregulated its expression. The expression of Dmrt1 was enhanced after ERα-Inh + G-ag treatment, indicating that the regulation of male genes may not act through a single estrogen receptor, but a combination of ERs. In embryos, only the ERα-ag remarkably promoted the expression levels of Rspo1, Wnt4, and ß-catenin, whereas the ERα-Inh had a suppressive effect. Additionally, Dmrt1, Amh, and Sox9 expression levels were downregulated after ERß inhibitor (ERß-Inh) treatment. GPER agonist (G-ag) has a significant promotion effect on Rspo1, Wnt4, and ß-catenin, while the inhibitor G-Inh does not affect male-related genes. CONCLUSIONS: Overall, these results suggest that ERs play different roles during sexual reversal in P. sinensis and ERα may be the main carrier of estrogen-induced sexual reversal in P. sinensis. Further studies need to be performed to analyze the mechanism of ER action.


Subject(s)
Receptors, Estrogen , Turtles , Animals , Turtles/genetics , Turtles/metabolism , Male , Female , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Estradiol/pharmacology , Estradiol/metabolism , Sex Characteristics , Estrogens/metabolism , Estrogens/pharmacology , beta Catenin/metabolism , beta Catenin/genetics , Liver/metabolism , Signal Transduction/genetics , Signal Transduction/drug effects
3.
J Acoust Soc Am ; 155(5): 3254-3266, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38742964

ABSTRACT

Testudines are a highly threatened group facing an array of stressors, including alteration of their sensory environment. Underwater noise pollution has the potential to induce hearing loss and disrupt detection of biologically important acoustic cues and signals. To examine the conditions that induce temporary threshold shifts (TTS) in hearing in the freshwater Eastern painted turtle (Chrysemys picta picta), three individuals were exposed to band limited continuous white noise (50-1000 Hz) of varying durations and amplitudes (sound exposure levels ranged from 151 to 171 dB re 1 µPa2 s). Control and post-exposure auditory thresholds were measured and compared at 400 and 600 Hz using auditory evoked potential methods. TTS occurred in all individuals at both test frequencies, with shifts of 6.1-41.4 dB. While the numbers of TTS occurrences were equal between frequencies, greater shifts were observed at 600 Hz, a frequency of higher auditory sensitivity, compared to 400 Hz. The onset of TTS occurred at 154 dB re 1 µPa2 s for 600 Hz, compared to 158 dB re 1 µPa2 s at 400 Hz. The 400-Hz onset and patterns of TTS growth and recovery were similar to those observed in previously studied Trachemys scripta elegans, suggesting TTS may be comparable across Emydidae species.


Subject(s)
Acoustic Stimulation , Auditory Threshold , Turtles , Animals , Turtles/physiology , Time Factors , Noise/adverse effects , Evoked Potentials, Auditory/physiology , Hearing Loss, Noise-Induced/physiopathology , Hearing Loss, Noise-Induced/etiology , Male , Female , Hearing/physiology
4.
Sci Rep ; 14(1): 10827, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734762

ABSTRACT

The creation of protected areas (PAs) is not always based on science; consequently, some aquatic species may not receive the same level of protection as terrestrial ones. The objective of this study was to identify priority areas for the conservation of chelonians in the Brazilian Amazon basin and assess the contribution of PAs, distinguishing between Full Protection Areas, Sustainable Use Areas, and Indigenous Lands for group protection. The entire species modeling procedure was carried out using Species Distribution Models. Location records were obtained from platforms such as SpeciesLink, GBIF, the Hydroatlas database, and WorldClim for bioclimatic variables adjusted with algorithms like Maximum Entropy, Random Forest, Support Vector Machine, and Gaussian-Bayesian. Indigenous lands cover more than 50% of the distribution areas of chelonian species in the Brazilian Amazon. Protected areas with higher conservation importance (Full Protection Areas and Sustainable Use Areas) hold less than 15% of the combined species distribution. Researchers face significant challenges when making decisions with models, especially in conservation efforts involving diverse taxa that differ significantly from one another within a group of individuals.


Subject(s)
Conservation of Natural Resources , Turtles , Brazil , Conservation of Natural Resources/methods , Animals , Biodiversity , Ecosystem
5.
Front Immunol ; 15: 1376860, 2024.
Article in English | MEDLINE | ID: mdl-38799475

ABSTRACT

Introduction: Aeromonas hydrophila, a bacterium widely distributed in the natural environment, causes multiple diseases in various animals. Exploring the mechanism of the host defense against A. hydrophila can help develop efficient strategies against Aeromonas infection. Methods: Herein, we investigated the temporal influence of A. hydrophila on the Chinese soft-shelled turtle, an economically important species, at the biochemical, transcriptomic, and metabolomic levels. Plasma parameters were detected with the test kits. Transcriptome and metabolome were respectively applied to screen the differentially expressed genes and metabolites. Results: The contents or activities of these plasma parameters were significantly increased at 24 hpi and declined at 96 hpi, indicating that 24 and 96 hpi were two important time points during infection. Totals of 3121 and 274 differentially expressed genes (DEGs) from the transcriptome while 74 and 91 differentially abundant metabolites (DAMs) from the metabolome were detected at 24 and 96 hpi. The top DEGs at 24 hpi included Ccl2, Ccl3, Ccl4, Il1ß, Il6, Il7, Il15, Tnf, and Tnfr1 while Zap70, Cd3g, Cd8a, Itk, Pik3r3, Cd247, Malt1, and Cd4 were the most abundant at 96 hpi. The predominant DAMs included O-phospho-L-serine, γ-Aminobutyric acid, orotate, L-tyrosine, and L-tryptophan at 24 hpi, as well as L-glutamic acid, L-arginine, glutathione, glutathione disulfide, and citric acid at 96 hpi. Discussion: The combined analysis of DEGs and DAMs revealed that tryptophan metabolism, nicotinate and nicotinamide metabolism, as well as starch and sucrose metabolism, were the most important signaling pathways at the early infective stage while tyrosine metabolism, pyrimidine metabolism, as well as alanine, aspartate and glutamate metabolism were the most crucial pathways at the later stage. In general, our results indicated that the Chinese soft-shelled turtle displays stage-specific physiological responses to resist A. hydrophila infection.


Subject(s)
Aeromonas hydrophila , Gram-Negative Bacterial Infections , Liver , Metabolome , Metabolomics , Signal Transduction , Transcriptome , Turtles , Animals , Turtles/microbiology , Turtles/immunology , Turtles/genetics , Aeromonas hydrophila/physiology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Liver/metabolism , Gene Expression Profiling
6.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38755020

ABSTRACT

AIMS: Microbiome composition is increasingly considered in species reintroduction efforts and may influence survival and reproductive success. Many turtle species are threatened by anthropogenic pressures and are frequently raised in captivity for reintroduction efforts, yet little is known about turtle microbiome composition in either wild or captive settings. Here, we investigated trends in microbiome composition of captive and wild IUCN-endangered Blanding's turtles (Emydoidea blandingii). METHODS AND RESULTS: We amplified and sequenced the V4 region of the 16S rDNA locus from plastron, cloaca, and water samples of wild E. blandingii adults and two populations of captive E. blandingii juveniles being raised for headstarting. Plastron, cloaca, and water-associated microbiomes differed strongly from each other and were highly variable among captive sites and between captive and wild sites. Across plastron, cloaca, and water-associated microbial communities, microbial diversity changed over time, but not in a predictable direction between captive sites. Plastron beta diversity correlated with growth rate in captive samples, indicating that external microbiomes may correlate with individual fitness. CONCLUSIONS: Our results indicate that external and internal microbiomes vary between captive and wild turtles and may reflect differences in fitness of captive-raised individuals.


Subject(s)
Endangered Species , Microbiota , Turtles , Animals , Turtles/microbiology , RNA, Ribosomal, 16S/genetics , Cloaca/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification
7.
Open Vet J ; 14(4): 962-972, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38808293

ABSTRACT

Background: The developmental biology of Kinosternon scorpioides is described, based on the phenotype. This species is important for the flora because they are excellent seed disseminators. In addition, basic embryological information is not yet fully clarified, and this research provides unprecedented information on the chelonian embryology of the Amazonian fauna. Aim: The present study aims to identify the embryology of K. scorpioides in captivity during different periods. Methods: Females were monitored throughout the reproductive cycle, by video monitoring, to identify nests and the presence of newly laid eggs. At regular weekly intervals, embryo samples were collected fixed in a 4% paraformol solution and preserved in 70% alcohol. For the embryonic characterization, we used a stereomicroscope and the scanning electron microscopy method. Results: We describe 15 embryonic stages for a 15-week (105-day) incubation process. Only at 42 days (6th week) was the morphological characterization of a chelonian observed and at the 12th week (Stage XII), the phenotypic characterization of the species K. scorpioides. Conclusion: In view of the evidence, we found that these phases are similar to the other turtles, with structural variations in the appearance and disappearance of structures due to the specific characteristics of the species.


Subject(s)
Embryonic Development , Turtles , Animals , Turtles/embryology , Female , Embryo, Nonmammalian , Microscopy, Electron, Scanning/veterinary
8.
Sci Total Environ ; 934: 173178, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38750733

ABSTRACT

Humans produce 350 million metric tons of plastic waste per year, leading to microplastic pollution and widespread environmental contamination, particularly in aquatic environments. This subsequently impacts aquatic organisms in myriad ways, yet the vast majority of research is conducted in marine, rather than freshwater systems. In this study, we exposed eggs and hatchlings of the Chinese soft-shelled turtle (Pelodiscus sinensis) to 80-nm polystyrene nanoplastics (PS-NPs) and monitored the impacts on development, behavior and the gut microbiome. We demonstrate that 80-nm PS-NPs can penetrate the eggshell and move into developing embryos. This led to metabolic impairments, as evidenced by bradycardia (a decreased heart rate), which persisted until hatching. We found no evidence that nanoplastic exposure affected hatchling morphology, growth rates, or levels of boldness and exploration, yet we discuss some potential caveats here. Exposure to nanoplastics reduced the diversity and homogeneity of gut microbiota in P. sinensis, with the level of disruption correlating to the length of environmental exposure (during incubation only or post-hatching also). Thirteen core genera (with an initial abundance >1 %) shifted after nanoplastic treatment: pathogenic bacteria increased, beneficial probiotic bacteria decreased, and there was an increase in the proportion of negative correlations between bacterial genera. These changes could have profound impacts on the viability of turtles throughout their lives. Our study highlights the toxicity of environmental NPs to the embryonic development and survival of freshwater turtles. We provide insights about population trends of P. sinensis in the wild, and future directions for research.


Subject(s)
Gastrointestinal Microbiome , Turtles , Water Pollutants, Chemical , Turtles/microbiology , Turtles/physiology , Animals , Gastrointestinal Microbiome/drug effects , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Behavior, Animal/drug effects
9.
Microb Ecol ; 87(1): 79, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814337

ABSTRACT

Research on microbial communities associated with wild animals provides a valuable reservoir of knowledge that could be used for enhancing their rehabilitation and conservation. The loggerhead sea turtle (Caretta caretta) is a globally distributed species with its Mediterranean population categorized as least concern according to the IUCN Red List of Threatened Species as a result of robust conservation efforts. In our study, we aimed to further understand their biology in relation to their associated microorganisms. We investigated epi- and endozoic bacterial and endozoic fungal communities of cloaca, oral mucosa, carapace biofilm. Samples obtained from 18 juvenile, subadult, and adult turtles as well as 8 respective enclosures, over a 3-year period, were analysed by amplicon sequencing of 16S rRNA gene and ITS2 region of nuclear ribosomal gene. Our results reveal a trend of decreasing diversity of distal gut bacterial communities with the age of turtles. Notably, Tenacibaculum species show higher relative abundance in juveniles than in adults. Differential abundances of taxa identified as Tenacibaculum, Moraxellaceae, Cardiobacteriaceae, and Campylobacter were observed in both cloacal and oral samples in addition to having distinct microbial compositions with Halioglobus taxa present only in oral samples. Fungal communities in loggerheads' cloaca were diverse and varied significantly among individuals, differing from those of tank water. Our findings expand the known microbial diversity repertoire of loggerhead turtles, highlighting interesting taxa specific to individual body sites. This study provides a comprehensive view of the loggerhead sea turtle bacterial microbiota and marks the first report of distal gut fungal communities that contributes to establishing a baseline understanding of loggerhead sea turtle holobiont.


Subject(s)
Bacteria , Fungi , RNA, Ribosomal, 16S , Turtles , Animals , Turtles/microbiology , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Microbiota , Cloaca/microbiology , Mycobiome , Biodiversity , Gastrointestinal Microbiome , Biofilms
10.
PLoS One ; 19(5): e0302889, 2024.
Article in English | MEDLINE | ID: mdl-38709805

ABSTRACT

Semi-articulated remains of a large chelonioid turtle from the Turonian strata (Upper Cretaceous; ca. 93.9-89.8 Myr) near Sant'Anna d'Alfaedo (Verona province, northeastern Italy) are described for the first time. Together with the skeletal elements, the specimen also preserves pebbles inside the thoracic area which are lithologically distinct from the surrounding matrix. These allochthonous clasts are here interpreted as geo-gastroliths, in-life ingested stones that resided in the digestive tract of the animal. This interpretation marks the first reported evidence of geophagy in a fossil marine turtle. SEM-EDS analysis, together with macroscopic petrological characterization, confirm the presence of both siliceous and carbonatic pebbles. These putative geo-gastroliths have morphometries and size ranges more similar to those of gastroliths in different taxa (fossils and extant) than allochthonous "dropstone" clasts from the same deposit that were carried by floating vegetation A dense pitted pattern of superficial erosion is microscopically recognizable on the carbonatic gastroliths, consistent with surface etching due to gastric acids. The occurrence of a similar pattern was demonstrated by the experimental etching of carbonatic pebbles with synthetic gastric juice. Gut contents of modern green sea turtles (Chelonia mydas) were surveyed for substrate ingestion, providing direct evidence of geophagic behavior in extant chelonioids. Comparison with modern turtle dietary habits may suggests that the pebbles were ingested as a way to supplement calcium after or in preparation for egg deposition, implying that the studied specimen was possibly a gravid female.


Subject(s)
Fossils , Turtles , Animals , Turtles/anatomy & histology , Italy , Paleontology
11.
Anat Histol Embryol ; 53(3): e13052, 2024 May.
Article in English | MEDLINE | ID: mdl-38735035

ABSTRACT

One crucial component of the optical system is the ciliary body (CB). This body secretes the aqueous humour, which is essential to maintain the internal eye pressure as well as the clearness of the lens and cornea. The histological study was designed to provide the morphological differences of CB and iris in the anterior eye chambers of the following vertebrate classes: fish (grass carp), amphibians (Arabian toad), reptiles (semiaquatic turtle, fan-footed gecko, ocellated skink, Egyptian spiny-tailed lizard, Arabian horned viper), birds (common pigeon, common quail, common kestrel), and mammals (BALB/c mouse, rabbit, golden hamster, desert hedgehog, lesser Egyptian jerboa, Egyptian fruit bat). The results showed distinct morphological appearances of the CB and iris in each species, ranging from fish to mammals. The present comparative study concluded that the morphological structure of the CB and iris is the adaptation of species to either their lifestyle or survival in specific habitats.


Subject(s)
Ciliary Body , Iris , Animals , Ciliary Body/anatomy & histology , Iris/anatomy & histology , Rabbits/anatomy & histology , Mice/anatomy & histology , Lizards/anatomy & histology , Vertebrates/anatomy & histology , Reptiles/anatomy & histology , Fishes/anatomy & histology , Birds/anatomy & histology , Anterior Chamber/anatomy & histology , Turtles/anatomy & histology , Carps/anatomy & histology , Mice, Inbred BALB C , Amphibians/anatomy & histology , Cricetinae , Quail/anatomy & histology , Hedgehogs/anatomy & histology , Columbidae/anatomy & histology , Mesocricetus/anatomy & histology
12.
Am Nat ; 203(6): 644-654, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781523

ABSTRACT

AbstractWe live in a time of accelerated biological extinctions that has the potential to mirror past mass extinction events. However, the rarity of mass extinctions and the restructuring of diversity they cause complicate direct comparisons between the current extinction crisis and earlier events. Among animals, turtles (Testudinata) are one of few groups that have both a rich fossil record and sufficiently stable ecological and functional roles to enable meaningful comparisons between the end-Cretaceous mass extinction (∼66 Ma) and the ongoing wave of extinctions. Here we analyze the fossil record of the entire turtle clade and identify two peaks in extinction rates over their evolutionary history. The first coincides with the Cretaceous-Paleogene transition, reflecting patterns previously reported for other taxa. The second major extinction event started in the Pliocene and continues until now. This peak is detectable only for terrestrial turtles and started much earlier in Africa and Eurasia than elsewhere. On the basis of the timing, geography, and functional group of this extinction event, we postulate a link to co-occurring hominins rather than climate change as the cause. These results lend further support to the view that negative biodiversity impacts were already incurred by our ancestors and related lineages and demonstrate the severity of this continued impact through human activities.


Subject(s)
Biological Evolution , Extinction, Biological , Fossils , Hominidae , Turtles , Animals , Fossils/anatomy & histology , Hominidae/anatomy & histology
13.
BMC Ecol Evol ; 24(1): 71, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811886

ABSTRACT

Home range is a fundamental characteristic of an animal natural history. The study of home range provides information on the sites where organisms forage for food, find shelter, or locate mates. Home range size and shape can change throughout the lifespan of an organism, during the year, or across seasons, driven by resource availability and the basic needs for each organism. For freshwater and semi-aquatic turtles, home range is greatly affected by water availability, humidity, and temperature throughout the year, nevertheless demographic factors such age and sex are also important determinants of home range size. In this study we estimated home range and dispersal movements for Kinosternon creaseri, Terrapene yucatana, and Rhinoclemmys areolata in a semi-tropical dry forest in central Yucatán. For a two-year period, turtles were surveyed using hoop traps and visual encounters. Twenty-one individuals (5-8 per species) were equipped with radio transmitters to track them across the landscape. Distances between relocations and home range were compared across species seasons, sex, and interactions of these variables. Monthly average movements were positively correlated with rain in the three species studied. Home range of R. areolata was larger than those of K. creaseri and T. yucatana. Home range of the three studied species were larger during the wet season. Home range overlap index within same species individuals was higher during the rainy than dry season, but overall overlap is low between and within species.


Subject(s)
Homing Behavior , Seasons , Turtles , Turtles/physiology , Animals , Female , Male , Mexico , Homing Behavior/physiology
14.
Mar Pollut Bull ; 203: 116485, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754319

ABSTRACT

In this study, the accumulation rate of plastic litter was investigated by sampling quadrats placed on the North Island of Qilianyu, and the composition was analyzed and identified to determine its source. The results showed that the annual average accumulation rate of plastic litter on North Island was 0.64 ± 0.32 pieces·m-2·month-1, with a mass accumulation rate of 11.30 ± 7.73 g·m-2·month-1. The accumulation rate of plastic litter was mainly influenced by wind speed and direction, with higher accumulation rates occurring during the southwest monsoon season and tropical cyclones. ATR-FTIR analysis indicated that polyethylene (44 %) and polypropylene (41 %) were the most abundant types of polymers. This study reveals the current status of plastic litter pollution in green turtle nesting grounds on North Island in Qilianyu, which can be used as a reference for management strategies that mitigate plastic litter pollution.


Subject(s)
Environmental Monitoring , Plastics , Turtles , Animals , Plastics/analysis , China , Water Pollutants, Chemical/analysis , Islands , Nesting Behavior
15.
Environ Sci Pollut Res Int ; 31(22): 31967-31977, 2024 May.
Article in English | MEDLINE | ID: mdl-38642227

ABSTRACT

Marine pollution by trace elements is a global concern due to potential toxicity to species and ecosystems. Copper is a fundamental trace element for many organisms; however, it becomes toxic at certain concentrations. The green turtle (Chelonia mydas) is a good sentinel species, due to its circumglobal distribution, long life cycle, coastal habits when juvenile, and is subject to environmental pollution. Quantifying and comparing copper levels makes it possible to understand the availability of this trace element in nature. During this research, comparisons were made between the levels of copper found in the liver, kidneys, and muscles of 35 turtles, from the United States (Hawaii and Texas), Brazil, and Japan. Copper was found in all specimens. In the liver, animals from Hawaii (91.08 µg g-1), Texas (46.11 µg g-1), and Japan (65.18 µg g-1) had statistically equal means, while those from Brazil (16. 79 µg g-1) had the lowest means. For the kidney, copper means were statistically equal for all Hawaii (3.71 µg g-1), Texas (4.83 µg g-1), Japan (2.47 µg g-1), and Brazil (1.89 µg g-1). In muscle, the means between Texas (0.75 µg g-1) and Japan (0.75 µg g-1) were the same, and the mean for Brazil (0.13 µg g-1) was the lowest. Among the organs, the highest levels of copper were found in the liver (28.33 µg g-1) followed by the kidney (2.25 µg g-1) and with the lowest levels in the muscle (0.33 µg g-1). This is the first study of copper levels among marine vertebrates in distant parts of the globe using similar comparative filters between different locations. Similar levels in turtles from such distant locations may indicate that there is a pantropical pattern of copper distribution in the biota, and that these animals are subject to the process of bioavailability of this metal in the environment and metabolic regulation.


Subject(s)
Copper , Turtles , Water Pollutants, Chemical , Animals , Turtles/metabolism , Copper/analysis , Pacific Ocean , Water Pollutants, Chemical/analysis , Atlantic Ocean , Environmental Monitoring , Brazil , Liver/metabolism , Liver/chemistry , Kidney/chemistry , Japan , Texas
16.
PeerJ ; 12: e16712, 2024.
Article in English | MEDLINE | ID: mdl-38560463

ABSTRACT

Biotic and abiotic factors play a crucial role in determining the distribution of species. These factors dictate the conditions that must be met for a species to thrive in a particular area. Sister species that present some degree of niche overlap can shed light on how they are distributed and coexist in their environment. This study aims to investigate the geographical distribution and ecological niche of the sister species of snake-necked turtles Hydromedusa maximiliani and H. tectifera. By analyzing their niche overlap, we aim to obtain a better understanding of how these two species coexist and which variables are determining their occurences. We applied species distribution modeling and compared the niches using the niche equivalence and similarity tests. Our findings show that the distribution of H. maximiliani is most influenced by temperature seasonality and isothermality, while H. tectifera is most affected by the temperature seasonality, precipitation of warmest quarter and mean diurnal range. In addition, our results suggest that the niche expressed by H. maximiliani retained ecological characteristics that can accurately predict the H. tectifera distribution, but the inverse is not true. In this sense, differences are not solely due to the geographic availability of environmental conditions but can reflect niche restrictions, such as competition.


Subject(s)
Turtles , Animals , Ecosystem , Temperature
17.
PLoS One ; 19(4): e0302170, 2024.
Article in English | MEDLINE | ID: mdl-38625927

ABSTRACT

Reliable population estimates are important for making informed management decisions about wildlife species. Standardized survey protocols have been developed for monitoring population trends of the wood turtle (Glyptemys insculpta), a semi-aquatic freshwater turtle species of conservation concern throughout its distribution in east-central North America. The protocols use repeated active search surveys of defined areas, allowing for estimation of survey-specific detection probability (p) and site-specific abundance. These protocols assume population closure within the survey area during the survey period, which is unlikely to be met as wood turtles are a highly mobile species. Additionally, current protocols use a single-pass design that does not allow for separation of availability (pa) and detectability (pd). If there are systematic influences on pa or pd that are not accounted for in the survey design or data analysis, then resulting abundance estimates could be biased. The objectives of this study were to determine if pa is a random process and if pa and pd are influenced by demographic characteristics. We modified the wood turtle survey protocol used in the upper Midwest to include a double-pass design, allowing us to estimate pa and pd using a robust design capture-recapture model. The modified protocol was implemented at 14 wood turtle monitoring sites in Minnesota and Wisconsin between 2017 and 2022. Our results indicated that pa was non-random and that pd increased with turtle carapace length. Our study suggests that model assumptions for current wood turtle population models may be violated, likely resulting in an overestimation of abundance. We discuss possible protocol and modeling modifications that could result in more accurate wood turtle abundance estimates.


Subject(s)
Turtles , Animals , Animals, Wild , North America , Fresh Water , Minnesota
18.
PLoS One ; 19(4): e0298065, 2024.
Article in English | MEDLINE | ID: mdl-38626211

ABSTRACT

Anoxia in the mammalian brain leads to hyper-excitability and cell death; however, this cascade of events does not occur in the anoxia-tolerant brain of the western painted turtle, Chrysemys picta belli. The painted turtle has become an important anoxia-tolerant model to study brain, heart, and liver function in the absence of oxygen, but being anoxia-tolerant likely means that decapitation alone is not a suitable method of euthanasia. Many anesthetics have long-term effects on ion channels and are not appropriate for same day experimentation. Using whole-cell electrophysiological techniques, we examine the effects of the anesthetic, Alfaxalone, on pyramidal cell action potential amplitude, threshold, rise and decay time, width, frequency, whole cell conductance, and evoked GABAA receptors currents to determine if any of these characteristics are altered with the use of Alfaxalone for animal sedation. We find that Alfaxalone has no long-term impact on action potential parameters or whole-cell conductance. When acutely applied to naïve tissue, Alfaxalone did lengthen GABAA receptor current decay rates by 1.5-fold. Following whole-animal sedation with Alfaxalone, evoked whole cell GABAA receptor current decay rates displayed an increasing trend with 1 and 2 hours after brain sheet preparation, but showed no significant change after a 3-hour washout period. Therefore, we conclude that Alfaxalone is a suitable anesthetic for same day use in electrophysiological studies in western painted turtle brain tissue.


Subject(s)
Anesthetics , Hypoxia, Brain , Pregnanediones , Turtles , Animals , Turtles/physiology , Receptors, GABA-A/metabolism , Pyramidal Cells/metabolism , Hypoxia/metabolism , Anesthetics/pharmacology , Mammals
19.
PLoS One ; 19(4): e0301892, 2024.
Article in English | MEDLINE | ID: mdl-38635596

ABSTRACT

Clinical assessment of body condition is crucial in captive and free-ranging reptiles, since a large percentage of diseases result from inadequate nutrition. However, preventive health care is restricted by the lack of a practical method for the assessment in tortoises. Pre-existing evaluation systems based on weight and shell measurements are laborious and ignore the clinical presentation of the animal. The present study aimed to facilitate the assessment by establishing a body condition score. A total of 373 Hermann's Tortoises (Testudo hermanni) (n = 281 tortoises kept as pets in Germany and n = 92 tortoises originating from a free-ranging population (68) or a rearing station (24) in France) were examined and data (weight (g), carapace length (cm), width (cm), height (cm)) were recorded in a standard protocol between October 2020 and October 2021. A modified version of a body condition score for Mojave Desert Tortoises (Gopherus agassizii) (1 = cachectic, 3 = ideal, 5 = obese) was utilized and tested against pre-existing shell measurement systems (Jackson's ratio, body condition index, volume condition index, circumferential product). German captive tortoises were significantly heavier and larger than French specimens. In the Spearman's correlation matrix, the body condition score showed a statistically significant correlation with all measurement methods in the total population of captive tortoises (Testudo hermanni boettgeri), with a medium correlation strength, and a lack of correlation in free-ranging tortoises (Testudo hermanni hermanni). However, individual animal data suggested misleading results of mathematical equations in terms of body condition. Clinical evaluation of tortoises, including a body condition score, should be considered essential to provide good healthcare and should be an integral part of general examination.


Subject(s)
Turtles , Animals , France , Germany , Delivery of Health Care
20.
BMC Genomics ; 25(1): 383, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637759

ABSTRACT

BACKGROUND: The Asian yellow pond turtle (Mauremys mutica) is an important commercial freshwater aquaculture species in China. This species is a highly sexually dimorphic species, with males growing at a faster rate than females and exhibits temperature-dependent sex determination (TSD), in which the incubation temperature during embryonic development determines the sexual fate. However, the mechanisms of the sex determination or sex differentiation in the Asian yellow pond turtle are remain a mystery. RESULTS: Temperature-specific gonadal transcriptomics of the Asian yellow pond turtle were performed during the thermosensitive period (stage 15) using RNA-seq technology to identify candidate genes that initiate gonadal differentiation. We uncovered candidates that were the first to respond to temperature. These candidates were sexually dimorphic in expression, reflecting differences in gonadal (Cirbp, Runx1) and germline differentiation (Vasa, Nanos1, Piwil2), gametogenesis (Hmgb3, Zar1, Ovoinhibitor-like, Kif4), steroid hormone biosynthesis (Hsd17b5, Hsd17b6), heat shock (Dnajb6, Hsp90b1, Hsp90aa1) and transient receptor potential channel genes (Trpm1, Trpm4, Trpm6, Trpv1). CONCLUSIONS: Our work will provide important genetic information to elucidate the mechanisms of sex control in the Asian yellow pond turtles, and will contribute important genetic resources for further studies of temperature-dependent sex determination in turtles.


Subject(s)
Sex Differentiation , Turtles , Male , Animals , Female , Sex Differentiation/genetics , Turtles/genetics , Temperature , Gene Expression Profiling , Embryonic Development
SELECTION OF CITATIONS
SEARCH DETAIL
...