Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 371
Filter
1.
Sci Total Environ ; 934: 173178, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38750733

ABSTRACT

Humans produce 350 million metric tons of plastic waste per year, leading to microplastic pollution and widespread environmental contamination, particularly in aquatic environments. This subsequently impacts aquatic organisms in myriad ways, yet the vast majority of research is conducted in marine, rather than freshwater systems. In this study, we exposed eggs and hatchlings of the Chinese soft-shelled turtle (Pelodiscus sinensis) to 80-nm polystyrene nanoplastics (PS-NPs) and monitored the impacts on development, behavior and the gut microbiome. We demonstrate that 80-nm PS-NPs can penetrate the eggshell and move into developing embryos. This led to metabolic impairments, as evidenced by bradycardia (a decreased heart rate), which persisted until hatching. We found no evidence that nanoplastic exposure affected hatchling morphology, growth rates, or levels of boldness and exploration, yet we discuss some potential caveats here. Exposure to nanoplastics reduced the diversity and homogeneity of gut microbiota in P. sinensis, with the level of disruption correlating to the length of environmental exposure (during incubation only or post-hatching also). Thirteen core genera (with an initial abundance >1 %) shifted after nanoplastic treatment: pathogenic bacteria increased, beneficial probiotic bacteria decreased, and there was an increase in the proportion of negative correlations between bacterial genera. These changes could have profound impacts on the viability of turtles throughout their lives. Our study highlights the toxicity of environmental NPs to the embryonic development and survival of freshwater turtles. We provide insights about population trends of P. sinensis in the wild, and future directions for research.


Subject(s)
Gastrointestinal Microbiome , Turtles , Water Pollutants, Chemical , Turtles/microbiology , Turtles/physiology , Animals , Gastrointestinal Microbiome/drug effects , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Behavior, Animal/drug effects
2.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38755020

ABSTRACT

AIMS: Microbiome composition is increasingly considered in species reintroduction efforts and may influence survival and reproductive success. Many turtle species are threatened by anthropogenic pressures and are frequently raised in captivity for reintroduction efforts, yet little is known about turtle microbiome composition in either wild or captive settings. Here, we investigated trends in microbiome composition of captive and wild IUCN-endangered Blanding's turtles (Emydoidea blandingii). METHODS AND RESULTS: We amplified and sequenced the V4 region of the 16S rDNA locus from plastron, cloaca, and water samples of wild E. blandingii adults and two populations of captive E. blandingii juveniles being raised for headstarting. Plastron, cloaca, and water-associated microbiomes differed strongly from each other and were highly variable among captive sites and between captive and wild sites. Across plastron, cloaca, and water-associated microbial communities, microbial diversity changed over time, but not in a predictable direction between captive sites. Plastron beta diversity correlated with growth rate in captive samples, indicating that external microbiomes may correlate with individual fitness. CONCLUSIONS: Our results indicate that external and internal microbiomes vary between captive and wild turtles and may reflect differences in fitness of captive-raised individuals.


Subject(s)
Endangered Species , Microbiota , Turtles , Animals , Turtles/microbiology , RNA, Ribosomal, 16S/genetics , Cloaca/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification
3.
Microb Ecol ; 87(1): 79, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814337

ABSTRACT

Research on microbial communities associated with wild animals provides a valuable reservoir of knowledge that could be used for enhancing their rehabilitation and conservation. The loggerhead sea turtle (Caretta caretta) is a globally distributed species with its Mediterranean population categorized as least concern according to the IUCN Red List of Threatened Species as a result of robust conservation efforts. In our study, we aimed to further understand their biology in relation to their associated microorganisms. We investigated epi- and endozoic bacterial and endozoic fungal communities of cloaca, oral mucosa, carapace biofilm. Samples obtained from 18 juvenile, subadult, and adult turtles as well as 8 respective enclosures, over a 3-year period, were analysed by amplicon sequencing of 16S rRNA gene and ITS2 region of nuclear ribosomal gene. Our results reveal a trend of decreasing diversity of distal gut bacterial communities with the age of turtles. Notably, Tenacibaculum species show higher relative abundance in juveniles than in adults. Differential abundances of taxa identified as Tenacibaculum, Moraxellaceae, Cardiobacteriaceae, and Campylobacter were observed in both cloacal and oral samples in addition to having distinct microbial compositions with Halioglobus taxa present only in oral samples. Fungal communities in loggerheads' cloaca were diverse and varied significantly among individuals, differing from those of tank water. Our findings expand the known microbial diversity repertoire of loggerhead turtles, highlighting interesting taxa specific to individual body sites. This study provides a comprehensive view of the loggerhead sea turtle bacterial microbiota and marks the first report of distal gut fungal communities that contributes to establishing a baseline understanding of loggerhead sea turtle holobiont.


Subject(s)
Bacteria , Fungi , RNA, Ribosomal, 16S , Turtles , Animals , Turtles/microbiology , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Microbiota , Cloaca/microbiology , Mycobiome , Biodiversity , Gastrointestinal Microbiome , Biofilms
4.
Front Immunol ; 15: 1376860, 2024.
Article in English | MEDLINE | ID: mdl-38799475

ABSTRACT

Introduction: Aeromonas hydrophila, a bacterium widely distributed in the natural environment, causes multiple diseases in various animals. Exploring the mechanism of the host defense against A. hydrophila can help develop efficient strategies against Aeromonas infection. Methods: Herein, we investigated the temporal influence of A. hydrophila on the Chinese soft-shelled turtle, an economically important species, at the biochemical, transcriptomic, and metabolomic levels. Plasma parameters were detected with the test kits. Transcriptome and metabolome were respectively applied to screen the differentially expressed genes and metabolites. Results: The contents or activities of these plasma parameters were significantly increased at 24 hpi and declined at 96 hpi, indicating that 24 and 96 hpi were two important time points during infection. Totals of 3121 and 274 differentially expressed genes (DEGs) from the transcriptome while 74 and 91 differentially abundant metabolites (DAMs) from the metabolome were detected at 24 and 96 hpi. The top DEGs at 24 hpi included Ccl2, Ccl3, Ccl4, Il1ß, Il6, Il7, Il15, Tnf, and Tnfr1 while Zap70, Cd3g, Cd8a, Itk, Pik3r3, Cd247, Malt1, and Cd4 were the most abundant at 96 hpi. The predominant DAMs included O-phospho-L-serine, γ-Aminobutyric acid, orotate, L-tyrosine, and L-tryptophan at 24 hpi, as well as L-glutamic acid, L-arginine, glutathione, glutathione disulfide, and citric acid at 96 hpi. Discussion: The combined analysis of DEGs and DAMs revealed that tryptophan metabolism, nicotinate and nicotinamide metabolism, as well as starch and sucrose metabolism, were the most important signaling pathways at the early infective stage while tyrosine metabolism, pyrimidine metabolism, as well as alanine, aspartate and glutamate metabolism were the most crucial pathways at the later stage. In general, our results indicated that the Chinese soft-shelled turtle displays stage-specific physiological responses to resist A. hydrophila infection.


Subject(s)
Aeromonas hydrophila , Gram-Negative Bacterial Infections , Liver , Metabolome , Metabolomics , Signal Transduction , Transcriptome , Turtles , Animals , Turtles/microbiology , Turtles/immunology , Turtles/genetics , Aeromonas hydrophila/physiology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Liver/metabolism , Gene Expression Profiling
5.
Int Immunopharmacol ; 132: 112024, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38608475

ABSTRACT

Ulcerative colitis (UC) is a recurrent intestinal disease with an increasing incidence worldwide that seriously affects the life of patients. Turtle peptide (TP) is a bioactive peptide extracted from turtles that has anti-inflammatory, antioxidant and anti-aging properties. However, studies investigating the effect of TP on the progression of UC are lacking. The aim of this study was to investigate effects and underlying mechanisms of TP and its derivative peptide GPAGPIGPV (GP-9) in alleviating UC in mice. The results showed that 500 mg/kg TP treatment significantly ameliorated colitis symptoms and oxidative stress in UC mice. TP alleviated intestinal barrier damage in UC mice by promoting mucosal repair and increasing the expression of tight junction proteins (ZO1, occludin and claudin-1). TP also modulated the composition of the gut microbiota by increasing the abundance of the beneficial bacteria Anaerotignum, Prevotellaceae_UCG-001, Alistipes, and Lachno-spiraceae_NK4A136_group and decreasing the abundance of the harmful bacteria Prevotella_9 and Parasutterella. Furthermore, we characterized the peptide composition of TP and found that GP-9 ameliorated the symptoms of dextran sodium sulfate (DSS)-induced colitis in mice by inhibiting the TLR4/NF-κB signaling pathway. In conclusion, TP and its derivative peptides ameliorated DSS-induced ulcerative colitis by inhibiting the expression of inflammatory factors and modulating the composition of the intestinal microbiota; this study provides a theoretical basis for the application of TP and its derivative peptides for their anti-inflammatory activity.


Subject(s)
Anti-Inflammatory Agents , Colitis, Ulcerative , Dextran Sulfate , Gastrointestinal Microbiome , Mice, Inbred C57BL , Peptides , Turtles , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Colitis, Ulcerative/immunology , Gastrointestinal Microbiome/drug effects , Mice , Peptides/therapeutic use , Peptides/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Turtles/microbiology , Turtles/immunology , Male , Toll-Like Receptor 4/metabolism , NF-kappa B/metabolism , Disease Models, Animal , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Colon/pathology , Colon/drug effects , Humans , Oxidative Stress/drug effects , Signal Transduction/drug effects
6.
Vet Pathol ; 61(1): 140-144, 2024 01.
Article in English | MEDLINE | ID: mdl-37377060

ABSTRACT

Citrobacter freundii, an opportunistic bacterial pathogen belonging to the family Enterobacteriaceae, has been sporadically reported in sea turtles. Here, the authors describe 3 unusual lesions associated with C. freundii infection in 3 loggerhead sea turtles stranded on the coast of Gran Canaria Island, Spain. It is possible that these 3 distinct lesions played a major role in the death of these turtles. The first turtle had caseous cholecystitis, a lesion not previously described in sea turtles. The second turtle had large intestinal diverticulitis, a rare condition in loggerheads. The third turtle had bilateral caseous salt gland adenitis. Histologically, numerous gram-negative bacilli were observed at the deepest edge of inflammation in all cases. Pure cultures of C. freundii were obtained from these 3 lesions. Molecular detection of C. freundii DNA in formalin-fixed paraffin-embedded samples from the lesions of the 3 turtles confirmed the microbiological isolation. These cases, in addition to expanding the limited body of knowledge on bacterial infections in sea turtles, highlight the potential pathogenic role of C. freundii in loggerhead turtles.


Subject(s)
Lymphadenitis , Turtles , Animals , Citrobacter freundii , Turtles/microbiology , Inflammation/veterinary , Lymphadenitis/veterinary , Spain
7.
Fungal Biol ; 127(10-11): 1321-1327, 2023.
Article in English | MEDLINE | ID: mdl-37993243

ABSTRACT

Sea Turtle Egg Fusariosis (STEF) is a worldwide emergent fungal disease affecting eggs and causing embryos mortality in turtle's nests such as those of Caretta caretta. It is caused by a complex of species belonging to Fusarium genus, particularly those included in the Fusarium Solani Species Complex (FSSC). During the samplings carried out in summer 2020 along the Tuscany coastlines (Italy), C. caretta eggs showed clinical signs resembling those caused by STEF. A total of 32 fungal isolates were obtained from lesioned eggs whose molecular characterization allowing identifying as belonging to FSSC / Neocosmospora spp., Fusarium oxysporum Species Complex (FOSC) / F. oxysporum and Fusarium nodosum, i.e., fungal genera and speciesincluding also well-known plant pathogens. Isolates inoculated on several plant hosts did not result in any pathogenic activity but F. nodosum causing, on wheat spikes, disease symptoms.This is the first time F. nodosum has been isolated from portions of eggs showing evident signs of fungal infection. This work represents the first report of Fusarium spp. isolated from C. caretta eggs showing lesions resembling those caused by STEF on Tuscan coast thus posing a significant concern to loggerhead sea turtle conservation also in this region.


Subject(s)
Fusariosis , Fusarium , Mycoses , Turtles , Animals , Turtles/microbiology , Fusariosis/diagnosis , Fusariosis/microbiology , Italy
8.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Article in English | MEDLINE | ID: mdl-37950563

ABSTRACT

As semi-aquatic species that use both terrestrial and aquatic habitats, freshwater turtles and their microbial communities are especially sensitive to the impacts of habitat disturbance. In this study, we use 16S rRNA amplicon sequencing to characterize the shell and cloacal bacterial communities of turtles in the San Francisco Bay Area. We captured western pond turtles (Actinemys/Emys marmorata) across eight sites located in urban and rural environments, along with invasive red-eared sliders (Trachemys scripta elegans). We assessed differences in western pond turtle bacterial communities diversity/composition between shell and cloacal samples and evaluated how alpha/beta diversity metrics were influenced by habitat quality. We found phylum-level bacterial taxonomic turnover in the bacterial communities of western pond turtles relative to the host tissue substrate samples. Our findings indicate that location identity elicits a high degree of lower-level (i.e. species/genus) bacterial taxonomic turnover. Further, we found that samples originating from good quality habitat had poorer shell bacterial communities but more diverse cloacal ones. The shell bacterial communities of red-eared sliders overlapped with those western pond turtles suggesting the existence of microbial dispersal between these two species. Our results add to our current understanding of turtle symbiont microbial ecology by establishing patterns of bacterial symbiont variation in an urban to rural gradient.


Subject(s)
Turtles , Animals , Turtles/microbiology , RNA, Ribosomal, 16S/genetics , Ecosystem , Fresh Water
9.
Int J Mol Sci ; 24(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37298593

ABSTRACT

The Chinese softshell turtle (CST; Pelodiscus sinensis) is a freshwater aquaculture species of substantial economic importance that is commercially farmed across Asia, particularly in Taiwan. Although diseases caused by the Bacillus cereus group (Bcg) pose a major threat to commercial CST farming systems, information regarding its pathogenicity and genome remains limited. Here, we investigated the pathogenicity of Bcg strains isolated in a previous study and performed whole-genome sequencing. Pathogenicity analysis indicated that QF108-045 isolated from CSTs caused the highest mortality rate, and whole-genome sequencing revealed that it was an independent group distinct from other known Bcg genospecies. The average nucleotide identity compared to other known Bcg genospecies was below 95%, suggesting that QF108-045 belongs to a new genospecies, which we named Bacillus shihchuchen. Furthermore, genes annotation revealed the presence of anthrax toxins, such as edema factor and protective antigen, in QF108-045. Therefore, the biovar anthracis was assigned, and the full name of QF108-045 was Bacillus shihchuchen biovar anthracis. In addition to possessing multiple drug-resistant genes, QF108-045 demonstrated resistance to various types of antibiotics, including penicillins (amoxicillin and ampicillin), cephalosporins (ceftifour, cephalexin, and cephazolin), and polypeptides, such as vancomycin.


Subject(s)
Bacillus anthracis , Bacillus , Turtles , Animals , Bacillus/genetics , Bacillus anthracis/genetics , Bacillus cereus/genetics , Genomics , Turtles/genetics , Turtles/microbiology , Virulence/genetics
10.
Int J Mol Sci ; 24(12)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37373406

ABSTRACT

Large-scale mortality due to Aeromonas hydrophila (A. hydrophila) infection has considerably decreased the yield of the Chinese pond turtle (Mauremys reevesii). Purslane is a naturally active substance with a wide range of pharmacological functions, but its antibacterial effect on Chinese pond turtles infected by A. hydrophila infection is still unknown. In this study, we investigated the effect of purslane on intestinal morphology, digestion activity, and microbiome of Chinese pond turtles during A. hydrophila infection. The results showed that purslane promoted epidermal neogenesis of the limbs and increased the survival and feeding rates of Chinese pond turtles during A. hydrophila infection. Histopathological observation and enzyme activity assay indicated that purslane improved the intestinal morphology and digestive enzyme (α-amylase, lipase and pepsin) activities of Chinese pond turtle during A. hydrophila infection. Microbiome analysis revealed that purslane increased the diversity of intestinal microbiota with a significant decrease in the proportion of potentially pathogenic bacteria (such as Citrobacter freundii, Eimeria praecox, and Salmonella enterica) and an increase in the abundance of probiotics (such as uncultured Lactobacillus). In conclusion, our study uncovers that purslane improves intestinal health to protect Chinese pond turtles against A. hydrophila infection.


Subject(s)
Aeromonas hydrophila , Gram-Negative Bacterial Infections , Portulaca , Turtles , Animals , Digestion , Gastrointestinal Microbiome , Turtles/microbiology , Turtles/physiology , Gram-Negative Bacterial Infections/complications , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/therapy , Feeding Behavior
11.
Biofouling ; 39(4): 385-398, 2023.
Article in English | MEDLINE | ID: mdl-37293709

ABSTRACT

In this study, epibiotic bacteria on the carapace of sea turtles at three different sites in the Persian Gulf were studied. Bacterial density counted using a Scanning Electron Microscope showed that the highest (9.4 × 106 ± 0.8 × 106 cm-2) and lowest (5.3 × 106 ± 0.4 × 106 cm-2) average bacterial densities were found on the green and hawksbill sea turtles, respectively. Bacterial community analysis using Illumina 16S rRNA gene sequencing showed that Gamma- and Alpha-proteobacteria were the dominant classes on all substrates. Some genera, such as Anaerolinea, were site- and substrate-specific. In general, bacterial communities on sea turtles differed from those on the non-living substrate, stones, and exhibited lower species richness and diversity compared to the latter. Despite some similarities, the majority of bacterial communities on the two sea turtles were different. This study provides baseline information about the epibiotic bacteria of sea turtles of different species.


Subject(s)
Animal Shells , Turtles , Animals , Animal Shells/microbiology , Bacteria/genetics , Biofilms , RNA, Ribosomal, 16S/genetics , Turtles/microbiology
12.
Curr Microbiol ; 80(3): 93, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36729340

ABSTRACT

Stenotrophomonas maltophilia is a ubiquitous multidrug-resistant opportunistic pathogen commonly associated with nosocomial infections. The purpose of this study was to isolate and characterize extended-spectrum beta-lactamase (ESBL) producing bacteria from painted turtles (Chrysemys picta) living in the wild and captured in southeastern Wisconsin. Fecal samples from ten turtles were examined for ESBL producing bacteria after incubation on HardyCHROM™ ESBL agar. Two isolates were cultivated and identified by 16S rRNA gene sequencing and whole genome sequencing (WGS) as Stenotrophomonas sp. 9A and S. maltophilia 15A. They were multidrug-resistant, as determined by antibiotic susceptibility testing. Stenotrophomonas sp. 9A was found to produce an extended spectrum beta-lactamase (ESBL) and both isolates were found to be carbapenem-resistant. EDTA-modified carbapenem inactivation method (eCIM) and the modified carbapenem inactivation method (mCIM) tests were used to examine the carbapenemase production and the test results were negative. Through WGS several antimicrobial resistance genes were identified in S. maltophilia 15A. For example a chromosomal L1 ß-lactamase gene, which is known to hydrolyze carbapenems, a L2 ß-lactamase gene, genes for the efflux systems smeABC and smeDEF and the aminoglycosides resistance genes aac(6')-lz and aph(3')-llc were found. An L2 ß-lactamase gene in Stenotrophomonas sp. 9A was identified through WGS.


Subject(s)
Drug Resistance, Multiple, Bacterial , Stenotrophomonas , Turtles , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , beta-Lactamases/genetics , Carbapenems , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , RNA, Ribosomal, 16S/genetics , Stenotrophomonas/drug effects , Stenotrophomonas/genetics , Turtles/microbiology
13.
Wilderness Environ Med ; 34(2): 211-213, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36737309

ABSTRACT

Mediterranean loggerhead sea turtles (Caretta caretta) are very large. During spawning season, they land on the beaches of Turkey and Greece at night, which are frequently visited by humans, and lay their eggs. Typically, they suck feed in deep water. It is uncommon for C caretta, which have strong mouths and jaws, to attack people. We report a case of a 44-y-old female patient who was attacked by a turtle on the Mediterranean beach in September 2020. She was brought to the emergency department, where she was noted to have a deep cut on the thumb and large bruises on the left side of her waist. The patient was discharged with appropriate wound care, antibacterial drug, and tetanus vaccine. The wound healed within a few months by developing granulation tissue. However, this report draws attention to the fact that, under some circumstances, C caretta can become aggressive toward people swimming off heavily populated beaches.


Subject(s)
Turtles , Humans , Animals , Female , Turtles/microbiology , Turkey
14.
PLoS One ; 17(12): e0278443, 2022.
Article in English | MEDLINE | ID: mdl-36542556

ABSTRACT

In the United States (U.S.), pet turtles have been associated with outbreaks of salmonellosis, a serious and sometimes-fatal intestinal illness caused by Salmonella bacteria, with nearly 300,000 people being infected in some years. Children are particularly susceptible because of their propensity to put items, including small turtles, in their mouths. In 1975, a U.S. federal regulation prohibited the sale of turtles <4 inches (101.6 mm) in size, except for the purposes of export, scientific, or educational purposes. This regulation was established to reduce the incidence of salmonellosis, particularly in small children. Previous research has not evaluated the availability of turtles <4 inches in size on websites selling wildlife. We monitored 16 websites in 2021 and quantified listings of small turtles. We determined whether information on Salmonella, the 1975 federal regulation, or related state regulations were provided on the websites and determined legality of sales of small turtles by state regulations. We found that all 16 websites openly advertised and sold turtles <4 inches in size, but only half of these websites provided information about Salmonella and/or the federal regulation. These websites required buyers to confirm that they were not purchasing a turtle as a pet, thereby putting the onus on the consumer to adhere to the regulation. We documented 515 listings of turtles <4 inches in size, including 47 species and one hybrid. Our study has demonstrated that internet sales of small turtles currently represent part of the thriving online pet trade in the U.S. Enforcement of the federal regulation faces jurisdictional challenges in most states. Therefore, we recommend continued public education campaigns by public health agencies in the U.S. to help reduce the risk that pet turtle ownership presents.


Subject(s)
Salmonella Food Poisoning , Salmonella Infections , Turtles , Animals , United States , Public Health , Turtles/microbiology , Salmonella Infections/epidemiology , Salmonella Infections/prevention & control , Salmonella , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary , Salmonella Food Poisoning/epidemiology
15.
Arch Microbiol ; 204(11): 682, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36316591

ABSTRACT

This study was conducted during the 2018 nesting season at the Sugözü Beaches (Adana-Turkey) and Göksu Delta (Mersin-Turkey). Egg samples (n = 63) from loggerhead and green turtle nests (n = 43) were collected. Isolated bacteria were initially identified by phenotypic methods and then by MALDI-TOF MS. The bacterial mass spectra were analyzed using Principal Component Analysis. Bacterial isolation was performed for 55 isolates belonging to 12 genera from two major nesting sites. In Sugözü Beaches 62.2% of the bacteria species belonged to Enterobacteriaceae and in Göksu Delta 44.4% of the bacteria species belonged to Morganellaceae. Klebsiella oxytoca and Staphylococcus haemolyticus had not previously been detected in any sea turtle nests. This is the first MALDI-TOF MS study conducted for determination of bacterial variability in loggerhead turtle eggs in Turkey and serves as a reference study for the assessment of bacterial threat in sea turtle nests, enabling the establishment of suitable conservation measures and treatment processes for both sea turtles and nesting sites.


Subject(s)
Turtles , Animals , Turtles/microbiology , Nesting Behavior , Turkey , Bacteria/genetics , Seasons
16.
FEMS Microbiol Ecol ; 98(10)2022 10 10.
Article in English | MEDLINE | ID: mdl-36073481

ABSTRACT

Diatoms and bacteria are known for being the first colonizers of submerged surfaces including the skin of marine reptiles. Sea turtle carapace and skin harbor diverse prokaryotic and eukaryotic microbes, including several epizoic diatoms. However, the importance of diatom-bacteria associations is hardly investigated in biofilms associated with animal hosts. This study provides an inventory of diatoms, bacteria and diatom-associated bacteria originating from loggerhead sea turtles using both metabarcoding and culturing approaches. Amplicon sequencing of the carapace and skin samples chloroplast gene rbcL and 16S rRNA gene detected, in total, 634 diatom amplicon sequence variants (ASVs) and 3661 bacterial ASVs, indicating high diversity. Cultures of putative epizoic and non-epizoic diatoms contained 458 bacterial ASVs and their bacterial assemblages reflected those of their host. Diatom strains allowed for enrichment and isolation of bacterial families rarely observed on turtles, such as Marinobacteraceae, Alteromonadaceae and Alcanivoracaceae. When accounting for phylogenetic relationships between bacterial ASVs, we observed that related diatom genera might retain similar microbial taxa in culture, regardless of the turtle's skin or carapace source. These data provide deeper insights into the sea turtle-associated microbial communities, and reveal the potential of epizoic biofilms as a source of novel microbes and possibly important diatom-bacteria associations.


Subject(s)
Diatoms , Turtles , Animals , Bacteria/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Turtles/microbiology
17.
PLoS One ; 17(5): e0268345, 2022.
Article in English | MEDLINE | ID: mdl-35617269

ABSTRACT

Microbes have central roles in the development and health of animals, being the introduction of specific microbial species a potential conservation strategy to protect animals from emerging diseases. Thus, insight into the microbiota of the species and their habitats is essential. In this manuscript, we report for the first time the bacterial composition of all the components (eggshells of hatched and unhatched eggs, internal content of unhatched eggs, intestinal content of hatchling and pipping sea turtles, and sand) of three nesting beaches of Caretta caretta along the Italian coasts of the Mediterranean Sea. The analysis of 26 amplicon samples was carried out using next-generation sequencing analysis, targeting V3-V4 regions of the bacterial 16S rRNA gene. Samples featured mainly Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes, whose percentages depended on the sample type. Our results showed that, although from different sampling sites, the internal content of the unhatched eggs, intestinal content of hatchling and pipping sea turtles share the microbiota, which was yet different from that of eggshells and sand of the same nesting beach. This study suggests the maternal and environmental influence alongside a protective role of eggshells in shaping the egg microbiota of Caretta caretta sea turtles.


Subject(s)
Microbiota , Turtles , Animals , Bacteria/genetics , Mediterranean Sea , Microbiota/genetics , Nesting Behavior , RNA, Ribosomal, 16S/genetics , Sand , Turtles/microbiology
18.
Sci Rep ; 12(1): 5874, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35393437

ABSTRACT

Species in the Fusarium solani species complex are fast growing, environmental saprophytic fungi. Members of this genus are filamentous fungi with a wide geographical distribution. Fusarium keratoplasticum and F. falciforme have previously been isolated from sea turtle nests and have been associated with high egg mortality rates. Skin lesions were observed in a number of stranded, post-hatchling loggerhead sea turtles (Caretta caretta) in a rehabilitation facility in South Africa. Fungal hyphae were observed in epidermal scrapes of affected turtles and were isolated. The aim of this study was to characterise the Fusarium species that were isolated from these post-hatchling loggerhead sea turtles (Caretta caretta) that washed up on beaches along the South African coastline. Three gene regions were amplified and sequenced, namely the internal transcribed spacer region (ITS), a part of the nuclear large subunit (LSU), and part of the translation elongation factor 1 α (tef1) gene region. Molecular characteristics of strains isolated during this study showed high similarity with Fusarium isolates, which have previously been associated with high egg mortality rates in loggerhead sea turtles. This is the first record of F. keratoplasticum, F. falciforme and F. crassum isolated from stranded post-hatchling loggerhead sea turtles in South Africa.


Subject(s)
Fusarium , Turtles , Animals , Fusarium/genetics , Hyphae , South Africa , Turtles/microbiology
19.
Vet Res Commun ; 46(3): 859-870, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35378659

ABSTRACT

The green sea turtle Chelonia mydas inhabit near-shore areas exposed to threatening anthropogenic activities. The granulomatous lesions in these animals may indicate infectious diseases that can be associated with environmental contamination and hazards to human health. This study aimed to characterize the granulomatous inflammation associated with bacterial and fungal infection in C. mydas off Paraná state. From September 2015 to February 2019, systematic monitoring was performed by the Santos Basin Beach Monitoring Project for sea turtles'carcasses recovery, necropsy, and cause of death diagnosis. The tissue samples were fixed in buffered formalin 10% for histochemical analysis and frozen for molecular analysis to fungi detection (Internal Transcribed Spacer region of the nuclear rDNA) and bacteria detection (16S ribosomal gene). From a total of 270 C. mydas, granulomatous lesions were observed in different organs of 63 (23.3%) individuals. The histological analysis indicated lesions in 94 organs, affecting most respiratory and digestive systems. Bacteria were identified in 25 animals, including an acid-fast bacteria detected in one animal, and fungi in 24 C. mydas. The fungi species included the genus Candida (Candida zeylanoides, n = 3), Yarrowia (Yarrowia lipolytica, n = 9; Yarrowia deformans, n = 5; and Yarrowia divulgata, n = 1), and Cladosporium anthropophilum (n = 1). No species of bacteria was identified by molecular testing. All fungi species identified are saprobic, some are important to food and medical industries, but are also pathogens of humans and other animals. Therefore, long-term monitoring of these pathogens and the C. mydas health may indicate changes in environmental quality, possible zoonotic diseases, and their effects.


Subject(s)
Turtles , Animals , Bacteria/genetics , Brazil/epidemiology , Humans , Turtles/microbiology
20.
J Zoo Wildl Med ; 53(1): 159-172, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35339161

ABSTRACT

The highly endangered European pond turtle (Emys orbicularis) was reintroduced in Switzerland in 2010. Up until 2019, no routine medical examinations have been carried out prior to its release or during recapture events. The aim of this study was to assess the health status of captive and free-living Emys orbicularis populations in Switzerland, taking into account the most important and frequently occurring health threats to freshwater turtles. A total of 141 European pond turtles, including captive (n = 89) and free-living (n = 52) individuals, underwent clinical examination (n = 136), choanal and cloacal swab collection for microbiology investigation (n = 140), blood sampling (n = 121), fecal examination for parasitology (n = 92), radiography (n = 84), and ultrasound (n = 46). Microbiology investigation included conventional PCR for herpesvirus, ranavirus, and Mycoplasma spp. Blood was used for the establishment of reference values for hematocrit, leukocyte count, and differential blood count as well as for biochemistry parameters tested with the VetScan VS2. An emydid Mycoplasma was detected in 40% (n = 56/140; 95%CI: 31.82-48.61%) of the turtles, including one individual with upper respiratory signs. Four animals positive for Mycoplasma arrived dead or were euthanized during the study period. Their necropsies revealed no evidence of respiratory disease. No ranavirus or herpesvirus was detected in any of the tested turtles. Two presumptively fatal infections with spirorchiid trematodes were reported during the study period. Endoparasites were detected in only 7.94% of the samples examined. This study provides comprehensive data on the current health status of the largest sample size of captive and free-living populations of Emys orbicularis ever assessed to date and serves as a baseline for future research investigations and management recommendations in this species.


Subject(s)
Herpesviridae , Mycoplasma , Ranavirus , Turtles , Animals , Switzerland/epidemiology , Turtles/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...