Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.920
Filter
1.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38692851

ABSTRACT

AIMS: Clonostachys rosea is a well-known mycoparasite that has recently been investigated as a bio-based alternative to chemical nematicides for the control of plant-parasitic nematodes. In the search for a promising biocontrol agent, the ability of the C. rosea strain PHP1701 to control the southern root-knot nematode Meloidogyne incognita was tested. METHODS AND RESULTS: Control of M. incognita in vitro and in soil by C. rosea strain PHP1701 was significant and concentration dependent. Small pot greenhouse trials confirmed a significant reduction in tomato root galling compared to the untreated control. In a large greenhouse trial, the control effect was confirmed in early and mid-season. Tomato yield was higher when the strain PHP1701 was applied compared to the untreated M. incognita-infected control. However, the yield of non-M. incognita-infected tomato plants was not reached. A similar reduction in root galling was also observed in a field trial. CONCLUSIONS: The results highlight the potential of this fungal strain as a promising biocontrol agent for root-knot nematode control in greenhouses, especially as part of an integrated pest management approach. We recommend the use of C. rosea strain PHP1701 for short-season crops and/or to reduce M. incognita populations on fallow land before planting the next crop.


Subject(s)
Hypocreales , Pest Control, Biological , Plant Diseases , Plant Roots , Soil Microbiology , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/parasitology , Animals , Tylenchoidea/physiology , Plant Roots/parasitology , Plant Diseases/parasitology , Plant Diseases/prevention & control , Hypocreales/physiology , Soil/parasitology
2.
Plant Cell Rep ; 43(6): 138, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733408

ABSTRACT

KEY MESSAGE: The soybean gene GmSABP2-1 encodes methyl salicylate esterase and its overexpression led to significant reduction in development of pathogenic soybean cyst nematode. Soybean cyst nematode (SCN, Heterodera glycines) is one of the most devastating pests of soybean (Glycine max L. Merr.). In searching for SCN-defense genes, a soybean gene of the methylesterase (MES) family was found to be upregulated in an SCN-resistant soybean line and downregulated in an SCN-susceptible line upon SCN infection. This gene was designated as GmSABP2-1. Here, we report on biochemical and overexpression studies of GmSABP2-1 to examine its possible function in SCN resistance. The protein encoded by GmSABP2-1 is closely related to known methyl salicylate esterases. To determine the biochemical function of GmSABP2-1, a full-length cDNA of GmSABP2-1 was cloned into a protein expression vector and expressed in Escherichia coli. The resulting recombinant GmSABP2-1 was demonstrated to catalyze the demethylation of methyl salicylate. The biochemical properties of GmSABP2-1 were determined. Its apparent Km value was 46.2 ± 2.2 µM for methyl salicylate, comparable to those of the known methyl salicylate esterases. To explore the biological significance of GmSABP2-1 in soybean defense against SCN, we first overexpressed GmSABP2-1 in transgenic hairy roots of an SCN-susceptible soybean line. When infected with SCN, GmSABP2-1-overexpressing hairy roots showed 84.5% reduction in the development of SCN beyond J2 stage. To provide further genetic evidence for the role of GmSABP2-1 in SCN resistance, stable transgenic soybean plants overexpressing GmSABP2-1 were produced. Analysis of the GmSABP2-1-overexpressing lines showed a significant reduction in SCN development compared to non-transgenic plants. In conclusion, we demonstrated that GmSABP2-1 encodes methyl salicylate esterase and functions as a resistance-related gene against SCN.


Subject(s)
Gene Expression Regulation, Plant , Glycine max , Plant Diseases , Plant Proteins , Plants, Genetically Modified , Salicylates , Tylenchoidea , Glycine max/genetics , Glycine max/parasitology , Animals , Plant Diseases/parasitology , Plant Diseases/genetics , Salicylates/metabolism , Tylenchoidea/physiology , Tylenchoidea/pathogenicity , Plant Proteins/genetics , Plant Proteins/metabolism , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/genetics , Disease Resistance/genetics
3.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732085

ABSTRACT

Meloidogyne hapla is one of the most important nematode pathogens. It is a sedentary, biotrophic parasite of plants that overwinters in the soil or in diseased roots. The development of M. hapla is temperature dependent. Numerous studies have been performed on the effect of temperature on the development of M. hapla, but only a few of them analyzed the heat shock protein (hsp) genes. The aim of the study was to perform expression profiling of eight hsp genes (Mh-hsp90, Mh-hsp1, Mh-hsp4, Mh-hsp6, Mh-hsp60, Mh-dnj19, Mh-hsp43, and Mh-hsp12.2) at two development stages of M. hapla, i.e., in eggs and second-stage juveniles (J2). The eggs and J2 were incubated under cold stress (5 °C), heat stress (35 °C, 40 °C), and non-stress (10 °C, 20 °C, and 30 °C) conditions. Expression profiling was performed by qPCR. It was demonstrated that only two genes, Mh-hsp60 and Mh-dnj19, have been upregulated by heat and cold stress at both development stages. Heat stress upregulated the expression of more hsp genes than cold stress did. The level of upregulation of most hsp genes was more marked in J2 than in eggs. The obtained results suggest that the Mh-hsp90 and Mh-hsp1 genes can be used as bioindicators of environmental impacts on nematodes of the Meloidogyne genus.


Subject(s)
Heat-Shock Proteins , Tylenchoidea , Tylenchoidea/physiology , Animals , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Temperature , Helminth Proteins/genetics , Helminth Proteins/metabolism , Ovum/metabolism , Ovum/growth & development , Gene Expression Profiling , Gene Expression Regulation, Developmental
4.
Mol Plant Pathol ; 25(5): e13461, 2024 May.
Article in English | MEDLINE | ID: mdl-38695657

ABSTRACT

Mitogen-activated protein kinase (MPK) cascades play central signalling roles in plant immunity and stress response. The soybean orthologue of MPK kinase2 (GmMKK2) was recently identified as a potential signalling node whose expression is upregulated in the feeding site induced by soybean cyst nematode (SCN, Heterodera glycines). To investigate the role of GmMKK2 in soybean-SCN interactions, we overexpressed a catabolically inactive variant referred to as kinase-dead variant (KD-GmMKK2) using transgenic hairy roots. KD-GmMKK2 overexpression caused significant reduction in soybean susceptibility to SCN, while overexpression of the wild-type variant (WT-GmMKK2) exhibited no effect on susceptibility. Transcriptome analysis indicated that KD-GmMKK2 overexpressing plants are primed for SCN resistance via constitutive activation of defence signalling, particularly those related to chitin, respiratory burst, hydrogen peroxide and salicylic acid. Phosphoproteomic profiling of the WT-GmMKK2 and KD-GmMKK2 root samples upon SCN infection resulted in the identification of 391 potential targets of GmMKK2. These targets are involved in a broad range of biological processes, including defence signalling, vesicle fusion, chromatin remodelling and nuclear organization among others. Furthermore, GmMKK2 mediates phosphorylation of numerous transcriptional and translational regulators, pointing to the presence of signalling shortcuts besides the canonical MAPK cascades to initiate downstream signalling that eventually regulates gene expression and translation initiation. Finally, the functional requirement of specific phosphorylation sites for soybean response to SCN infection was validated by overexpressing phospho-mimic and phospho-dead variants of two differentially phosphorylated proteins SUN1 and IDD4. Together, our analyses identify GmMKK2 impacts on signalling modules that regulate soybean response to SCN infection.


Subject(s)
Glycine max , Plant Diseases , Signal Transduction , Tylenchoidea , Glycine max/parasitology , Glycine max/genetics , Animals , Plant Diseases/parasitology , Plant Diseases/genetics , Tylenchoidea/physiology , Tylenchoidea/pathogenicity , Gene Expression Regulation, Plant , Plants, Genetically Modified , Plant Roots/parasitology , Plant Roots/metabolism , Plant Roots/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Disease Resistance/genetics
5.
New Phytol ; 242(6): 2787-2802, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38693568

ABSTRACT

Root-knot nematodes (RKN; Meloidogyne species) are plant pathogens that introduce several effectors in their hosts to facilitate infection. The actual targets and functioning mechanism of these effectors largely remain unexplored. This study illuminates the role and interplay of the Meloidogyne javanica nematode effector ROS suppressor (Mj-NEROSs) within the host plant environment. Mj-NEROSs suppresses INF1-induced cell death as well as flg22-induced callose deposition and reactive oxygen species (ROS) production. A transcriptome analysis highlighted the downregulation of ROS-related genes upon Mj-NEROSs expression. NEROSs interacts with the plant Rieske's iron-sulfur protein (ISP) as shown by yeast-two-hybrid and bimolecular fluorescence complementation. Secreted from the subventral pharyngeal glands into giant cells, Mj-NEROSs localizes in the plastids where it interacts with ISP, subsequently altering electron transport rates and ROS production. Moreover, our results demonstrate that isp Arabidopsis thaliana mutants exhibit increased susceptibility to M. javanica, indicating ISP importance for plant immunity. The interaction of a nematode effector with a plastid protein highlights the possible role of root plastids in plant defense, prompting many questions on the details of this process.


Subject(s)
Arabidopsis , Electron Transport Complex III , Plant Immunity , Plastids , Reactive Oxygen Species , Tylenchoidea , Reactive Oxygen Species/metabolism , Arabidopsis/parasitology , Arabidopsis/immunology , Arabidopsis/genetics , Tylenchoidea/physiology , Tylenchoidea/pathogenicity , Animals , Plastids/metabolism , Electron Transport Complex III/metabolism , Plant Diseases/parasitology , Plant Diseases/immunology , Helminth Proteins/metabolism , Helminth Proteins/genetics , Gene Expression Regulation, Plant , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Protein Binding , Mutation/genetics , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/genetics
6.
Sci Rep ; 14(1): 9958, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38693197

ABSTRACT

Numerous plant parasitic nematodes (PPNs) have the potential to inflict considerable damage on agricultural crops. Through a comprehensive survey aimed at identifying PPNs affecting crops, cyst nematodes were isolated from the rhizosphere soil of buckwheat (Fagopyrum esculentum). Employing both molecular and morphological techniques, this cyst nematode was conclusively identified as Heterodera ripae. Notably, this represents the first documented occurrence of this particular cyst nematode species within the rhizosphere soil of F. esculentum.


Subject(s)
Fagopyrum , Rhizosphere , Tylenchoidea , Fagopyrum/parasitology , Animals , Tylenchoidea/genetics , Soil/parasitology , Plant Diseases/parasitology , Phylogeny
7.
BMC Plant Biol ; 24(1): 451, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789940

ABSTRACT

Root-knot nematodes (RKNs) infect host plants and obtain nutrients such as sugars for their own development. Therefore, inhibiting the nutrient supply to RKNs may be an effective method for alleviating root-knot nematode disease. At present, the pathway by which sucrose is unloaded from the phloem cells to giant cells (GCs) in root galls and which genes related to sugar metabolism and transport play key roles in this process are unclear. In this study, we found that sugars could be unloaded into GCs only from neighboring phloem cells through the apoplastic pathway. With the development of galls, the contents of sucrose, fructose and glucose in the galls and adjacent tissue increased gradually. SUT1, SUT2, SWEET7a, STP10, SUS3 and SPS1 may provide sugar sources for GCs, while STP1, STP2 and STP12 may transport more sugar to phloem parenchyma cells. At the early stage of Meloidogyne incognita infestation, the sucrose content in tomato roots and leaves increased, while the glucose and fructose contents decreased. SWEET7a, SPS1, INV-INH1, INV-INH2, SUS1 and SUS3 likely play key roles in root sugar delivery. These results elucidated the pathway of sugar unloading in tomato galls and provided an important theoretical reference for eliminating the sugar source of RKNs and preventing root-knot nematode disease.


Subject(s)
Plant Roots , Plant Tumors , Solanum lycopersicum , Tylenchoidea , Tylenchoidea/physiology , Animals , Solanum lycopersicum/parasitology , Solanum lycopersicum/metabolism , Plant Roots/parasitology , Plant Roots/metabolism , Plant Tumors/parasitology , Plant Diseases/parasitology , Sucrose/metabolism , Sugars/metabolism , Carbohydrate Metabolism
8.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791195

ABSTRACT

Pinus thunbergii Parl. is an economically and medicinally important plant, as well as a world-renowned horticultural species of the Pinus genus. Pine wilt disease is a dangerous condition that affects P. thunbergii. However, understanding of the genetics underlying resistance to this disease is poor. Our findings reveal that P. thunbergii's resistance mechanism is based on differential transcriptome responses generated by the early presence of the pathogen Bursaphelenchus xylophilus, also known as the pine wood nematode. A transcriptome analysis (RNA-seq) was performed to examine gene expression in shoot tissues from resistant and susceptible P. thunbergii trees. RNA samples were collected from the shoots of inoculated pines throughout the infection phases by the virulent Bursaphelenchus xylophilus AMA3 strain. The photosynthesis and plant-pathogen interaction pathways were significantly enriched in the first and third days after infection. Flavonoid biosynthesis was induced in response to late infestation (7 and 14 days post-infestation). Calmodulin, RBOH, HLC protein, RPS, PR1, and genes implicated in phytohormone crosstalk (e.g., SGT1, MYC2, PP2C, and ERF1) showed significant alterations between resistant and susceptible trees. Furthermore, salicylic acid was found to aid pine wood nematodes tolerate adverse conditions and boost reproduction, which may be significant for pine wood nematode colonization within pines. These findings provide new insights into how host defenses overcame pine wood nematode infection in the early stage, which could potentially contribute to the development of novel strategies for the control of pine wilt disease.


Subject(s)
Disease Resistance , Gene Expression Regulation, Plant , Pinus , Plant Diseases , Transcriptome , Pinus/parasitology , Pinus/genetics , Animals , Plant Diseases/parasitology , Plant Diseases/genetics , Disease Resistance/genetics , Gene Expression Profiling , Tylenchoidea/physiology , Tylenchoidea/pathogenicity
9.
Int J Biol Macromol ; 269(Pt 2): 132131, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719017

ABSTRACT

Chitosan oligosaccharide (COS) modification is a feasible way to develop novel green nematicides. This study involved the synthesis of various COS sulfonamide derivatives via hydroxylated protection and deprotection, which were then characterized using NMR, FTIR, MS, elemental analysis, XRD, and TG/DTG. In vitro experiments found that COS-alkyl sulfonamide derivatives (S6 and S11-S13) exhibited high mortality (>98 % at 1 mg/mL) against Meloidogyne incognita second-instar larvaes (J2s) among the derivatives. S6 can cause vacuole-like structures in the middle and tail regions of the nematode body and effectively inhibit egg hatching. In vivo tests have found that S6 has well control effects and low plant toxicity. Additionally, the structure-activity studies revealed that S6 with a high degree of substitution, a low molecular weight, and a sulfonyl bond on the amino group of the COS backbone exhibited increased nematicidal activity. The sulfonamide group is a potential active group for developing COS-based nematicides.


Subject(s)
Antinematodal Agents , Chitosan , Oligosaccharides , Sulfonamides , Tylenchoidea , Chitosan/chemistry , Chitosan/pharmacology , Animals , Tylenchoidea/drug effects , Antinematodal Agents/pharmacology , Antinematodal Agents/chemistry , Oligosaccharides/chemistry , Oligosaccharides/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Structure-Activity Relationship , Larva/drug effects
10.
Sci Rep ; 14(1): 10030, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693283

ABSTRACT

Ditylenchus destructor is a migratory plant-parasitic nematode that severely harms many agriculturally important crops. The control of this pest is difficult, thus efficient strategies for its management in agricultural production are urgently required. Cathepsin L-like cysteine protease (CPL) is one important protease that has been shown to participate in various physiological and pathological processes. Here we decided to characterize the CPL gene (Dd-cpl-1) from D. destructor. Analysis of Dd-cpl-1 gene showed that Dd-cpl-1 gene contains a signal peptide, an I29 inhibitor domain with ERFNIN and GNFD motifs, and a peptidase C1 domain with four conserved active residues, showing evolutionary conservation with other nematode CPLs. RT-qPCR revealed that Dd-cpl-1 gene displayed high expression in third-stage juveniles (J3s) and female adults. In situ hybridization analysis demonstrated that Dd-cpl-1 was expressed in the digestive system and reproductive organs. Silencing Dd-cpl-1 in 1-cell stage eggs of D. destructor by RNAi resulted in a severely delay in development or even in abortive morphogenesis during embryogenesis. The RNAi-mediated silencing of Dd-cpl-1 in J2s and J3s resulted in a developmental arrest phenotype in J3 stage. In addition, silencing Dd-cpl-1 gene expression in female adults led to a 57.43% decrease in egg production. Finally, Dd-cpl-1 RNAi-treated nematodes showed a significant reduction in host colonization and infection. Overall, our results indicate that Dd-CPL-1 plays multiple roles in D. destructor ontogenesis and could serve as a new potential target for controlling D. destructor.


Subject(s)
Cathepsin L , Animals , Cathepsin L/genetics , Cathepsin L/metabolism , RNA Interference , Female , Gene Silencing , Cysteine Proteases/genetics , Cysteine Proteases/metabolism , Helminth Proteins/genetics , Helminth Proteins/metabolism , Phylogeny , Tylenchoidea/genetics , Tylenchoidea/physiology , Amino Acid Sequence
11.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673861

ABSTRACT

Plant-parasitic nematodes (PPNs) are among the most serious phytopathogens and cause widespread and serious damage in major crops. In this study, using a genome mining method, we identified nonribosomal peptide synthetase (NRPS)-like enzymes in genomes of plant-parasitic nematodes, which are conserved with two consecutive reducing domains at the N-terminus (A-T-R1-R2) and homologous to fungal NRPS-like ATRR. We experimentally investigated the roles of the NRPS-like enzyme (MiATRR) in nematode (Meloidogyne incognita) parasitism. Heterologous expression of Miatrr in Saccharomyces cerevisiae can overcome the growth inhibition caused by high concentrations of glycine betaine. RT-qPCR detection shows that Miatrr is significantly upregulated at the early parasitic life stage (J2s in plants) of M. incognita. Host-derived Miatrr RNA interference (RNAi) in Arabidopsis thaliana can significantly decrease the number of galls and egg masses of M. incognita, as well as retard development and reduce the body size of the nematode. Although exogenous glycine betaine and choline have no obvious impact on the survival of free-living M. incognita J2s (pre-parasitic J2s), they impact the performance of the nematode in planta, especially in Miatrr-RNAi plants. Following application of exogenous glycine betaine and choline in the rhizosphere soil of A. thaliana, the numbers of galls and egg masses were obviously reduced by glycine betaine but increased by choline. Based on the knowledge about the function of fungal NRPS-like ATRR and the roles of glycine betaine in host plants and nematodes, we suggest that MiATRR is involved in nematode-plant interaction by acting as a glycine betaine reductase, converting glycine betaine to choline. This may be a universal strategy in plant-parasitic nematodes utilizing NRPS-like ATRR to promote their parasitism on host plants.


Subject(s)
Arabidopsis , Betaine , Peptide Synthases , Tylenchoidea , Betaine/metabolism , Animals , Tylenchoidea/metabolism , Tylenchoidea/genetics , Arabidopsis/parasitology , Arabidopsis/metabolism , Arabidopsis/genetics , Peptide Synthases/metabolism , Peptide Synthases/genetics , Host-Parasite Interactions , Plant Diseases/parasitology , Helminth Proteins/metabolism , Helminth Proteins/genetics , Nematoda/metabolism , Nematoda/genetics
12.
Theor Appl Genet ; 137(5): 106, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38622441

ABSTRACT

KEY MESSAGE: A new resistance locus acting against the potato cyst nematode Globodera pallida was mapped to chromosome VI in the diploid wild potato species Solanum spegazzinii CPC 7195. The potato cyst nematodes (PCN) Globodera pallida and Globodera rostochiensis are economically important potato pests in almost all regions where potato is grown. One important management strategy involves deployment through introgression breeding into modern cultivars of new sources of naturally occurring resistance from wild potato species. We describe a new source of resistance to G. pallida from wild potato germplasm. The diploid species Solanum spegazzinii Bitter accession CPC 7195 shows resistance to G. pallida pathotypes Pa1 and Pa2/3. A cross and first backcross of S. spegazzinii with Solanum tuberosum Group Phureja cultivar Mayan Gold were performed, and the level of resistance to G. pallida Pa2/3 was determined in progeny clones. Bulk-segregant analysis (BSA) using generic mapping enrichment sequencing (GenSeq) and genotyping-by-sequencing were performed to identify single-nucleotide polymorphisms (SNPs) that are genetically linked to the resistance, using S. tuberosum Group Phureja clone DM1-3 516 R44 as a reference genome. These SNPs were converted into allele-specific PCR assays, and the resistance was mapped to an interval of roughly 118 kb on chromosome VI. This newly identified resistance, which we call Gpa VIlspg, can be used in future efforts to produce modern cultivars with enhanced and broad-spectrum resistances to the major pests and pathogens of potato.


Subject(s)
Solanum tuberosum , Solanum , Tylenchoidea , Animals , Solanum tuberosum/genetics , Solanum/genetics , Plant Diseases/genetics , Plant Breeding
13.
Chemosphere ; 358: 142143, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685319

ABSTRACT

Conventional pest control measures, such as chemical pesticides and nematicides, have limited efficacy and raise environmental concerns, necessitating sustainable and eco-friendly alternatives for pest management. Therefore, to find a complementary eco-friendly pesticide/nematicide, this study investigated the role of fly ash (FA) in managing a notorious pest, Meloidogyne javanica and its impact on the growth and physiology of Abelmoschus esculentus. Molecular characterization using SSU and LSU rDNA gene markers confirmed the identity of Indian M. javanica as belonging to the same species. Biotic stress induced by nematode infection was significantly alleviated (P < 0.05) by FA application at a 20% w/v, regulating of ROS accumulation (44.1% reduction in superoxide anions and 39.7% reduction in hydrogen peroxide content) in the host plant. Moreover, FA enhanced antioxidant defence enzymes like superoxide dismutase (46.6%) and catalase (112%) to combat nematode induced ROS. Furthermore, the application of FA at a 20% concentration significantly improved the biomass and biochemical attributes of okra. Fly ash also upregulated the activity of the important osmo-protectant proline (11.5 µmol/g FW) to mitigate nematode stress in host cells. Suppression of disease indices like gall index and reproduction factor, combined with in-vitro experiments, revealed that FA exhibits strong nematode mortality capacity and thus can be used as a sustainable and eco-friendly control agent against root-knot nematodes.


Subject(s)
Abelmoschus , Antinematodal Agents , Antioxidants , Coal Ash , Reactive Oxygen Species , Tylenchoidea , Animals , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Antinematodal Agents/pharmacology , Tylenchoidea/drug effects , Tylenchoidea/physiology , Soil/chemistry , Soil/parasitology , Pesticides , Superoxide Dismutase/metabolism , Nematoda/drug effects , Nematoda/physiology , Catalase/metabolism
14.
J Invertebr Pathol ; 204: 108114, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636720

ABSTRACT

Agricultural Productivity and plant health are threatened by the root-knot nematode. The use of biocontrol agents reduces the need for chemical nematicides and improves the general health of agricultural ecosystems by offering a more environmentally friendly and sustainable method of managing nematode infestations. Plant-parasitic nematodes can be efficiently managed with the use of entomopathogenic nematodes (EPNs), which are widely used biocontrol agents. This study focused on the nematicidal activity of the secondary metabolites present in the bacteria Ochrobactrum sp. identified in the EPN, Heterorhabditisindica against Root-Knot Nematode (Meloidogyne incognita). Its effect on egg hatching and survival of juveniles of root- knot nematode (RKN) was examined. The ethyl acetate component of the cell-free culture (CFC) filtrate of the Ochrobactrum sp. bacteria was tested at four different concentrations (25 %, 50 %, 75 % and 100 %) along with broth and distilled water as control. The bioactive compounds of Ochrobactrum sp. bacteria showed the highest suppression of M. incognita egg hatching (100 %) and juvenile mortality (100 %) at 100 % concentration within 24 h of incubation. In this study, unique metabolite compounds were identified through the Gas Chromatography- Mass Spectrometry (GC-MS) analysis, which were found to have anti- nematicidal activity. In light of this, molecular docking studies were conducted to determine the impact of biomolecules from Ochrobactrum sp. using significant proteins of M. incognita, such as calreticulin, sterol carrier protein 2, flavin-containing monooxygenase, pectate lyase, candidate secreted effector, oesophageal gland cell secretory protein and venom allergen-like protein. The results also showed that the biomolecules from Ochrobactrum sp. had a significant inhibitory effect on the different protein targets of M. incognita. 3-Epimacronine and Heraclenin were found to inhibit most of the chosen target protein. Among the targets, the docking analysis revealed that Heraclenin exhibited the highest binding affinity of -8.6 Kcal/mol with the target flavin- containing monooxygenase. Further, the in vitro evaluation of 3- Epimacronine confirmed their nematicidal activity against M. incognita at different concentrations. In light of this, the present study has raised awareness of the unique biomolecules of the bacterial symbiont Ochrobactrum sp. isolated from H. indica that have nematicidal properties.


Subject(s)
Molecular Docking Simulation , Ochrobactrum , Tylenchoidea , Animals , Ochrobactrum/metabolism , Antinematodal Agents/pharmacology , Antinematodal Agents/metabolism , Antinematodal Agents/chemistry , Pest Control, Biological
15.
Appl Microbiol Biotechnol ; 108(1): 298, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607493

ABSTRACT

Radopholus similis is a destructive, migratory, and endophytoparasitic nematode. It has two morphologically indistinguishable pathotypes (or physiological races): banana and citrus pathotypes. At present, the only reliable method to differentiate the two pathotypes is testing the infestation and parasitism of nematodes on Citrus spp. via inoculation. However, differences in inoculation methods and conditions adopted by different researchers complicate obtaining consistent results. In this study, the parasitism and pathogenicity of 10 R. similis populations on rough lemon (Citrus limon) seedlings and the tropism and invasion of rough lemon roots were tested. It revealed that populations SWK, GJ, FZ, GZ, DBSR, and YJ were citrus pathotypes, which showed parasitism and pathogenicity on rough lemon and could invade rough lemon roots, whereas populations XIN, ML, HN6, and HL were banana pathotypes, having no parasitism and pathogenicity on rough lemon and they did not invade the rough lemon roots. Four pectate lyase genes (Rs-pel-2, Rs-pel-3, Rs-pel-4, and Rs-pel-5) belonging to the Class III family from these populations were amplified and analysed. The gene Rs-pel-3 could be amplified from six citrus pathotype populations and was stably expressed in the four developmental stages of the nematode, whereas it could not be amplified from the four banana pathotypes. Rs-pel-3 expression may be related to the parasitism and pathogenicity of R. similis on rough lemon. Hence, it can be used as a molecular marker to distinguish between banana and citrus pathotypes and as a target gene for the molecular identification of these two pathotypes. KEY POINTS: • Four pectate lyase genes (Rs-pels) from Radopholus similis were cloned and analysed. • The expression of Rs-pels is different in two pathotypes of Radopholus similis. • A molecular identification method for two pathotypes of Radopholus similis using pectate lyase gene Rs-pel-3 as the target gene was established.


Subject(s)
Tylenchoidea , Animals , Tylenchoidea/genetics , Plant Roots , Polysaccharide-Lyases/genetics , Seedlings
16.
Plant Physiol Biochem ; 210: 108636, 2024 May.
Article in English | MEDLINE | ID: mdl-38657547

ABSTRACT

Plants synthesize a plethora of chemical defence compounds, which vary between evolutionary lineages. We hypothesize that plants evolved the ability to utilize defence compounds synthesized and released by neighbouring heterospecific plants. In two experiments, we incubated clover (Trifolium repens L.) seedlings with individual benzoxazinoid (BX) compounds (2,4-dihydroxy-1,4-benzoxazin-3-one, 2-hydroxy-1,4-benzoxazin-3-one, benzoxazolinone, and 6-methoxy- benzoxazolin-2-one), a group of bioactive compounds produced by cereals, to allow clover BX uptake. Subsequently, we transplanted the seedlings into soil and quantified BX root and shoot content and invasion of root-knot nematodes in clover roots up to 8 weeks after transplantation. We show that clover root uptake of BXs substantially enhanced clover's resistance against the root-knot nematode Meloidogyne incognita. This effect lasted up to 6 weeks after the clover roots were exposed to the BXs. BXs were absorbed by clover roots, and then translocated to the shoots. As a result of clover metabolization, we detected the parent BXs and a range of their transformation products in the roots and shoots. Based on these novel findings, we envisage that co-cultivation of crop species with complementary and transferable chemical defence systems can add to plant protection.


Subject(s)
Benzoxazines , Plant Roots , Trifolium , Tylenchoidea , Animals , Benzoxazines/metabolism , Plant Roots/parasitology , Plant Roots/metabolism , Trifolium/metabolism , Trifolium/parasitology , Tylenchoidea/physiology , Plant Diseases/parasitology , Edible Grain/parasitology , Edible Grain/metabolism , Disease Resistance , Plant Shoots/metabolism , Plant Shoots/parasitology
17.
Planta ; 259(5): 121, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38615288

ABSTRACT

MAIN CONCLUSION: Upon systemic S. indica colonization in split-root system cyst and root-knot nematodes benefit from endophyte-triggered carbon allocation and altered defense responses what significantly facilitates their development in A. thaliana. Serendipita indica is an endophytic fungus that establishes mutualistic relationships with different plants including Arabidopsis thaliana. It enhances host's growth and resistance to different abiotic and biotic stresses such as infestation by the cyst nematode Heterodera schachtii (CN). In this work, we show that S. indica also triggers similar direct reduction in development of the root-knot nematode Meloidogyne javanica (RKN) in A. thaliana. Further, to mimick the natural situation occurring frequently in soil where roots are unequally colonized by endophytes we used an in vitro split-root system with one half of A. thaliana root inoculated with S. indica and the other half infected with CN or RKN, respectively. Interestingly, in contrast to direct effects, systemic effects led to an increase in number of both nematodes. To elucidate this phenomenon, we focused on sugar metabolism and defense responses in systemic non-colonized roots of plants colonized by S. indica. We analyzed the expression of several SUSs and INVs as well as defense-related genes and measured sugar pools. The results show a significant downregulation of PDF1.2 as well as slightly increased sucrose levels in the non-colonized half of the root in three-chamber dish. Thus, we speculate that, in contrast to direct effects, both nematode species benefit from endophyte-triggered carbon allocation and altered defense responses in the systemic part of the root, which promotes their development. With this work, we highlight the complexity of this multilayered tripartite relationship and deliver new insights into sugar metabolism and plant defense responses during S. indica-nematode-plant interaction.


Subject(s)
Arabidopsis , Basidiomycota , Cysts , Tylenchoidea , Animals , Endophytes , Carbon , Sugars
18.
J Agric Food Chem ; 72(11): 5585-5594, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38442026

ABSTRACT

To find novel nematicides, we screened the nematicidal activity of compounds in our laboratory compound library. Interestingly, the compound N-((1R,2R)-2-(2-fluoro-4-(trifluoromethyl)phenyl)cyclopropyl)-2-(trifluoromethyl)benzamide (W3) showed a broad spectrum and excellent nematicidal activity. The LC50 values of compound W3 against second-stage juveniles of Bursaphelenchus xylophilus (B. xylophilus), Aphelenchoides besseyi, and Ditylenchus destructor are 1.30, 1.63, and 0.72 mg/L, respectively. Nematicidal activities of compound W3 against second-stage juveniles of Meloidogyne incognita were 87.66% at 100 mg/L. Meanwhile, compound W3 can not only observably inhibit the feeding, reproduction, and egg hatching of B. xylophilus but can also effectively promote the oxidative stress adverse reactions of nematodes and cause intestinal damage. Compound W3 can promote the production of MDA and inhibit the activities of defense enzymes SOD and GST in B. xylophilus. Compound W3 can affect the transcription of genes involved in regulating the tricarboxylic acid cycle in nematodes, resulting in weakened nematode respiration and reduced nematode activity and even death. In addition, compound W3 had good inhibitory activity against five pathogenic fungi. Among them, the EC50 of compound W3 against Fusarium graminearum was 8.4 mg/L. In the future, we will devote ourselves to the toxicological and structural optimization research of the candidate nematicide W3.


Subject(s)
Tylenchida , Tylenchoidea , Animals , Amides/pharmacology , Antinematodal Agents/pharmacology , Antinematodal Agents/chemistry , Reproduction
19.
Pestic Biochem Physiol ; 199: 105804, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458671

ABSTRACT

Chemical fertilizer and pesticide are necessary in agriculture, which have been frequently used, sometimes even at the same time or in combination. To understand the interactions of them could be of significance for better use of these agrochemicals. In this study, the influence of chemical fertilizers (urea, potassium sulfate, ammonium sulfate and superphosphate) on the control efficacy and environmental behavior of abamectin was investigated, which could be applied in soil for controlling nematodes. In laboratory assays, ammonium sulfate at 1 and 2 g/L decreased the LC50 values of abamectin to Meloidogyne incognita from 0.17 mg/L to 0.081 and 0.043 mg/L, indicating it could increase the contact toxicity. In greenhouse trial, ammonium sulfate at 1000 mg/kg increased the control efficacy of abamectin by 1.37 times. Meanwhile, the combination of abamectin with ammonium sulfate could also promote the tomato seedling growth as well as the defense-related enzyme activity under M. incognita stress. The persistence and mobility of abamectin in soil were significantly elevated by ammonium sulfate, which could prolong and promote the control efficacy against nematodes. These results could provide reference for reasonable use of abamectin and fertilizers so as to increase the control efficacy and minimize the environmental risks.


Subject(s)
Fertilizers , Ivermectin/analogs & derivatives , Tylenchoidea , Animals , Soil , Ammonium Sulfate
20.
Sci Rep ; 14(1): 7253, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538666

ABSTRACT

Due to the highly conserved structure, animal mitochondrial genome (mtDNA) is widely used in classification, evolution, phylogeny, population genetic structure and other fields. We reported on the five circle multipartite mtDNAs of a newly described species of Globodera, Globodera vulgaris (Gv) from potatoes in China. The results showed that the mtDNA of Gv was obtained through second- and third-generation sequencing, with a total length of 42,995 bp. It contained 12 protein-coding genes, two rRNA genes and 17 tRNA genes, which were distributed in different subgenomic circles. Comparison of the differences in mtDNA among Gv, G. rostochiensis, G. pallida and G. ellingtonae showed that the size and arrangement of the genes in the mtDNA of the genus Globodera were variable and not conserved. The codon usage bias of the mitochondrial protein-coding gene of Gv showed that Gv might have originated from locally and more primitive group of existing Globodera. Based on the cytochrome c oxidase subunits I genes (COX1) and the nicotinamide adenine dinucleotide dehydrogenase subunits I genes (ND1), and the results showed that Gv was clustered with Globodera spp. according to the COX1 and ND1 in scmtDNA-V, while Gv was clustered with Meloidogyne spp. according to ND1 in scmtDNA-III. The results of this study provided a new basis for understanding the multipartite structure of mtDNA as a phylogenetic and taxonomic feature of the genus Globodera. The number of subgenomic circles is a diagnostic feature of species and the arrangement order and size of mitochondrial protein-coding genes also have important application value in species identification within the genus.


Subject(s)
Genome, Mitochondrial , Tylenchoidea , Animals , Genome, Mitochondrial/genetics , Phylogeny , Tylenchoidea/genetics , DNA, Mitochondrial/genetics , Mitochondrial Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...