Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(6): 159505, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38729236

ABSTRACT

Tylophora indica (Burm f.) Merrill, belong to family Asclepiadaceae, is considered to be a natural remedy with high medicinal benefits. The objective of this work is to assess the metabolomic profile of T. indica leaves enriched in alkaloids, as well as to evaluate the in vitro cytotoxicity of these leaves using the MTT assay on human breast MCF-7 and liver HepG2 cancer cell lines. Dried leaves of T. indica were extracted by sonication, using methanol containing 2 % (v/v) of acetic acid and obtained fraction was characterized by HPTLC and UPLC-MS. The UPLC-MS study yielded a preliminary identification of 32 metabolites, with tylophorine, tylophorine B, tylophorinine, and tylophorinidine being the predominant metabolites. The cytotoxicity of the extract of T. indica was evaluated on HepG2 and MCF-7 cell lines, yielding inhibitory concentration (IC50) values of 75.71 µg/mL and 69.60 µg/mL, respectively. Data suggested that the phytochemical screening clearly showed presence of numerous secondary metabolites with moderate cytotoxic efficacy. In conclusion, the future prospects of T. indica appear promising for the advancement of phytopharmaceutical-based anticancer medications, as well as for the design of contemporary pharmaceuticals in the field of cancer chemotherapy.


Subject(s)
Alkaloids , Metabolomics , Plant Extracts , Plant Leaves , Tylophora , Humans , Plant Leaves/metabolism , Plant Leaves/chemistry , Alkaloids/metabolism , Alkaloids/pharmacology , Alkaloids/chemistry , Hep G2 Cells , Metabolomics/methods , MCF-7 Cells , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/metabolism , Tylophora/metabolism , Tylophora/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/metabolism
2.
Chemistry ; 23(50): 12149-12152, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28603842

ABSTRACT

Herein, we report a Cp*CoIII -catalyzed C-H activation approach as the key step to create highly valuable isoquinolones and pyridones as building blocks that can readily be applied in the total syntheses of a variety of aromathecin, protoberberine, and tylophora alkaloids. This particular C-H activation/annulation reaction was achieved with several terminal as well as internal alkyne coupling partners delivering a broad scope with excellent functional group tolerance. The synthetic applicability of this protocol reported herein was demonstrated in the total syntheses of two Topo-I-Inhibitors and two 8-oxyprotoberberine cores that can be further elaborated into the tetrahydroprotoberberine and the protoberberine alkaloid core. Moreover these building blocks were also transformed to six different tylophora alkaloids in expedient fashion.


Subject(s)
Alkaloids/chemical synthesis , Berberine Alkaloids/chemical synthesis , Cobalt/chemistry , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Alkaloids/chemistry , Berberine Alkaloids/chemistry , Carbon/chemistry , Catalysis , Heterocyclic Compounds, 4 or More Rings/chemistry , Hydrogen/chemistry , Pyridones/chemistry , Quinolones/chemistry , Tylophora/chemistry , Tylophora/metabolism
3.
Plant Cell Rep ; 24(1): 25-35, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15660269

ABSTRACT

We have developed an efficient transformation system for Tylophora indica, an important medicinal plant in India, using Agrobacterium rhizogenes strains LBA9402 and A4 to infect excised leaf and stem explants and intact shoots at different sites. The induction of callus and transformed roots was dependent on the bacterial strain, explant type and inoculation site used. Transformed roots were induced only in explants infected with A. rhizogenes strain A4, while an optimal transformation frequency of up to 60% was obtained with intact shoots inoculated at the nodes. The presence of the left-hand transferred DNA (T(L)-DNA) in the genome of T. indica roots induced by A. rhizogenes was confirmed by PCR amplification of the rooting locus genes of A. rhizogenes. Root growth and the production of tylophorine, the major alkaloid of the plant, varied substantially among the nine root clones studied. Both parameters increased over time in liquid cultures, with maximum biomass and tylophorine accumulation occurring within 4-6 weeks of growth in fresh medium. Interestingly, in liquid culture, the culture medium also accumulated tylophorine up to concentrations of 9.78+/-0.21 mg l(-1).


Subject(s)
Alkaloids/biosynthesis , Genetic Engineering/methods , Plant Roots/metabolism , Rhizobium , Transformation, Genetic , Tylophora/genetics , Indolizines , Phenanthrenes , Plant Roots/genetics , Plant Roots/growth & development , Plants, Genetically Modified , Time Factors , Tissue Culture Techniques , Tylophora/growth & development , Tylophora/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...