Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.150
Filter
1.
BMC Vet Res ; 20(1): 251, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849822

ABSTRACT

AIM OF THE WORK: The study was conducted to evaluate the influence of theophylline pre-treatment on serum pharmacokinetics and milk elimination of tylosin following single intramuscular (IM) administrations in lactating goats. METHODS AND RESULTS: In a cross-over study, tylosin was injected via intramuscular (IM) at a single dose of 15 mg/kg b.wt. After a one-month washout period goats received theophylline at a daily IM dose of 2 mg/kg b.wt. for seven consecutive days then tylosin was injected IM dose of 15 mg/kg b.wt. two hours after the last theophylline dosing. Blood samples were collected before and at 0.25, 0.5, 0.75, 1, 2, 4, 6, 8, 10, 12, and 24 h post-injection. Samples were left to clot and then centrifuged to yield serum. Milk samples were collected before and at 0.5, 1, 2, 4, 6, 8, 10, 12, 24, 48, and 72 h post-injection from each goat by hand milking. Tylosin serum concentrations were determined by high-performance liquid chromatography (HPLC). Tylosin concentrations versus time were analyzed by a noncompartmental method. Tylosin Cmax significantly declined from 1.73 ± 0.10 to 1.01 ± 0.11 µg/ml, and attained Tmax values of 2 and 1 h, respectively in theophylline-pretreated goats. Moreover, theophylline pretreatment significantly shortened the elimination half-life (t1/2el) from 6.94 to 1.98 h, t1/2ka from 0.62 to 0.36 h and the mean residence time (MRT) from 8.02 to 4.31 h, also Vz/F and AUCs decreased from 11.91 to 7.70 L/kg and from 12.64 to 4.57 µg*h/ml, respectively, consequently, theophylline enhanced the clearance (Cl/F) of tylosin from the body. Similarly, tylosin milk concentrations were significantly lower in theophylline-pretreated goats than in goats that received tylosin alone and were detected up to 24 and 72 h in both groups, respectively. Moreover, the t1/2el and AUCs were significantly decreased from 14.68 ± 1.97 to 4.72 ± 0.48 h, and from 181 to 67.20 µg*h/ml, respectively. CONCLUSIONS: The withdrawal period for tylosin in goat milk is at least 72 h. Theophylline pretreatment significantly decreases serum and milk tylosin concentrations to subtherapeutic levels, which could have serious clinical consequences such as failure of therapy. This means that after administering tylosin to goats, milk from these animals should not be consumed for at least 96 h to ensure that the milk is free from residues of the antibiotic.


Subject(s)
Anti-Bacterial Agents , Cross-Over Studies , Goats , Lactation , Milk , Theophylline , Tylosin , Animals , Goats/metabolism , Theophylline/pharmacokinetics , Theophylline/administration & dosage , Theophylline/blood , Tylosin/pharmacokinetics , Tylosin/administration & dosage , Tylosin/blood , Injections, Intramuscular/veterinary , Milk/chemistry , Female , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/blood , Half-Life , Area Under Curve
2.
Sci Rep ; 14(1): 12575, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822086

ABSTRACT

This study investigated batch-fed vermicomposting of cow manure, with a specific focus on assessing the effects of tylosin on the weight of earthworms and the overall quality of the resulting manure. Five reactors, including three concentrations of tylosin (50, 100, and 150 mg/kg) and two control reactors, were employed. Residual tylosin concentrations were measured using high-performance liquid chromatography (HPLC). Quality parameters such as pH, temperature, volatile solids (VS), organic carbon content (OCC), electrical conductivity (EC), ash content, C/N ratio, total Kjeldahl nitrogen (TKN), and microbial content were evaluated. The toxicity and maturity of vermicompost were assessed by determining the germination index (GI). The study also monitored variations in the earthworm's weight. The results demonstrated a decreasing trend in VS, OCC, C/N, and fecal coliforms, along with increased pH, EC, ash content, and TKN during the vermicomposting process. Furthermore, investigations revealed significant reductions in the reactors with tylosin concentrations of 50, 100, and 150 mg/kg, resulting in the removal of 98%, 90.48%, and 89.38% of the initial tylosin, respectively. This result confirms the faster removal of tylosin in reactors with lower concentrations. Degradation of tylosin also conforms to first-order kinetics. The findings showed a significant influence of tylosin on the weight of Eisenia fetida earthworms and the lowest antibiotic concentration led to the highest weight gain. Finally, the high percentage of germination index (90-100%) showed that the quality and maturity of vermicompost is by national and international standards.


Subject(s)
Composting , Manure , Oligochaeta , Tylosin , Animals , Tylosin/pharmacology , Manure/analysis , Oligochaeta/drug effects , Oligochaeta/metabolism , Cattle , Composting/methods , Soil/chemistry , Anti-Bacterial Agents/pharmacology , Hydrogen-Ion Concentration
3.
PLoS One ; 19(5): e0304113, 2024.
Article in English | MEDLINE | ID: mdl-38820335

ABSTRACT

Microbial degradation of tylosin (TYL) is a safe and environmentally friendly technology for remediating environmental pollution. Kurthia gibsonii (TYL-A1) and Klebsiella pneumonia (TYL-B2) were isolated from wastewater; degradation efficiency of the two strains combined was significantly greater than either alone and resulted in degradation products that were less toxic than TYL. With Polyvinyl alcohol (PVA)-sodium alginate (SA)-activated carbon (AC) used to form a bacterial immobilization carrier, the immobilized bacterial alliance reached 95.9% degradation efficiency in 1 d and could be reused for four cycles, with > 93% degradation efficiency per cycle. In a wastewater application, the immobilized bacterial alliance degraded 67.0% TYL in 9 d. There were significant advantages for the immobilized bacterial alliance at pH 5 or 9, with 20 or 40 g/L NaCl, or with 10 or 50 mg/L doxycycline. In summary, in this study, a bacterial consortium with TYL degradation ability was constructed using PVA-SA-AC as an immobilized carrier, and the application effect was evaluated on farm wastewater with a view to providing application guidance in environmental remediation.


Subject(s)
Biodegradation, Environmental , Cells, Immobilized , Polyvinyl Alcohol , Tylosin , Wastewater , Wastewater/chemistry , Wastewater/microbiology , Polyvinyl Alcohol/chemistry , Cells, Immobilized/metabolism , Alginates/chemistry , Alginates/metabolism , Water Pollutants, Chemical/metabolism , Klebsiella pneumoniae/metabolism , Anti-Bacterial Agents , Charcoal/chemistry
4.
Bioresour Technol ; 401: 130715, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641304

ABSTRACT

To mitigate the environmental risks posed by the accumulation of antibiotic mycelial dregs (AMDs), this study first attempted over 200 tons of mass production fermentation (MP) using tylosin and spectinomycin mycelial dregs alongside pilot-scale fermentation (PS) for comparison, utilizing the integrated-omics and qPCR approaches. Co-fermentation results showed that both antibiotics were effectively removed in all treatments, with an average removal rate of 92%. Antibiotic resistance gene (ARG)-related metabolic pathways showed that rapid degradation of antibiotics was associated with enzymes that inactivate macrolides and aminoglycosides (e.g., K06979, K07027, K05593). Interestingly, MP fermentations with optimized conditions had more efficient ARGs removal because homogenization permitted faster microbial succession, with more stable removal of antibiotic resistant bacteria and mobile genetic elements. Moreover, Bacillus reached 75% and secreted antioxidant enzymes that might inhibit horizontal gene transfer of ARGs. The findings confirmed the advantages of MP fermentation and provided a scientific basis for other AMDs.


Subject(s)
Anti-Bacterial Agents , Fermentation , Spectinomycin , Tylosin , Tylosin/pharmacology , Anti-Bacterial Agents/pharmacology , Spectinomycin/pharmacology , Mycelium/drug effects , Drug Resistance, Microbial/genetics , Drug Resistance, Microbial/drug effects , Biodegradation, Environmental , Genes, Bacterial
5.
J Hazard Mater ; 469: 134026, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38493620

ABSTRACT

The purpose of the study was to evaluate the effects of using of ozonation to remove antibiotics used, among others, in veterinary medicine, from the aqueous environment. The effect of this process on the degradation, mineralisation and ecotoxicity of aqueous solutions of ampicillin, doxycycline, tylosin, and sulfathiazole was investigated. Microbiological MARA® bioassay and two in silico methods were used for the ecotoxicity assessment. Ozonation was an effective method for the degradation of the antibiotics studied and the reduction in ecotoxicity of the solutions. However, after ozonation, the solutions contained large amounts of organic products, including compounds much less susceptible to ozonation than the initial antibiotics. Structures of 14, 12, 40 and 10 degradation products for ampicillin, doxycycline, tylosin, and sulfathiazole, respectively, were proposed. It was confirmed that ozone plays a greater role than hydroxyl radicals in the degradation of these antibiotics, with the exception of TYL. The use of ozonation to obtain a high degree of mineralisation is unfavourable and it is suggested to combine ozonation with biodegradation. The pre-ozonation will cause decomposition of antibiotic pharmacophores, which significantly reduces the risk of spread of antimicrobial resistance in the active biocenosis of wastewater treatment plants.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/chemistry , Doxycycline , Tylosin , Ampicillin , Sulfathiazole , Ozone/chemistry , Water Purification/methods , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry
6.
J Environ Sci (China) ; 142: 182-192, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38527883

ABSTRACT

The degradation of tilmicosin (TLM), a semi-synthetic 16-membered macrolide antibiotic, has been receiving increasing attention. Conventionally, there are three tilmicosin degradation methods, and among them microbial degradation is considered the best due to its high efficiency, eco-friendliness, and low cost. Coincidently, we found a new strain, Glutamicibacter nicotianae sp. AT6, capable of degrading high-concentration TLM at 100 mg/L with a 97% removal efficiency. The role of tryptone was as well investigated, and the results revealed that the loading of tryptone had a significant influence on TLM removals. The toxicity assessment indicated that strain AT6 could efficiently convert TLM into less-toxic substances. Based on the identified intermediates, the degradation of TLM by AT6 processing through two distinct pathways was then proposed.


Subject(s)
Micrococcaceae , Tylosin , Tylosin/analogs & derivatives , Wastewater , Tylosin/toxicity , Anti-Bacterial Agents/metabolism , Biodegradation, Environmental
7.
Int J Mol Sci ; 25(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542095

ABSTRACT

Skin wounds and their infections by antibiotic-resistant bacteria (ARB) are very common in small animals, posing the risk of acquiring ARB by pet owners or antibiotic resistance gene (ARG) transfer to the owners' microbiota. The aim of this study was to identify the most common pathogens infecting wounds of companion animals, assess their antibiotic resistance, and determine the ARGs using culture-based, molecular, and proteomic methods. A total of 136 bacterial strains were isolated from wound swabs. Their species was identified using chromogenic media, followed by MALDI-TOF spectrometry. Antibiotic resistance was tested using disc diffusion, and twelve ARGs were detected using PCRs. The dominant species included Staphylococcus pseudintermedius (9.56%), E. coli, and E. faecalis (both n = 11, 8.09%). Enterobacterales were mostly resistant to amoxicillin/clavulanic acid (68.3% strains), all Pseudomonas were resistant to ceftazidime, piperacillin/tazobactam, imipenem, and tylosin, Acinetobacter were mostly resistant to tylosin (55.5%), all Enterococcus were resistant to imipenem, and 39.2% of Staphylococci were resistant to clindamycin. Among ARGs, strA (streptomycin resistance), sul3 (sulfonamide resistance), and blaTEM, an extended-spectrum beta-lactamase determinant, were the most frequent. The risk of ARB and ARG transfer between animals and humans causes the need to search for new antimicrobial therapies in future veterinary medicine.


Subject(s)
Anti-Bacterial Agents , Pets , Humans , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pets/microbiology , Escherichia coli , Tylosin , Angiotensin Receptor Antagonists , Proteomics , Angiotensin-Converting Enzyme Inhibitors , Bacteria/genetics , Imipenem , Ecosystem , Microbial Sensitivity Tests
8.
J Antibiot (Tokyo) ; 77(5): 331-333, 2024 May.
Article in English | MEDLINE | ID: mdl-38467778

ABSTRACT

The emergence and spread of antimicrobial resistance are global threats. Pseudomonas aeruginosa (P. aeruginosa) is responsible for a substantial proportion of this global health issue because of its intrinsic resistance to many antibiotics due to the impermeability of its outer membrane and its multidrug efflux pump systems. Therefore, therapeutic drugs are limited, and the development of new drugs is extremely challenging. As an alternative approach, we focused on a combinational treatment strategy and found that 5-O-mycaminosyltylonolide (OMT) showed potent antibacterial activity against P. aeruginosa in the presence of an efflux pump inhibitor, phenylalanine-arginine beta-naphthylamide (PAßN). In this report, we prepared a PAßN derivative and compared the potentiation activity of OMT by PAßNs against multidrug-resistant P. aeruginosa clinical isolates.


Subject(s)
Anti-Bacterial Agents , Dipeptides , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Tylosin/analogs & derivatives , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Dipeptides/pharmacology , Dipeptides/chemistry , Drug Synergism , Humans
9.
Vet Microbiol ; 291: 110029, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364466

ABSTRACT

The antimicrobial tylosin is commonly used to control mycoplasma infections, sometimes in combination with vaccination. However, the efficacy of a live mycoplasma vaccine, when combined with subsequent antimicrobial treatment, against the effects of subsequent infection with a virulent strain is unknown. This study employed differential gene expression analysis to evaluate the effects of tylosin on the protection provided by the live attenuated Vaxsafe MG ts-304 vaccine, which has been shown to be safe and to provide long-term protective immunity against infection with Mycoplasma gallisepticum. The transcriptional profiles of the tracheal mucosa revealed significantly enhanced inflammation, immune cell proliferation and adaptive immune responses in unvaccinated, untreated birds and in unvaccinated birds treated with tylosin 2 weeks after infection with virulent M. gallisepticum. These responses, indicative of the typical immune dysregulation caused by infection with M. gallisepticum, were less severe in the unvaccinated, tylosin-treated birds than in the unvaccinated, untreated birds. This was attributable to the effect of residual levels of tylosin in the tracheal mucosa on replication of virulent M. gallisepticum. These responses were not detected in vaccinated, tylosin-treated birds or in vaccinated, untreated birds after infection. The tracheal mucosal transcriptional profiles of these birds resembled those of unvaccinated, untreated, uninfected birds, suggesting a rapid and protective secondary immune response and effective vaccination. Overall, these results show that, although tylosin treatment reduced the duration of immunity, the initial protective immunity induced by Vaxsafe MG ts-304 lasted for at least 22 weeks after vaccination, even after the administration of tylosin for 16 weeks following vaccination.


Subject(s)
Anti-Infective Agents , Mycoplasma Infections , Mycoplasma gallisepticum , Poultry Diseases , Animals , Tylosin/pharmacology , Bacterial Vaccines , Chickens , Poultry Diseases/prevention & control , Mycoplasma Infections/prevention & control , Mycoplasma Infections/veterinary , Vaccines, Attenuated
10.
Poult Sci ; 103(4): 103485, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38335668

ABSTRACT

Chickens are the primary reservoirs of Campylobacter spp., mainly C. jejuni and C. coli, that cause human bacterial gastrointestinal infections. However, genomic characteristics and antimicrobial resistance of Campylobacter spp. in low- to middle-income countries need more comprehensive exploration. This study aimed to characterize 21 C. jejuni and 5 C. coli isolates from commercial broilers and native chickens using whole genome sequencing and compare them to 28 reference Campylobacter sequences. Among the 26 isolates, 13 sequence types (ST) were identified in C. jejuni and 5 ST in C. coli. The prominent ST was ST 2274 (5 isolates, 19.2%), followed by ST 51, 460, 2409, and 6455 (2 isolates in each ST, 7.7%), while all remaining ST (464, 536, 595, 2083, 6736, 6964, 8096, 10437, 828, 872, 900, 8237, and 13540) had 1 isolate per ST (3.8%). Six types of antimicrobial resistance genes (ant(6)-Ia, aph(3')-III, blaOXA, cat, erm(B), and tet(O)) and one point mutations in the gyrA gene (Threonine-86-Isoleucine) and another in the rpsL gene (Lysine-43-Arginine) were detected. The blaOXA resistance gene was present in all isolates, the gyrA mutations was in 95.2% of C. jejuni and 80.0% of C. coli, and the tet(O) resistance gene in 76.2% of C. jejuni and 80.0% of C. coli. Additionally, 203 virulence-associated genes linked to 16 virulence factors were identified. In terms of phenotypic resistance, the C. jejuni isolates were all resistant to ciprofloxacin, enrofloxacin, and nalidixic acid, with lower levels of resistance to tetracycline (76.2%), tylosin (52.3%), erythromycin (23.8%), azithromycin (22.2%), and gentamicin (11.1%). Most C. coli isolates were resistant to all tested antimicrobials, while 1 C. coli was pan-susceptible except for tylosin. Single-nucleotide polymorphisms concordance varied widely, with differences of up to 13,375 single-nucleotide polymorphisms compared to the reference Campylobacter isolates, highlighting genetic divergence among comparative genomes. This study contributes to a deeper understanding of the molecular epidemiology of Campylobacter spp. in Thai chicken production systems.


Subject(s)
Anti-Infective Agents , Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Campylobacter , Animals , Humans , Chickens/genetics , Thailand/epidemiology , Campylobacter Infections/epidemiology , Campylobacter Infections/veterinary , Campylobacter Infections/microbiology , Tylosin , Drug Resistance, Bacterial/genetics , Campylobacter/genetics , Anti-Bacterial Agents/pharmacology , Whole Genome Sequencing/veterinary , Microbial Sensitivity Tests/veterinary
11.
FEMS Microbiol Ecol ; 100(4)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38373802

ABSTRACT

Liver abscesses (LA) resulting from bacterial infection in cattle pose a significant global challenge to the beef and dairy industries. Economic losses from liver discounts at slaughter and reduced animal performance drive the need for effective mitigation strategies. Tylosin phosphate supplementation is widely used to reduce LA occurrence, but concerns over antimicrobial overuse emphasize the urgency to explore alternative approaches. Understanding the microbial ecology of LA is crucial to this, and we hypothesized that a reduced timeframe of tylosin delivery would alter LA microbiomes. We conducted 16S rRNA sequencing to assess severe liver abscess bacteriomes in beef cattle supplemented with in-feed tylosin. Our findings revealed that shortening tylosin supplementation did not notably alter microbial communities. Additionally, our findings highlighted the significance of sample processing methods, showing differing communities in bulk purulent material and the capsule-adhered material. Fusobacterium or Bacteroides ASVs dominated LA, alongside probable opportunistic gut pathogens and other microbes. Moreover, we suggest that liver abscess size correlates with microbial community composition. These insights contribute to our understanding of factors impacting liver abscess microbial ecology and will be valuable in identifying antibiotic alternatives. They underscore the importance of exploring varied approaches to address LA while reducing reliance on in-feed antibiotics.


Subject(s)
Liver Abscess , Microbiota , Cattle , Animals , Tylosin/pharmacology , RNA, Ribosomal, 16S/genetics , Liver Abscess/veterinary , Liver Abscess/epidemiology , Liver Abscess/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Dietary Supplements/analysis , Animal Feed/analysis
12.
Langmuir ; 40(9): 4860-4870, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38394629

ABSTRACT

Tildipirosin has no significant inhibitory effect on intracellular bacteria because of its poor membrane permeability. To this end, tildipirosin-loaded xanthan gum-gelatin composite nanogels were innovatively prepared to improve the cellular uptake efficiency. The formation of the nanogels via interactions between the positively charged gelatin and the negatively charged xanthan gum was confirmed by powder X-ray diffraction and Fourier transform infrared. The results indicate that the optimal tildipirosin composite nanogels possessed a 3D network structure and were shaped like a uniformly dispersed ellipse, and the particle size, PDI, and ζ potential were 229.4 ± 1.5 nm, 0.26 ± 0.04, and -33.2 ± 2.2 mV, respectively. Interestingly, the nanogels exhibited gelatinase-responsive characteristics, robust cellular uptake via clathrin-mediated endocytosis, and excellent sustained release. With those pharmaceutical properties provided by xanthan gum-gelatin composite nanogels, the anti-Staphylococcus aureus activity of tildipirosin was remarkably amplified. Further, tildipirosin composite nanogels demonstrated good biocompatibility and low in vivo and in vitro toxicities. Therefore, we concluded that tildipirosin-loaded xanthan gum-gelatin composite nanogels might be employed as a potentially effective gelatinase-responsive drug delivery for intracellular bacterial infection.


Subject(s)
Gelatin , Gelatinases , Polysaccharides, Bacterial , Tylosin/analogs & derivatives , Nanogels , Gelatin/chemistry
13.
Parasit Vectors ; 17(1): 59, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341599

ABSTRACT

BACKGROUND: Toxoplasma gondii is an important protozoan pathogen with medical and veterinary importance worldwide. Drugs currently used for treatment of toxoplasmosis are less effective and sometimes cause serious side effects. There is an urgent need for the development of more effective drugs with relatively low toxicity. METHODS: The effect of tylosin on the viability of host cells was measured using CCK8 assays. To assess the inhibition of tylosin on T. gondii proliferation, a real-time PCR targeting the B1 gene was developed for T. gondii detection and quantification. Total RNA was extracted from parasites treated with tylosin and then subjected to transcriptome analysis by RNA sequencing (RNA-seq). Finally, murine infection models of toxoplasmosis were used to evaluate the protective efficacy of tylosin against T. gondii virulent RH strain or avirulent ME49 strain. RESULTS: We found that tylosin displayed low host toxicity, and its 50% inhibitory concentration was 175.3 µM. Tylsoin also inhibited intracellular T. gondii tachyzoite proliferation, with a 50% effective concentration of 9.759 µM. Transcriptome analysis showed that tylosin remarkably perturbed the gene expression of T. gondii, and genes involved in "ribosome biogenesis (GO:0042254)" and "ribosome (GO:0005840)" were significantly dys-regulated. In a murine model, tylosin treatment alone (100 mg/kg, i.p.) or in combination with sulfadiazine sodium (200 mg/kg, i.g.) significantly prolonged the survival time and raised the survival rate of animals infected with T. gondii virulent RH or avirulent ME49 strain. Meanwhile, treatment with tylosin significantly decreased the parasite burdens in multiple organs and decreased the spleen index of mice with acute toxoplasmosis. CONCLUSIONS: Our findings suggest that tylosin exhibited potency against T. gondii both in vitro and in vivo, which offers promise for treatment of human toxoplasmosis.


Subject(s)
Toxoplasma , Toxoplasmosis , Humans , Animals , Mice , Tylosin/pharmacology , Tylosin/therapeutic use , Toxoplasmosis/drug therapy , Toxoplasmosis/parasitology , Sulfadiazine/pharmacology , Sulfadiazine/therapeutic use , Spleen
14.
Sci Rep ; 14(1): 1954, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38263184

ABSTRACT

Probiotics are widely used in agriculture including commercial beekeeping, but there is little evidence supporting their effectiveness. Antibiotic treatments can greatly distort the gut microbiome, reducing its protective abilities and facilitating the growth of antibiotic resistant pathogens. Commercial beekeepers regularly apply antibiotics to combat bacterial infections, often followed by an application of non-native probiotics advertised to ease the impact of antibiotic-induced gut dysbiosis. We tested whether probiotics affect the gut microbiome or disease prevalence, or rescue the negative effects of antibiotic induced gut dysbiosis. We found no difference in the gut microbiome or disease markers by probiotic application or antibiotic recovery associated with probiotic treatment. A colony-level application of the antibiotics oxytetracycline and tylosin produced an immediate decrease in gut microbiome size, and over the longer-term, very different and persistent dysbiotic effects on the composition and membership of the hindgut microbiome. Our results demonstrate the lack of probiotic effect or antibiotic rescue, detail the duration and character of dysbiotic states resulting from different antibiotics, and highlight the importance of the gut microbiome for honeybee health.


Subject(s)
Oxytetracycline , Probiotics , Bees , Animals , Dysbiosis , Anti-Bacterial Agents , Tylosin
15.
Res Vet Sci ; 168: 105152, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219471

ABSTRACT

Pleuromutilins (tiamulin and valnemulin) are often used to treat swine dysentery due to recurrent resistance to macrolides and lincosamides. Recently, reduced susceptibility of B. hyodysenteriae to pleuromutilin has been reported. 536 strains of B. hyodysenteriae were isolated from symptomatic pigs weighing 30-150 kg in northern Italy between 2005 and 2022. B. hyodysenteriae was isolated by standard methods and confirmed by PCR. The minimum inhibitory concentration (MIC) to doxycycline, lincomycin, tiamulin, tylosin, tylvalosine and valnemulin was evaluated according to CLSI procedures and MIC data were reported as MIC 50 and MIC 90. The temporal trend of the MIC values was evaluated by dividing the data into two groups (2005-2013 and 2014-2022). Comparison of the distribution in frequency classes in the two periods was performed using Pearson's chi-squared test (p < 0.01). MIC 50 was close to the highest values tested for lincomycin and tylosin, while MIC 90 was close to the highest values tested for all antibiotics. 71.7% of the strains were susceptible to tylvalosin, while 75%-80.4% had reduced susceptibility to valnemulin and tiamulin, respectively. The difference in the distribution of MIC classes was statistically significant in the two periods for doxycycline, tiamulin, tylvalosin and valnemulin, and more MIC classes above the epidemiological cut-off were observed in 2014-2022 compared with 2005-2013. The evaluation of the trends during the period considered shows a decreasing rate of wild-type strains with MIC values below the epidemiological cut-off over time and confirms the presence of resistant strains in northern Italy.


Subject(s)
Brachyspira hyodysenteriae , Brachyspira , Swine Diseases , Tylosin/analogs & derivatives , Animals , Swine , Brachyspira hyodysenteriae/genetics , Doxycycline , Swine Diseases/drug therapy , Swine Diseases/epidemiology , Anti-Bacterial Agents/pharmacology , Pleuromutilins , Lincomycin , Microbial Sensitivity Tests/veterinary , Italy , Diterpenes
16.
Nat Prod Res ; 38(10): 1652-1661, 2024 May.
Article in English | MEDLINE | ID: mdl-37226502

ABSTRACT

An experimental study has been conducted to investigate the efficacy of geraniol (GNL) isolated from lemomgrass in protecting against cardiac toxicity induced by tilmicosin (TIL) in albino mice. Compared to TIL-treated mice, those supplemented with GNL had a thicker left ventricular wall and a smaller ventricular cavity. Studies of TIL animals treated with GNL showed that their cardiomyocytes had markedly changed in diameter and volume, along with a reduction in numerical density. After TIL induction, animals showed a significant increase in the protein expression of TGF-ß1, TNF-α, nuclear factor kappa B (NF-kB), by 81.81, 73.75 and 66.67%, respectively, and hypertrophy marker proteins ANP, BNP, and calcineurin with respective percentages of 40, 33.34 and 42.34%. Interestingly, GNL significantly decreased the TGF-ß1, TNF-α, NF-kB, ANP, BNP, and calcineurin levels by 60.94, 65.13, 52.37, 49.73, 44.18 and 36.84%, respectively. As observed from histopathology and Masson's trichrome staining, supplementation with GNL could rescue TIL-induced cardiac hypertrophy. According to these results, GNL may protect the heart by reducing hypertrophy in mice and modulating biomarkers of fibrosis and apoptosis.


Subject(s)
Acyclic Monoterpenes , Cymbopogon , Tylosin/analogs & derivatives , Mice , Animals , NF-kappa B/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Calcineurin/metabolism , Calcineurin/pharmacology , Oxidative Stress , Myocytes, Cardiac , Cardiomegaly/metabolism , Cardiomegaly/pathology
17.
J Vet Diagn Invest ; 36(1): 62-69, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37968893

ABSTRACT

Swine dysentery, caused by Brachyspira hyodysenteriae and the newly recognized Brachyspira hampsonii in grower-finisher pigs, is a substantial economic burden in many swine-rearing countries. Antimicrobial therapy is the only commercially available measure to control and prevent Brachyspira-related colitis. However, data on antimicrobial susceptibility trends and genetic diversity of Brachyspira species from North America is limited. We evaluated the antimicrobial susceptibility profiles of U.S. Brachyspira isolates recovered between 2013 and 2022 to tiamulin, tylvalosin, lincomycin, doxycycline, bacitracin, and tylosin. In addition, we performed multilocus sequence typing (MLST) on 64 B. hyodysenteriae isolates. Overall, no distinct alterations in the susceptibility patterns over time were observed among Brachyspira species. However, resistance to the commonly used antimicrobials was seen sporadically with a higher resistance frequency to tylosin compared to other tested drugs. B. hampsonii was more susceptible to the tested drugs than B. hyodysenteriae and B. pilosicoli. MLST revealed 16 different sequence types (STs) among the 64 B. hyodysenteriae isolates tested, of which 5 STs were previously known, whereas 11 were novel. Most isolates belonged to the known STs: ST93 (n = 32) and ST107 (n = 13). Our findings indicate an overall low prevalence of resistance to clinically important antimicrobials other than tylosin and bacitracin, and high genetic diversity among the clinical Brachyspira isolates from pigs in the United States during the past decade. Further molecular, epidemiologic, and surveillance studies are needed to better understand the infection dynamics of Brachyspira on swine farms and to help develop effective control measures.


Subject(s)
Anti-Infective Agents , Brachyspira hyodysenteriae , Brachyspira , Gram-Negative Bacterial Infections , Swine Diseases , Humans , Swine , United States/epidemiology , Animals , Tylosin/pharmacology , Anti-Bacterial Agents/pharmacology , Multilocus Sequence Typing/veterinary , Bacitracin/pharmacology , Gram-Negative Bacterial Infections/epidemiology , Gram-Negative Bacterial Infections/veterinary , Swine Diseases/epidemiology , Drug Resistance, Bacterial , Brachyspira/genetics , Brachyspira hyodysenteriae/genetics , Anti-Infective Agents/pharmacology , Genetic Variation
18.
J Vet Pharmacol Ther ; 47(2): 114-120, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37950414

ABSTRACT

This study aimed to examine the depletion of tilmicosin residues in Gushi chickens following the administration at a concentration of 75 mg/L in their drinking water for three consecutive days. Plasma, liver, kidney, lung, muscle, and skin + fat samples were collected from 6 chickens at 6 h, 1, 3, 5, and 7 days after the treatment. Tilmicosin concentrations in the samples were determined using a high-performance liquid chromatography (HPLC) method. The findings revealed that the highest tilmicosin residues were detected in the liver, followed by the kidney, lung, skin + fat, muscle, and plasma. Notably, at 7 days post-treatment, no drug residue was detected in all samples except for the liver and kidney. The non-compartmental model was employed to calculate relevant pharmacokinetic parameters. The elimination half-lives (t1/2λz ) of tilmicosin were as follows, ranked from long to short: skin + fat (45.42 h), liver (44.17 h), kidney (40.06 h), plasma (37.64 h), lung (31.39 h), and muscle (30.05 h). Considering the current residue depletion and the maximum residue limits (MRLs) set by Chinese regulatory authorities, the withdrawal times for tilmicosin were estimated as 18.91, 10.81, and 8.58 days in the kidney, liver, and skin + fat, respectively. A rounded-up value of 19 days was selected as the conclusive withdrawal time. Furthermore, based on the observed tilmicosin concentrations in plasma and lung, combined with previously reported minimum inhibitory concentration (MIC) values against Mycoplasma gallisepticum, the current dosing regimen was deemed adequate for treating Mycoplasma gallisepticum infections in Gushi chickens.


Subject(s)
Anti-Bacterial Agents , Drinking Water , Tylosin/analogs & derivatives , Animals , Chickens , Administration, Oral
19.
Ecotoxicol Environ Saf ; 270: 115861, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38154153

ABSTRACT

As agents in an emerging technology, Hermetia illucens (Linnaeus, 1758) (Diptera: Stratiomyidae) larvae, black soldier fly, have shown exciting potential for degrading antibiotics in organic solid waste, a process for which gut microorganisms play an important role. This study investigated the characteristics of larval gut bacterial communities effected by typical antibiotics. Initially, antibiotics significantly reduced the diversity of gut bacterial species. After 8 days, diversity recovered to similar to that of the control group in the chlortetracycline, tylosin, and sulfamethoxazole groups. Proteobacteria, Firmicutes, and Actinobacteriota were the dominant phyla at the initial BSFL gut. However, after 4 days treatment, the proportion of Actinobacteriota significantly decreased, but Bacteroidota notably increased. During the conversion process, 18, 18, 17, 21, and 19 core genera were present in the chlortetracycline, sulfamethoxazole, tylosin, norfloxacin, and gentamicin groups, respectively. Pseudomonas, Actinomyces, Morganella, Providencia and Klebsiella might be the important genera with extraordinary resistance and degradation to antibiotics. Statistical analyses of COGs showed that antibiotics changed the microbial community functions of BSFL gut. Compared with the control group, (i) the chlortetracycline, sulfamethoxazole, and tylosin groups showed significant increase in the classification functions of transcription, RNA processing and modification,and so on, (ii) the norfloxacin and gentamicin groups showed significant increase in defense mechanisms and other functions. Note that we categorized the response mechanisms of these classification functions to antibiotics into resistance and degradation. This provides a new perspective to deeply understand the joint biodegradation behavior of antibiotics in environments, and serves as an important reference for further development and utilization of microorganisms-assisted larvae for efficient degradation of antibiotics.


Subject(s)
Chlortetracycline , Diptera , Gastrointestinal Microbiome , Animals , Diptera/physiology , Larva , Anti-Bacterial Agents/pharmacology , Norfloxacin , Tylosin , Bacteria , Sulfamethoxazole , Gentamicins
20.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-38069626

ABSTRACT

The effects of a novel direct-fed microbial (DFM) on feedlot performance, carcass characteristics, digestibility, ruminal morphology, and volatile fatty acid (VFA) profile of finishing steers were evaluated. Single-source Angus-crossbred yearling steers (n = 144; initial body weight (BW) = 371 ±â€…19 kg) were used in a randomized complete block design. Steers were blocked by initial BW and randomly assigned to treatments (12 pens/treatment; 4 steers/pen). Treatments included (A) CONTROL (no DFM, tylosin, or monensin, (B) MONTY (monensin sodium [330 mg/animal-daily] and tylosin phosphate [90 mg/animal-daily]), and (C) MONPRO (monensin sodium [same as previous] and Lactobacillus salivarius L28 [1 × 106 CFU/animal-daily]). Treatments were included in a steam-flaked corn-based finisher diet offered once daily using a clean-bunk management for ~149 d. The digestibility assessment was performed from days 70 to 74. Ruminal fluid and rumen tissue samples were collected at the slaughter for VFA profile and papillae morphology analyses, respectively. Data were analyzed using the GLIMMIX procedure of SAS with pen serving as the experimental unit, treatment as fixed effect, and BW block as random effect. Steers offered MONPRO had on average 5.3% less (P < 0.01) dry matter intake (9.56 kg/d) compared with either CONTROL (10.16 kg/d) or MONTY (9.96 kg/d). The carcass-adjusted final BW (613 kg; P = 0.23), overall average daily gain (1.64 kg/d; P = 0.23), and gain-efficiency (0.165; P = 0.61) were not affected by treatments. Steers offered CONTROL had greater (P < 0.01) marbling score and tended (P = 0.06) to have less carcasses grading Select and tended (P = 0.10) to have more carcasses grading Upper-Choice, while other carcass characteristics and liver-abscesses were not affected (P ≥ 0.23) by treatments. The digestibility of nutrients (P ≥ 0.13) and the ruminal VFA profile (P ≥ 0.12) were not affected by treatments. Steers offered MONPRO tended (P = 0.09) to have 16% greater average papillae number compared to other treatments. Yearlings offered finishing diets containing L. salivarius L28 plus monensin did not affect growth performance, digestibility, or ruminal VFA, but reduced feed intake. Carcass quality was negatively affected by treatments, while animals consuming L. salivarius L28 and monensin tended to improve ruminal morphology. Current findings in ruminal morphology and feed intake may warrant further assessment of diets containing L. salivarius L28 on beef cattle food safety aspects.


Antimicrobial resistance is a growing concern to public health and medically important antibiotics have been listed in the Veterinary Feed Directive. Nutritional technologies, such as direct-fed microbials, are being increasingly studied for the development of an effective use on beef cattle production systems. The newly isolated strain of Lactobacillus salivarius L28 has demonstrated pathogenic inhibition of Escherichia coli, Salmonella, and Listeria monocytogenes on in vitro assessments. The potential benefits have warranted the exploration of L. salivarius L28 in a feedlot setting. Single-source Angus-crossbred yearling steers were offered steam-flaked corn-based finishing diets containing no feed additive, or either a combination of tylosin plus monensin or L. salivarius L28 plus monensin. Steers offered L. salivarius L28 plus monensin consumed 5.3% less feed compared with other treatments, while other growth performance variables and the digestibility of nutrients were not affected. Carcasses from cattle supplemented with monensin had slightly lower carcass quality grades than those not supplemented with monensin. Lactobacillus salivarius L28 plus monensin tended to improve steers ruminal morphology. Current findings may warrant further food safety assessments when cattle are offered diets containing L. salivarius L28.


Subject(s)
Monensin , Tylosin , Cattle , Animals , Monensin/pharmacology , Tylosin/pharmacology , Diet/veterinary , Eating , Body Weight , Nutrients , Animal Feed/analysis , Digestion
SELECTION OF CITATIONS
SEARCH DETAIL
...