Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.375
Filter
1.
PLoS One ; 19(5): e0301624, 2024.
Article in English | MEDLINE | ID: mdl-38713678

ABSTRACT

Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of Typhoid fever. Blood culture is the gold standard for clinical diagnosis, but this is often difficult to employ in resource limited settings. Environmental surveillance of waste-impacted waters is a promising supplement to clinical surveillance, however validating methods is challenging in regions where S. Typhi concentrations are low. To evaluate existing S. Typhi environmental surveillance methods, a novel process control organism (PCO) was created as a biosafe surrogate. Using a previous described qPCR assay, a modified PCR amplicon for the staG gene was cloned into E. coli. We developed a target region that was recognized by the Typhoid primers in addition to a non-coding internal probe sequence. A multiplex qPCR reaction was developed that differentiates between the typhoid and control targets, with no cross-reactivity or inhibition of the two probes. The PCO was shown to mimic S. Typhi in lab-based experiments with concentration methods using primary wastewater: filter cartridge, recirculating Moore swabs, membrane filtration, and differential centrifugation. Across all methods, the PCO seeded at 10 CFU/mL and 100 CFU/mL was detected in 100% of replicates. The PCO is detected at similar quantification cycle (Cq) values across all methods at 10 CFU/mL (Average = 32.4, STDEV = 1.62). The PCO was also seeded into wastewater at collection sites in Vellore (India) and Blantyre (Malawi) where S. Typhi is endemic. All methods tested in both countries were positive for the seeded PCO. The PCO is an effective way to validate performance of environmental surveillance methods targeting S. Typhi in surface water.


Subject(s)
Environmental Monitoring , Escherichia coli , Salmonella typhi , Salmonella typhi/genetics , Salmonella typhi/isolation & purification , Escherichia coli/genetics , Escherichia coli/isolation & purification , Environmental Monitoring/methods , Wastewater/microbiology , Typhoid Fever/microbiology , Typhoid Fever/epidemiology , Typhoid Fever/diagnosis , Typhoid Fever/prevention & control , Humans , Water Microbiology
2.
Front Immunol ; 15: 1383476, 2024.
Article in English | MEDLINE | ID: mdl-38799439

ABSTRACT

None of the typhoid Vi Polysaccharide (ViPS) subunit vaccines incorporate adjuvants, and the immunogenicity of ViPS vaccines (e.g. Typbar TCV® and Typhim Vi®) is in part due to associated TLR4 ligands such as endotoxin present in these vaccines. Since endotoxin content in vaccines is variable and kept very low due to inherent toxicity, it was hypothesized that incorporating a defined amount of a non-toxic TLR4-ligand such as monophosphoryl lipid A in ViPS vaccines would improve their immunogenicity. To test this hypothesis, a monophosphoryl lipid A-based adjuvant formulation named Turbo was developed. Admixing Turbo with Typbar TCV® (ViPS-conjugated to tetanus toxoid) increased the levels of anti-ViPS IgM, IgG1, IgG2b, IgG2a/c, and IgG3 in inbred and outbred mice. In infant mice, a single immunization with Turbo adjuvanted Typbar TCV® resulted in a significantly increased and durable IgG response and improved the control of bacterial burden compared to mice immunized without Turbo. Similarly, when adjuvanted with Turbo, the antibody response and control of bacteremia were also improved in mice immunized with Typhim Vi®, an unconjugated vaccine. The immunogenicity of unconjugated ViPS is inefficient in young mice and is lost in adult mice when immunostimulatory ligands in ViPS are removed. Nevertheless, when adjuvanted with Turbo, poorly immunogenic ViPS induced a robust IgG response in young and adult mice, and this was observed even under antigen-limiting conditions. These data suggest that incorporation of Turbo as an adjuvant will make typhoid vaccines more immunogenic regardless of their intrinsic immunogenicity or conjugation status and maximize the efficacy across all ages.


Subject(s)
Adjuvants, Immunologic , Antibodies, Bacterial , Lipid A , Toll-Like Receptor 4 , Typhoid Fever , Typhoid-Paratyphoid Vaccines , Vaccines, Subunit , Animals , Typhoid-Paratyphoid Vaccines/immunology , Typhoid-Paratyphoid Vaccines/administration & dosage , Mice , Toll-Like Receptor 4/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Adjuvants, Immunologic/administration & dosage , Lipid A/analogs & derivatives , Lipid A/immunology , Typhoid Fever/prevention & control , Typhoid Fever/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Female , Ligands , Polysaccharides, Bacterial/immunology , Immunogenicity, Vaccine , Adjuvants, Vaccine , Salmonella typhi/immunology , Mice, Inbred BALB C
3.
J Genet ; 1032024.
Article in English | MEDLINE | ID: mdl-38444027

ABSTRACT

Typhoid is endemic in India and has high global incidence. There were large outbreaks of typhoid in India between 1990 and 2018. Available typhoid vaccines induce variable levels of protective antibodies among recipients; thus, there is variability in response to the vaccine. Interindividual genomic differences is hypothesized to be a determinant of the variability in response. We studied the antibody response of ~1000 recipients of the Vi-polysaccharide typhoid vaccine from Kolkata, India, who showed considerable variability of antibody response, i.e., anti-Vi-polysaccharide antibody level 28 days postvaccination relative to prevaccination. For each vaccinee, wholegenome genotyping was performed using the Infinium Global Screening Array (Illumina). We identified 39 SNPs that mapped to 13 chromosomal regions to be associated with antibody response to the vaccine; these included SNPs on genes LRRC28 (15q26.3), RGS7 (1q43), PTPRD (9p23), CERKL (2q31.3), DGKB (7p21.2), and TCF4 (18q21.2). Many of these loci are known to be associated with various blood cell traits, autoimmune traits and responses to other vaccines; these genes are involved in immune related functions, including TLR response, JAK-STAT signalling, phagocytosis and immune homeostasis.


Subject(s)
RGS Proteins , Typhoid Fever , Typhoid-Paratyphoid Vaccines , Humans , Typhoid-Paratyphoid Vaccines/genetics , Antibody Formation , Typhoid Fever/epidemiology , Typhoid Fever/prevention & control , Genomics , Polysaccharides
4.
Int J Infect Dis ; 143: 107014, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38499058

ABSTRACT

Tropical infectious diseases inflict an unacceptable burden of disease on humans living in developing countries. Although anti-pathogenic drugs have been widely used, they carry a constant threat of selecting for resistance. Vaccines offer a promising means by which to enhance the global control of tropical infectious diseases; however, these have been difficult to develop, mostly because of the complex nature of the pathogen lifecycles. Here, we present recently developed vaccine candidates for five tropical infectious diseases in the form of a catalog that have either entered clinical trials or have been licensed for use. We deliberate on recently licensed dengue vaccines, provide evidence why combination vaccination could have a synergistic impact on schistosomiasis, critically appraise the value of typhoid conjugate vaccines, and discuss the potential of vaccines in the efforts to eliminate vivax malaria and hookworms.


Subject(s)
Dengue , Humans , Dengue/prevention & control , Dengue Vaccines/immunology , Dengue Vaccines/administration & dosage , Schistosomiasis/prevention & control , Communicable Diseases , Tropical Medicine , Vaccines/immunology , Typhoid Fever/prevention & control , Malaria, Vivax/prevention & control , Vaccine Development
5.
Lancet ; 403(10436): 1554-1562, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38555928

ABSTRACT

BACKGROUND: Enteric fever caused by Salmonella enterica Typhi and Salmonella Paratyphi A is an important public health problem, especially in low-income and middle-income countries with limited access to safe water and sanitation. We present results from, to our knowledge, the first ever human study of a bivalent paratyphoid A-typhoid conjugate vaccine (Sii-PTCV). METHODS: In this double-blind phase 1 study, 60 healthy Indian adults were randomly assigned (1:1) to receive a single intramuscular dose of either Sii-PTCV or typhoid conjugate vaccine (Typbar-TCV). Safety was assessed by observing solicited adverse events for 1 week, unsolicited events for 1 month, and serious adverse events (SAEs) over 6 months. Immunogenicity at 1 month and 6 months was assessed by measuring anti-capsular polysaccharide antigen Vi (anti-Vi) IgG and IgA against Salmonella Typhi and anti-lipopolysaccharide (LPS) IgG against Salmonella Paratyphi A by ELISA, and functional antibodies using serum bactericidal assay (SBA) against Salmonella Paratyphi A. This study is registered with Clinical Trial Registry-India (CTRI/2022/06/043608) and is completed. FINDINGS: 60 participants were enrolled. Of these 60 participants, 57 (95%) participants were male and three (5%) participants were female. Solicited adverse events were observed in 27 (90%) of 30 participants who received Sii-PTCV and 26 (87%) of 30 participants who received Typbar-TCV. The most common local solicited event was pain in 27 (90%) participants who received Sii-PTCV and in 23 (77%) participants who received Typbar-TCV. The most common solicited systemic event was myalgia in five (17%) participants who received Sii-PTCV, whereas four (13%) participants who received Typbar-TCV had myalgia and four (13%) had headache. No vaccine-related unsolicited adverse events or SAEs were reported. The seroconversion rates on day 29 were 96·7% (95% CI 82·8-99·9) with Sii-PTCV and 100·0% (88·4-100·0) with Typbar-TCV for anti-Vi IgG; 93·3% (77·9-99·2) with Sii-PTCV and 100·0% (88·4-100·0) with Typbar-TCV for anti-Vi IgA; 100·0% (88·4-100·0) with Sii-PTCV and 3·3% (0·1-17·2) with Typbar-TCV for anti-LPS (paratyphoid); and 93·3% (77·9-99·2) with Sii-PTCV and 0% (0·0-11·6) with Typbar-TCV for SBA titres (paratyphoid). Paratyphoid anti-LPS immune responses were sustained at day 181. INTERPRETATION: Sii-PTCV was safe and immunogenic for both typhoid and paratyphoid antigens indicating its potential for providing comprehensive protection against enteric fever. FUNDING: Serum Institute of India.


Subject(s)
Salmonella enterica , Typhoid Fever , Typhoid-Paratyphoid Vaccines , Adult , Female , Humans , Male , Anti-Bacterial Agents , Immunoglobulin A , Immunoglobulin G , Myalgia , Salmonella typhi , Typhoid Fever/prevention & control , Vaccines, Combined , Vaccines, Conjugate , Double-Blind Method
6.
Vaccine ; 42(11): 2867-2876, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38531727

ABSTRACT

PURPOSE: Typhoid fever causes substantial morbidity and mortality in Bangladesh. The government of Bangladesh plans to introduce typhoid conjugate vaccines (TCV) in its expanded program on immunization (EPI) schedule. However, the optimal introduction strategy in addition to the costs and benefits of such a program are unclear. METHODS: We extended an existing mathematical model of typhoid transmission to integrate cost data, clinical incidence data, and recently conducted serosurveys in urban, semi-urban, and rural areas. In our primary analysis, we evaluated the status quo (i.e., no vaccination) and eight vaccine introduction strategies including routine and 1-time campaign strategies, which differed by age groups targeted and geographic focus. Model outcomes included clinical incidence, seroincidence, deaths, costs, disability-adjusted life years (DALYs), and incremental cost-effectiveness ratios (ICERs) for each strategy. We adopted a societal perspective, 10-year model time horizon, and 3 % annual discount rate. We performed probabilistic, one-way, and scenario sensitivity analyses including adopting a healthcare perspective and alternate model time horizons. RESULTS: We projected that all TCV strategies would be cost saving compared to the status quo. The preferred strategy was a nationwide introduction of TCV at 9-12 months of age with a single catch-up campaign for children ages 1-15, which was cost saving compared to all other strategies and the status quo. In the 10 years following implementation, we projected this strategy would avert 3.77 million cases (95 % CrI: 2.60 - 5.18), 11.31 thousand deaths (95 % CrI: 3.77 - 23.60), and save $172.35 million (95 % CrI: -14.29 - 460.59) compared to the status quo. Our findings were broadly robust to changes in parameter values and willingness-to-pay thresholds. CONCLUSIONS: We projected that nationwide TCV introduction with a catch-up campaign would substantially reduce typhoid incidence and very likely be cost saving in Bangladesh.


Subject(s)
Typhoid Fever , Typhoid-Paratyphoid Vaccines , Child , Humans , Typhoid Fever/epidemiology , Typhoid Fever/prevention & control , Cost-Benefit Analysis , Vaccines, Conjugate , Public Health , Bangladesh/epidemiology
9.
Lancet Glob Health ; 12(4): e589-e598, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38485426

ABSTRACT

BACKGROUND: Typhoid is a serious public health threat in many low-income and middle-income countries. Several vaccines for typhoid have been recommended by WHO for typhoid prevention in endemic countries. This study aimed to review the efficacy of typhoid vaccines against culture-confirmed Salmonella enterica serovar Typhi. METHODS: We searched the Cochrane Central Register of Controlled Trials, MEDLINE, and Embase for studies published in English between Jan 1, 1986 and Nov 2, 2023. We included randomised controlled trials (RCTs) comparing typhoid vaccines with a placebo or another vaccine. This meta-analysis evaluated the efficacy and safety of several typhoid vaccines, including live attenuated oral Ty21a vaccine, Vi capsular polysaccharide (Vi-PS), Vi polysaccharide conjugated to recombinant Pseudomonas aeruginosa exotoxin A vaccine (Vi-rEPA), and Vi-tetanus toxoid conjugate vaccine (TCV). The certainty of evidence for key outcomes was evaluated using Grading of Recommendations, Assessment, Development, and Evaluations methodology. The outcome of interest was typhoid fever confirmed by the isolation of Salmonella enterica serovar Typhi in blood and adverse events following immunisation. This study is registered with PROSPERO (CRD42021241043). FINDINGS: We included 14 RCTs assessing four different vaccines (Ty21a: four trials; Vi-PS: five trials; Vi-rEPA: one trial; TCV: four trials) involving 585 253 participants. All trials were conducted in typhoid endemic countries and the age of participants ranged from 6 months to 50 years. The pooled efficacy against typhoid fever was 45% (95% CI 33-55%; four trials; 247 649 participants; I2 59%; moderate certainty) for Ty21a and 58% (44-69%; five trials; 214 456 participants; I2 34%; moderate certainty) for polysaccharide Vi-PS. The cumulative efficacy of two doses of Vi-rEPA vaccine at 2 years was 91% (88-96%; one trial; 12 008 participants; moderate certainty). The pooled efficacy of a single shot of TCV at 2 years post-immunisation was 83% (77-87%; four trials; 111 130 participants; I2 0%; moderate certainty). All vaccines were safe, with no serious adverse effects reported in the trials. INTERPRETATION: The existing data from included trials provide promising results regarding the efficacy and safety of the four recommended typhoid vaccines. TCV and Vi-rEPA were found to have the highest efficacy at 2 years post-immunisation. However, follow-up data for Vi-rEPA are scarce and only TCV is pre-qualified by WHO. Therefore, roll-out of TCV into routine immunisation programmes in typhoid endemic settings is highly recommended. FUNDING: There was no funding source for this study.


Subject(s)
Typhoid Fever , Typhoid-Paratyphoid Vaccines , Humans , Infant , Salmonella typhi , Typhoid Fever/epidemiology , Typhoid Fever/prevention & control , Pseudomonas aeruginosa Exotoxin A , Vaccines, Attenuated , Vaccines, Conjugate , Tetanus Toxoid , Polysaccharides
10.
World J Microbiol Biotechnol ; 40(4): 131, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470539

ABSTRACT

Multiple TonB dependent transporters (TBDTs) contribute to bacterial virulence due to the importance roles that their substrates play in bacterial growth, and possess vaccine potential. A putative TBDT, YncD, had been identified as one of in vivo induced antigens during human infection of typhoid fever, and is required for the pathogenicity of Salmonella enterica Serovar Typhi. The present study was aimed to determine the function and immunogenicity of YncD. Homologous recombination method was used to construct an yncD-deletion mutant and cirA-iroN-fepA-deletion mutant from the wild-type S. Typhi Ty2. The growth of mutants and the wild-type strain were assessed in iron-deficient medium, as well as in human macrophage cells. Recombinant YncD protein was expressed and purified using Ni-NTA affinity chromatography and anion exchange. A mouse model was then used to evaluate the immunogenicity and protection efficacy of the recombinant YncD. Antibody levels, serum bactericidal efficiency, passive immune protection, opsonophagocysis were assayed to analyse the immunoprotection mechanism of the recombinant YncD. Our results showed that YncD is associated with the iron-uptake of S. Typhi. The yncD-deletion mutant displayed impaired growth in iron-deficient medium, comparable to that the cirA-iroN-fepA-deletion mutant did. The mutation of yncD markedly decreased bacterial growth within human macrophage cells. Moreover, subcutaneous immunization of mice with recombinant YncD elicited high levels of specific anti-YncD IgG, IgG1 and IgG2a, which protected the immunized mice against the intraperitoneal challenge of S. Typhi, and decreased bacterial burdens in the livers and spleens of the infected mice. Passive immunization using the immunized sera also efficiently protected the mice from the challenge of S. Typhi. Moreover, the immunized sera enhanced in vitro bactericidal activity of complement, and opsonophagocytosis. Our results showed that YncD displays a role in the iron-uptake of S. Typhi and possesses immunogenicity.


Subject(s)
Typhoid Fever , Vaccines , Animals , Mice , Humans , Salmonella typhi , Typhoid Fever/prevention & control , Membrane Transport Proteins , Recombinant Proteins , Iron , Mice, Inbred BALB C
11.
Lancet Glob Health ; 12(4): e599-e610, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38485427

ABSTRACT

BACKGROUND: Typhoid Fever remains a major cause of morbidity and mortality in low-income settings. The Severe Typhoid in Africa programme was designed to address regional gaps in typhoid burden data and identify populations eligible for interventions using novel typhoid conjugate vaccines. METHODS: A hybrid design, hospital-based prospective surveillance with population-based health-care utilisation surveys, was implemented in six countries in sub-Saharan Africa. Patients presenting with fever (≥37·5°C axillary or ≥38·0°C tympanic) or reporting fever for three consecutive days within the previous 7 days were invited to participate. Typhoid fever was ascertained by culture of blood collected upon enrolment. Disease incidence at the population level was estimated using a Bayesian mixture model. FINDINGS: 27 866 (33·8%) of 82 491 participants who met inclusion criteria were recruited. Blood cultures were performed for 27 544 (98·8%) of enrolled participants. Clinically significant organisms were detected in 2136 (7·7%) of these cultures, and 346 (16·2%) Salmonella enterica serovar Typhi were isolated. The overall adjusted incidence per 100 000 person-years of observation was highest in Kavuaya and Nkandu 1, Democratic Republic of the Congo (315, 95% credible interval 254-390). Overall, 46 (16·4%) of 280 tested isolates showed ciprofloxacin non-susceptibility. INTERPRETATION: High disease incidence (ie, >100 per 100 000 person-years of observation) recorded in four countries, the prevalence of typhoid hospitalisations and complicated disease, and the threat of resistant typhoid strains strengthen the need for rapid dispatch and implementation of effective typhoid conjugate vaccines along with measures designed to improve clean water, sanitation, and hygiene practices. FUNDING: The Bill & Melinda Gates Foundation.


Subject(s)
Typhoid Fever , Vaccines , Humans , Typhoid Fever/epidemiology , Typhoid Fever/prevention & control , Ghana , Madagascar , Burkina Faso/epidemiology , Ethiopia , Incidence , Nigeria , Prospective Studies , Bayes Theorem , Democratic Republic of the Congo
13.
Vaccine ; 42(8): 2018-2025, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38395723

ABSTRACT

BACKGROUND: Previously, the Vi-typhoid conjugate vaccine (Vi-TT) was found to be highly efficacious in Nepalese children under 16 years of age. We assessed the immunogenicity of Vi-TT at 9 and 12 months of age and response to a booster dose at 15 months of age. METHODS: Infants were recruited at Patan Hospital, Kathmandu and received an initial dose of Vi-TT at 9 or 12 months of age with a booster dose at 15 months of age. Blood was taken at four timepoints, and antibody titres were measured using a commercial ELISA kit. The primary study outcome was seroconversion (4-fold rise in antibody titre) of IgG one month after both the doses. FINDINGS: Fifty children were recruited to each study group.Some visits were disrupted by the COVID19 pandemic and occurred out of protocol windows.Both the study groups attained 100 % IgG seroconversion after the initial dose. IgG seroconversion in the 9-month group was significantly higher than in the 12-month group (68.42 % vs 25.8 %, p < 0.001). Among individuals who attended visits per protocol, IgG seroconversion after the first dose occurred in 100 % of individuals (n = 27/27 in 9-month and n = 32/32 in 12-month group). However, seroconversion rates after the second dose were 80 % in the 9-month and 0 % in the shorter dose-interval 12-month group (p < 0.001) (n = 16/20 and n = 0/8, respectively). INTERPRETATION: Vi-TT is highly immunogenic at both 9 and 12 months of age. Stronger response to a booster in the 9-month group is likely due to the longer interval between doses.


Subject(s)
Typhoid Fever , Typhoid-Paratyphoid Vaccines , Child , Infant , Humans , Typhoid Fever/prevention & control , Vaccines, Conjugate , Nepal/epidemiology , Immunity , Immunoglobulin G , Antibodies, Bacterial , Immunogenicity, Vaccine
14.
PLoS Negl Trop Dis ; 18(2): e0011822, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38358956

ABSTRACT

Typhoid-conjugate vaccines (TCVs) provide an opportunity to reduce the burden of typhoid fever, caused by Salmonella Typhi, in endemic areas. As policymakers design vaccination strategies, accurate and high-resolution data on disease burden is crucial. However, traditional blood culture-based surveillance is resource-extensive, prohibiting its large-scale and sustainable implementation. Salmonella Typhi is a water-borne pathogen, and here, we tested the potential of Typhi-specific bacteriophage surveillance in surface water bodies as a low-cost tool to identify where Salmonella Typhi circulates in the environment. In 2021, water samples were collected and tested for the presence of Salmonella Typhi bacteriophages at two sites in Bangladesh: urban capital city, Dhaka, and a rural district, Mirzapur. Salmonella Typhi-specific bacteriophages were detected in 66 of 211 (31%) environmental samples in Dhaka, in comparison to 3 of 92 (3%) environmental samples from Mirzapur. In the same year, 4,620 blood cultures at the two largest pediatric hospitals of Dhaka yielded 215 (5%) culture-confirmed typhoid cases, and 3,788 blood cultures in the largest hospital of Mirzapur yielded 2 (0.05%) cases. 75% (52/69) of positive phage samples were collected from sewage. All isolated phages were tested against a panel of isolates from different Salmonella Typhi genotypes circulating in Bangladesh and were found to exhibit a diverse killing spectrum, indicating that diverse bacteriophages were isolated. These results suggest an association between the presence of Typhi-specific phages in the environment and the burden of typhoid fever, and the potential of utilizing environmental phage surveillance as a low-cost tool to assist policy decisions on typhoid control.


Subject(s)
Bacteriophages , Typhoid Fever , Typhoid-Paratyphoid Vaccines , Humans , Child , Typhoid Fever/epidemiology , Typhoid Fever/prevention & control , Bangladesh/epidemiology , Salmonella typhi/genetics , Water
15.
Vaccine ; 42(6): 1230-1246, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38326130

ABSTRACT

As an innovative vaccine delivery technology, vaccine microarray patches could have a meaningful impact on routine immunization coverage in low- and middle-income countries, and vaccine deployment during epidemics and pandemics. This review of the potential use cases for a subset of vaccine microarray patches in various stages of clinical development, including measles-rubella, measles-mumps-rubella, and typhoid conjugate, highlights the breadth of their applicability to support immunization service delivery and their potential scope of utilization within national immunization programs. Definition and assessment of the use cases for this novel vaccine presentation provide important insights for vaccine developers and policymakers into the strengths of the public health and commercial value propositions, and the preparatory requirements for public health systems for the future rollout of vaccine microarray patches. An in-depth understanding of use cases for vaccine microarray patches serves as a foundational input to overcoming the remaining technical, regulatory, and financial challenges. Additional efforts will help to realize the potential of vaccine microarray patches as part of the global effort to improve the coverage and equity of national immunization programs.


Subject(s)
Measles , Mumps , Rubella , Typhoid Fever , Typhoid-Paratyphoid Vaccines , Humans , Infant , Mumps/prevention & control , Vaccines, Conjugate , Typhoid Fever/prevention & control , Rubella/prevention & control , Measles/prevention & control , Rubella Vaccine , Mumps Vaccine , Vaccination , Measles-Mumps-Rubella Vaccine
16.
Immunohorizons ; 8(1): 29-34, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38180344

ABSTRACT

Activation of B cells and T cells requires the engagement of costimulatory signaling pathways in addition to Ag receptor signaling for efficient immune responses. None of the typhoid Vi polysaccharide (ViPS) subunit vaccines contains adjuvants that could activate costimulatory signaling pathways, yet these vaccines are very immunogenic. I hypothesized that residual TLR ligands present in the ViPS preparation used for making typhoid subunit vaccines account for the robust immune response generated by these vaccines. I show the presence of endotoxin, a potent agonist of TLR4, in ViPS preparations and ViPS vaccines. Furthermore, I found that ViPS obtained from various sources induces the production of proinflammatory cytokines such as IL-6 from mouse peritoneal exudate cells. Unconjugated and tetanus toxoid-conjugated ViPS vaccines activate human and mouse TLR4. Mice deficient in TLR4 or the signaling adaptors MyD88 and Trif (Toll/IL-1R domain-containing adapter inducing IFN-ß) are severely impaired in generating anti-ViPS responses to these vaccines. Elimination of the TLR4 agonist in ViPS preparation resulted in the loss of immunogenicity, and addition of lipid A, a known TLR4 agonist, restored the immunogenicity. These data highlight the importance of associated TLR ligands in the immunogenicity of ViPS subunit vaccines.


Subject(s)
Immunogenicity, Vaccine , Toll-Like Receptor 4 , Typhoid Fever , Typhoid-Paratyphoid Vaccines , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing , Adjuvants, Immunologic/pharmacology , B-Lymphocytes , Ligands , Typhoid Fever/prevention & control , Typhoid-Paratyphoid Vaccines/immunology , Vaccines, Subunit/immunology
18.
Hum Vaccin Immunother ; 20(1): 2301631, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38189360

ABSTRACT

Typhoid fever is a significant public health concern with most of the sufferers between 15 and 25 y of age in Nepal. We undertook this study to demonstrate Vi polysaccharide conjugated with diphtheria toxoid (Vi-DT) conjugate vaccine which is non-inferior to Typbar typhoid conjugate vaccine, a Vi polysaccharide vaccine conjugated with tetanus toxoid (Vi-TT) with a focus on the adult population from Dhulikhel Hospital which was one of the total four sites in Nepal. In this study, we assigned the eligible participants in 1:1:1:1 ratio by block randomization, and stratified into three age groups (6 months to less than 2 y, 2 y to less than 18 y, and 18 y to 45 y), allotted to Group A, B, C, and D. Group A, B, and C received 25 µg (0.5 mL) of Vi-DT study vaccine and participants in Group D received 25 µg (0.5 mL) Vi-TT vaccine. We descriptively analyzed safety in all the participants receiving one dose of the investigational vaccine. The anti-Vi-IgG seroconversion rate in Vi-DT recipients was 99.71% (97.5% CI 98.04-99.96; 344 of 345 participants) and 99.13% (94.27-99.87; 114 of 115) in Vi-TT recipients which indicates that Vi-DT vaccine is non-inferior to Vi-TT vaccine. In safety aspect, 16.81% of total subject had at least one solicited adverse reaction and 22.61% of the Vi-TT participants experienced at least one solicited adverse reaction with most of them being local adverse reactions. None of the enrolled participants reported serious adverse events. Our study shows that a single dose of the Vi-DT vaccine is immunogenic, safe to administer and non-inferior to the Vi-TT vaccine four weeks after vaccination.


Subject(s)
Typhoid Fever , Typhoid-Paratyphoid Vaccines , Adolescent , Adult , Child , Child, Preschool , Infant , Middle Aged , Young Adult , Diphtheria-Tetanus Vaccine , Healthy Volunteers , Polysaccharides , Typhoid Fever/prevention & control , Typhoid-Paratyphoid Vaccines/adverse effects , Vaccines, Conjugate/adverse effects , Humans
19.
Lancet ; 403(10425): 459-468, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38281499

ABSTRACT

BACKGROUND: Randomised controlled trials of typhoid conjugate vaccines among children in Africa and Asia have shown high short-term efficacy. Data on the durability of protection beyond 2 years are sparse. We present the final analysis of a randomised controlled trial in Malawi, encompassing more than 4 years of follow-up, with the aim of investigating vaccine efficacy over time and by age group. METHODS: In this phase 3, double-blind, randomised controlled efficacy trial in Blantyre, Malawi, healthy children aged 9 months to 12 years were randomly assigned (1:1) by an unmasked statistician to receive a single dose of Vi polysaccharide conjugated to tetanus toxoid vaccine (Vi-TT) or meningococcal capsular group A conjugate (MenA) vaccine. Children had to have no previous history of typhoid vaccination and reside in the study areas for inclusion and were recruited from government schools and health centres. Participants, their parents or guardians, and the study team were masked to vaccine allocation. Nurses administering vaccines were unmasked. We did surveillance for febrile illness from vaccination until follow-up completion. The primary outcome was first occurrence of blood culture-confirmed typhoid fever. Eligible children who were randomly assigned and vaccinated were included in the intention-to-treat analyses. This trial is registered at ClinicalTrials.gov, NCT03299426. FINDINGS: Between Feb 21, 2018, and Sept 27, 2018, 28 130 children were vaccinated; 14 069 were assigned to receive Vi-TT and 14 061 to receive MenA. After a median follow-up of 4·3 years (IQR 4·2-4·5), 24 (39·7 cases per 100 000 person-years) children in the Vi-TT group and 110 (182·7 cases per 100 000 person-years) children in the MenA group were diagnosed with a first episode of blood culture-confirmed typhoid fever. In the intention-to-treat population, efficacy of Vi-TT was 78·3% (95% CI 66·3-86·1), and 163 (129-222) children needed to be vaccinated to prevent one case. Efficacies by age group were 70·6% (6·4-93·0) for children aged 9 months to 2 years; 79·6% (45·8-93·9) for children aged 2-4 years; and 79·3% (63·5-89·0) for children aged 5-12 years. INTERPRETATION: A single dose of Vi-TT is durably efficacious for at least 4 years among children aged 9 months to 12 years and shows efficacy in all age groups, including children younger than 2 years. These results support current WHO recommendations in typhoid-endemic areas for mass campaigns among children aged 9 months to 15 years, followed by routine introduction in the first 2 years of life. FUNDING: Bill & Melinda Gates Foundation.


Subject(s)
Typhoid Fever , Typhoid-Paratyphoid Vaccines , Child , Humans , Infant , Typhoid Fever/epidemiology , Typhoid Fever/prevention & control , Salmonella typhi , Vaccines, Conjugate , Malawi/epidemiology , Randomized Controlled Trials as Topic
20.
J Infect Dis ; 229(3): 833-844, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-37403670

ABSTRACT

BACKGROUND: Enteric fever, caused by Salmonella enterica serovars Typhi and Paratyphi A, is a major public health problem in low- and middle-income countries. Moderate sensitivity and scalability of current methods likely underestimate enteric fever burden. Determining the serological responses to organism-specific antigens may improve incidence measures. METHODS: Plasma samples were collected from blood culture-confirmed enteric fever patients, blood culture-negative febrile patients over the course of 3 months, and afebrile community controls. A panel of 17 Salmonella Typhi and Paratyphi A antigens was purified and used to determine antigen-specific antibody responses by indirect ELISAs. RESULTS: The antigen-specific longitudinal antibody responses were comparable between enteric fever patients, patients with blood culture-negative febrile controls, and afebrile community controls for most antigens. However, we found that IgG responses against STY1479 (YncE), STY1886 (CdtB), STY1498 (HlyE), and the serovar-specific O2 and O9 antigens were greatly elevated over a 3-month follow up period in S. Typhi/S. Paratyphi A patients compared to controls, suggesting seroconversion. CONCLUSIONS: We identified a set of antigens as good candidates to demonstrate enteric fever exposure. These targets can be used in combination to develop more sensitive and scalable approaches to enteric fever surveillance and generate invaluable epidemiological data for informing vaccine policies. CLINICAL TRIAL REGISTRATION: ISRCTN63006567.


Subject(s)
Salmonella enterica , Typhoid Fever , Humans , Typhoid Fever/epidemiology , Typhoid Fever/prevention & control , Salmonella paratyphi A , Salmonella typhi , Lipopolysaccharides
SELECTION OF CITATIONS
SEARCH DETAIL
...