Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.906
Filter
1.
J Chem Inf Model ; 64(10): 4134-4148, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38703206

ABSTRACT

Ubiquitin-specific protease 7 (USP7) is a deubiquitinase enzyme that plays a critical role in regulating various cellular processes by cleaving ubiquitin molecules from target proteins. The C-terminal loop (CTL) motif is a specific region at the C-terminal end of the USP7 enzyme. Recent experiments suggest that the CTL motif plays a role in USP7's catalytic activity by contributing to the enzyme's structural stability, substrate recognition, and catalytic efficiency. The objective of this work is to elucidate these roles through the utilization of computational methods for molecular simulations. For this, we conducted extensive molecular dynamics (MD) simulations to investigate the conformational dynamics and protein-protein interactions within the USP7 enzyme-substrate complex with the substrate consisting of the ubiquitin tagged with the fluorescent label rhodamine 110-gly (Ub-Rho). Our results demonstrate that the CTL motif plays a crucial role in stabilizing the Ubl domains' conformation and augmenting the stability of active conformations within the enzyme-substrate complex. Conversely, the absence of the CTL motif results in increased flexibility and variability in Ubl domains' motion, leading to a reduced percentage of active conformations. Furthermore, our analysis of protein-protein interactions highlights the significance of the CTL motif in anchoring the Ubl45 domains to the catalytic domain (CD), thereby facilitating stable interactions with the substrate. Overall, our findings provide valuable insights into the conformational dynamics and protein-protein interactions inherent in the USP7 enzyme-substrate complex. These insights shed light on some mechanistic details of USP7 concerning the substrate's recognition before its catalytic action.


Subject(s)
Molecular Dynamics Simulation , Protein Binding , Ubiquitin-Specific Peptidase 7 , Ubiquitin , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin-Specific Peptidase 7/chemistry , Substrate Specificity , Ubiquitin/metabolism , Ubiquitin/chemistry , Protein Domains , Humans , Rhodamines/chemistry , Rhodamines/metabolism , Protein Conformation
2.
Org Lett ; 26(22): 4594-4599, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38781175

ABSTRACT

Ubiquitin (Ub) regulates a wide array of cellular processes through post-translational modification of protein substrates. Ub is conjugated at its C-terminus to target proteins via an enzymatic cascade in which covalently bound Ub thioesters are transferred from E1 activating enzymes to E2 conjugating enzymes, and then to certain E3 protein ligases. These transthioesterification reactions proceed via transient tetrahedral intermediates. A variety of chemical strategies have been used to capture E1-Ub-E2 and E2-Ub-E3 mimics, but these introduce modifications that disrupt atomic spacing at the linkage point relative to the native tetrahedral intermediate. We have developed a biselectrophilic PSAN warhead that can be installed in place of the conserved C-terminal glycine in Ub and used to form ternary protein complexes linked via cyanomethyldithioacetals that closely mimic the native tetrahedral intermediates. Investigation of the reactivity of the warhead and substituted analogues led to an effective semisynthetic route to Ub-1-PSAN, which was used to form a ternary E1-Ub*-E2 complex as a mimic of the transthioesterification intermediate.


Subject(s)
Ubiquitin , Esterification , Ubiquitin/chemistry , Ubiquitin/chemical synthesis , Molecular Structure , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/chemistry
3.
J Phys Chem B ; 128(23): 5557-5566, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38809811

ABSTRACT

Accurate atomistic modeling of the interactions of a chromatography resin with a solute can inform the selection of purification conditions for a product, an important problem in the biotech and pharmaceutical industries. We present a molecular dynamics simulation-based approach for the qualitative prediction of interaction sites (specificity) and retention times (affinity) of a protein for a given chromatography resin. We mimicked the resin with an unrestrained ligand composed of the resin headgroup coupled with successively larger fragments of the agarose backbone. The interactions of the ligand with the protein are simulated in an explicit solvent using the Replica Exchange Molecular Dynamics enhanced sampling approach in conjunction with Hydrogen Mass Repartitioning (REMD-HMR). We computed the ligand interaction surface from the simulation trajectories and correlated the features of the interaction surface with experimentally determined retention times. The simulation and analysis protocol were first applied to a series of ubiquitin mutants for which retention times on Capto MMC resin are available. The ubiquitin simulations helped identify the optimal ligand that was used in subsequent simulations on six proteins for which Capto MMC elution times are available. For each of the six proteins, we computed the interaction surface and characterized it in terms of a range of simulation-averaged residue-level physicochemical descriptors. Modeling of the salt concentrations required for elution with respect to the descriptors resulted in a linear fit in terms of aromaphilicity and Kyte-Doolittle hydrophobicity that was robust to outliers, showed high correlation, and correctly ranked the protein elution order. The physics-based model building approach described here does not require a large experimental data set and can be readily applied to different resins and diverse biomolecules.


Subject(s)
Molecular Dynamics Simulation , Ubiquitin/chemistry , Ligands , Protein Binding , Sepharose/chemistry , Proteins/chemistry
4.
Anal Chem ; 96(21): 8349-8355, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38745349

ABSTRACT

In contrast to intracellular gene transfer, the direct delivery of expressed proteins is a significantly challenging yet essential technique for elucidating cellular functions, including protein complex structure, liquid-liquid phase separation, therapeutic applications, and reprogramming. In this study, we developed a hybrid nanotube (HyNT) stamp system that physically inserts the HyNTs into adhesive cells, enabling the injection of target molecules through HyNT ducts. This system demonstrates the capability to deliver multiple proteins, such as lactate oxidase (LOx) and ubiquitin (UQ), to approximately 1.8 × 107 adhesive cells with a delivery efficiency of 89.9% and a viability of 97.1%. The delivery of LOx enzyme into HeLa cancer cells induced cell death, while enzyme-delivered healthy cells remained viable. Furthermore, our stamp system can deliver an isotope-labeled UQ into adhesive cells for detection by nuclear magnetic resonance (NMR).


Subject(s)
Nanotubes , Ubiquitin , Humans , HeLa Cells , Nanotubes/chemistry , Ubiquitin/metabolism , Ubiquitin/chemistry , Cell Survival/drug effects , Neoplasms/drug therapy , Neoplasms/metabolism , Magnetic Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular , Mixed Function Oxygenases
5.
Anal Chem ; 96(21): 8518-8527, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38711366

ABSTRACT

Accurate structural determination of proteins is critical to understanding their biological functions and the impact of structural disruption on disease progression. Gas-phase cross-linking mass spectrometry (XL-MS) via ion/ion reactions between multiply charged protein cations and singly charged cross-linker anions has previously been developed to obtain low-resolution structural information on proteins. This method significantly shortens experimental time relative to conventional solution-phase XL-MS but has several technical limitations: (1) the singly deprotonated N-hydroxysulfosuccinimide (sulfo-NHS)-based cross-linker anions are restricted to attachment at neutral amine groups of basic amino acid residues and (2) analyzing terminal cross-linked fragment ions is insufficient to unambiguously localize sites of linker attachment. Herein, we demonstrate enhanced structural information for alcohol-denatured A-state ubiquitin obtained from an alternative gas-phase XL-MS approach. Briefly, singly sodiated ethylene glycol bis(sulfosuccinimidyl succinate) (sulfo-EGS) cross-linker anions enable covalent cross-linking at both ammonium and amine groups. Additionally, covalently modified internal fragment ions, along with terminal b-/y-type counterparts, improve the determination of linker attachment sites. Molecular dynamics simulations validate experimentally obtained gas-phase conformations of denatured ubiquitin. This method has identified four cross-linking sites across 8+ ubiquitin, including two new sites in the N-terminal region of the protein that were originally inaccessible in prior gas-phase XL approaches. The two N-terminal cross-linking sites suggest that the N-terminal half of ubiquitin is more compact in gas-phase conformations. By comparison, the two C-terminal linker sites indicate the signature transformation of this region of the protein from a native to a denatured conformation. Overall, the results suggest that the solution-phase secondary structures of the A-state ubiquitin are conserved in the gas phase. This method also provides sufficient sensitivity to differentiate between two gas-phase conformers of the same charge state with subtle structural variations.


Subject(s)
Cross-Linking Reagents , Ubiquitin , Ubiquitin/chemistry , Cross-Linking Reagents/chemistry , Sodium/chemistry , Gases/chemistry , Cations/chemistry , Succinimides/chemistry , Mass Spectrometry , Ions/chemistry
6.
Phys Chem Chem Phys ; 26(20): 14573-14581, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38722087

ABSTRACT

The supramolecular interaction between lanthanide complexes and proteins is at the heart of numerous chemical and biological studies. Some of these complexes have demonstrated remarkable interaction properties with proteins or peptides in solution and in the crystalline state. Here we have used the paramagnetism of lanthanide ions to characterize the affinity of two lanthanide complexes for ubiquitin. As the interaction process is dynamic, the acquired NMR data only reflect the time average of the different steps. We have used molecular dynamics (MD) simulations to get a deeper insight into the detailed interaction scenario at the microsecond scale. This NMR/MD approach enabled us to establish that the tris-dipicolinate complex interacts specifically with arginines and lysines, while the crystallophore explores the protein surface through weak interactions with carboxylates. These observations shed new light on the dynamic interaction properties of these complexes, which will ultimately enable us to propose a crystallization mechanism.


Subject(s)
Lanthanoid Series Elements , Molecular Dynamics Simulation , Ubiquitin , Ubiquitin/chemistry , Lanthanoid Series Elements/chemistry , Nuclear Magnetic Resonance, Biomolecular , Picolinic Acids/chemistry , Protein Binding
7.
J Mol Biol ; 436(11): 168587, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38663546

ABSTRACT

Proline isomerization is widely recognized as a kinetic bottleneck in protein folding, amplified for proteins rich in Pro residues. We introduced repeated hydrostatic pressure jumps between native and pressure-denaturing conditions inside an NMR sample cell to study proline isomerization in the pressure-sensitized L50A ubiquitin mutant. Whereas in two unfolded heptapeptides, X-Pro peptide bonds isomerized ca 1.6-fold faster at 1 bar than at 2.5 kbar, for ubiquitin ca eight-fold faster isomerization was observed for Pro-38 and ca two-fold for Pro-19 and Pro-37 relative to rates measured in the pressure-denatured state. Activation energies for isomerization in pressure-denatured ubiquitin were close to literature values of 20 kcal/mole for denatured polypeptides but showed a substantial drop to 12.7 kcal/mole for Pro-38 at atmospheric pressure. For ubiquitin isomers with a cis E18-P19 peptide bond, the 1-bar NMR spectrum showed sharp resonances with near random coil chemical shifts for the C-terminal half of the protein, characteristic of an unfolded chain, while most of the N-terminal residues were invisible due to exchange broadening, pointing to a metastable partially folded state for this previously recognized 'folding nucleus'. For cis-P37 isomers, a drop in pressure resulted in the rapid loss of nearly all unfolded-state NMR resonances, while the recovery of native state intensity revealed a slow component attributed to cis â†’ trans isomerization of P37. This result implies that the NMR-invisible cis-P37 isomer adopts a molten globule state that encompasses the entire length of the ubiquitin chain, suggestive of a structure that mostly resembles the folded state.


Subject(s)
Peptides , Proline , Protein Denaturation , Protein Folding , Ubiquitin , Isomerism , Kinetics , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular/methods , Pressure , Proline/chemistry , Protein Conformation , Ubiquitin/chemistry , Peptides/chemistry
8.
J Am Soc Mass Spectrom ; 35(5): 982-991, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38597281

ABSTRACT

The structural characterization and differentiation of four types of oligoubiquitin conjugates [linear (Met1)-, Lys11-, Lys48-, Lys63-linked di-, tri-, and tetraubiquitin chains] using ion mobility mass spectrometry are reported. A comparison of collision cross sections for the same linkage of di-, tri-, and tetraubiquitin chains shows differences in conformational elongation for higher charge states due to the interplay of linkage-derived structure and Coulombic repulsion. For di- and triubiquitin chains, this elongation results in a single narrow feature representing an elongated conformation type for multiple higher charge state species. In contrast, higher charge state tetraubiquitin species do not form a single conformer type as readily. A comparison of different linkages in tetraubiquitin chains reveals greater similarity in conformation type at lower charge states; with increasing charge state, the four linkage types diverge in the relative proportions of elongated conformer types with Met1- ≥ Lys11- > Lys63- > Lys48-linkage. These differences in conformational trends could be discussed with respect to biological functions of linkage-specific polyubiquitinated proteins.


Subject(s)
Ion Mobility Spectrometry , Ubiquitin , Ion Mobility Spectrometry/methods , Ubiquitin/chemistry , Protein Conformation , Mass Spectrometry/methods , Models, Molecular , Lysine/chemistry
9.
Protein Sci ; 33(5): e4975, 2024 May.
Article in English | MEDLINE | ID: mdl-38588275

ABSTRACT

The deubiquitinase (DUB) ubiquitin-specific protease 14 (USP14) is a dual domain protein that plays a regulatory role in proteasomal degradation and has been identified as a promising therapeutic target. USP14 comprises a conserved USP domain and a ubiquitin-like (Ubl) domain separated by a 25-residue linker. The enzyme activity of USP14 is autoinhibited in solution, but is enhanced when bound to the proteasome, where the Ubl and USP domains of USP14 bind to the Rpn1 and Rpt1/Rpt2 units, respectively. No structure of full-length USP14 in the absence of proteasome has yet been presented, however, earlier work has described how transient interactions between Ubl and USP domains in USP4 and USP7 regulate DUB activity. To better understand the roles of the Ubl and USP domains in USP14, we studied the Ubl domain alone and in full-length USP14 by nuclear magnetic resonance spectroscopy and used small angle x-ray scattering and molecular modeling to visualize the entire USP14 protein ensemble. Jointly, our results show how transient interdomain interactions between the Ubl and USP domains of USP14 predispose its conformational ensemble for proteasome binding, which may have functional implications for proteasome regulation and may be exploited in the design of future USP14 inhibitors.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitin , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Ubiquitin/chemistry , Molecular Conformation , Models, Molecular
10.
Nat Commun ; 15(1): 3531, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670961

ABSTRACT

E6AP dysfunction is associated with Angelman syndrome and Autism spectrum disorder. Additionally, the host E6AP is hijacked by the high-risk HPV E6 to aberrantly ubiquitinate the tumor suppressor p53, which is linked with development of multiple types of cancer, including most cervical cancers. Here we show that E6AP and the E6AP/E6 complex exist, respectively, as a monomer and a dimer of the E6AP/E6 protomer. The short α1-helix of E6AP transforms into a longer helical structure when in complex with E6. The extended α1-helices of the dimer intersect symmetrically and contribute to the dimerization. The two protomers sway around the crossed region of the two α1-helices to promote the attachment and detachment of substrates to the catalytic C-lobe of E6AP, thus facilitating ubiquitin transfer. These findings, complemented by mutagenesis analysis, suggest that the α1-helix, through conformational transformations, controls the transition between the inactive monomer and the active dimer of E6AP.


Subject(s)
Protein Multimerization , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , Humans , Ubiquitin/metabolism , Ubiquitin/chemistry , Ubiquitination , Models, Molecular , Crystallography, X-Ray , Oncogene Proteins, Viral/metabolism , Oncogene Proteins, Viral/chemistry , Oncogene Proteins, Viral/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Protein Binding , Protein Conformation, alpha-Helical
11.
J Magn Reson ; 361: 107661, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38547550

ABSTRACT

Intrinsically disordered proteins (IDPs) defy the conventional structure-function paradigm by lacking a well-defined tertiary structure and exhibiting inherent flexibility. This flexibility leads to distinctive spin relaxation modes, reflecting isolated and specific motions within individual peptide planes. In this work, we propose a new pulse sequence to measure the longitudinal 13C' CSA-13C'-13Cα DD CCR rate [Formula: see text] and present a novel 3D version of the transverse [Formula: see text] CCR rate, adopting the symmetrical reconversion approach. We combined these rates with the analogous ΓxyN/NH and ΓzN/NH CCR rates to derive residue-specific correlation times for both spin-pairs within the same peptide plane. The presented approach offers a straightforward and intuitive way to compare the correlation times of two different and complementary spin vectors, anticipated to be a valuable aid to determine IDPs backbone dihedral angles distributions. We performed the proposed experiments on two systems: a folded protein ubiquitin and Coturnix japonica osteopontin, a prototypical IDP. Comparative analyses of the results show that the correlation times of different residues vary more for IDPs than globular proteins, indicating that the dynamics of IDPs is largely heterogeneous and dominated by local fluctuations.


Subject(s)
Coturnix , Intrinsically Disordered Proteins , Animals , Protein Conformation , Nuclear Magnetic Resonance, Biomolecular/methods , Intrinsically Disordered Proteins/chemistry , Ubiquitin/chemistry
12.
Chem Commun (Camb) ; 60(32): 4342-4345, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38545842

ABSTRACT

Activity-based ubiquitin probes (Ub-ABPs) have recently been developed as effective tools for studying the capabilities of E1-E2-E3 enzymes, but most of them can only be used in cell lysates. Here, we report the first cell-penetrating Ub-Dha probes based on thiazolidine-protected cysteines, which enable successful delivery into cells confirmed by a fluorophore at the N-terminus of Ub and live-cell fluorescence microscopy. A total of 18 E1-E2-E3 enzymes in live cells were labelled and enriched in combination with label-free quantification (LFQ) mass spectrometry. This work provided a new cell-penetrating Ub tool for studying the activity and function of Ub-related enzymes.


Subject(s)
Ubiquitin-Protein Ligases , Ubiquitin , Ubiquitin/chemistry , Ubiquitin-Protein Ligases/metabolism , Fluorescent Dyes , Ubiquitination
13.
J Chem Phys ; 160(10)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38465679

ABSTRACT

Nuclear magnetic resonance (NMR) relaxation experiments shine light onto the dynamics of molecular systems in the picosecond to millisecond timescales. As these methods cannot provide an atomically resolved view of the motion of atoms, functional groups, or domains giving rise to such signals, relaxation techniques have been combined with molecular dynamics (MD) simulations to obtain mechanistic descriptions and gain insights into the functional role of side chain or domain motion. In this work, we present a comparison of five computational methods that permit the joint analysis of MD simulations and NMR relaxation experiments. We discuss their relative strengths and areas of applicability and demonstrate how they may be utilized to interpret the dynamics in MD simulations with the small protein ubiquitin as a test system. We focus on the aliphatic side chains given the rigidity of the backbone of this protein. We find encouraging agreement between experiment, Markov state models built in the χ1/χ2 rotamer space of isoleucine residues, explicit rotamer jump models, and a decomposition of the motion using ROMANCE. These methods allow us to ascribe the dynamics to specific rotamer jumps. Simulations with eight different combinations of force field and water model highlight how the different metrics may be employed to pinpoint force field deficiencies. Furthermore, the presented comparison offers a perspective on the utility of NMR relaxation to serve as validation data for the prediction of kinetics by state-of-the-art biomolecular force fields.


Subject(s)
Molecular Dynamics Simulation , Ubiquitin , Ubiquitin/chemistry , Nuclear Magnetic Resonance, Biomolecular , Proteins/chemistry , Magnetic Resonance Spectroscopy
14.
Biochem Biophys Res Commun ; 709: 149818, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38555840

ABSTRACT

Oncoprotein SE translocation (SET) is frequently overexpressed in different types of tumors and correlated with poor prognosis of cancer patients. Targeting SET has been considered a promising strategy for cancer intervention. However, the mechanisms by which SET is regulated under cellular conditions are largely unknown. Here, by performing a tandem affinity purification-mass spectrometry (TAP-MS), we identify that the ubiquitin-specific protease 7 (USP7) forms a stable protein complex with SET in cancer cells. Further analyses reveal that the acidic domain of SET directly binds USP7 while both catalytic domain and ubiquitin-like (UBL) domains of USP7 are required for SET binding. Knockdown of USP7 has no effect on the mRNA level of SET. However, we surprisingly find that USP7 depletion leads to a dramatic elevation of SET protein levels, suggesting that USP7 plays a key role in destabilizing oncoprotein SET, possibly through an indirect mechanism. To our knowledge, our data report the first deubiquitinase (DUB) that physically associates with oncoprotein SET and imply an unexpected regulatory effect of USP7 on SET stability.


Subject(s)
Oncogene Proteins , Ubiquitin-Specific Peptidase 7 , Humans , Catalytic Domain , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Ubiquitin/chemistry , Ubiquitin-Specific Peptidase 7/genetics
15.
Chemistry ; 30(28): e202400268, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38472116

ABSTRACT

Modern approaches in metallodrug research focus on compounds that bind protein targets rather than DNA. However, the identification of protein targets and binding sites is challenging. Using intact mass spectrometry and proteomics, we investigated the binding of the antimetastatic agent RAPTA-C to the model proteins ubiquitin, cytochrome c, lysozyme, and myoglobin. Binding to cytochrome c and lysozyme was negligible. However, ubiquitin bound up to three Ru moieties, two of which were localized at Met1 and His68 as [Ru(cym)], and [Ru(cym)] or [Ru(cym)(PTA)] adducts, respectively. Myoglobin bound up to four [Ru(cym)(PTA)] moieties and five sites were identified at His24, His36, His64, His81/82 and His113. Collision-induced unfolding (CIU) studies via ion-mobility mass spectrometry allowed measuring protein folding as a function of collisional activation. CIU of protein-RAPTA-C adducts showed binding of [Ru(cym)] to Met1 caused a significant compaction of ubiquitin, likely from N-terminal S-Ru-N chelation, while binding of [Ru(cym)(PTA)] to His residues of ubiquitin or myoglobin induced a smaller effect. Interestingly, the folded state of ubiquitin formed by His functionalization was more stable than Met1 metalation. The data suggests that selective metalation of amino acids at different positions on the protein impacts the conformation and potentially the biological activity of anticancer compounds.


Subject(s)
Cytochromes c , Muramidase , Myoglobin , Protein Folding , Ubiquitin , Ubiquitin/chemistry , Ubiquitin/metabolism , Myoglobin/chemistry , Myoglobin/metabolism , Binding Sites , Cytochromes c/chemistry , Cytochromes c/metabolism , Muramidase/chemistry , Muramidase/metabolism , Protein Binding , Ruthenium/chemistry , Coordination Complexes/chemistry , Coordination Complexes/metabolism
16.
Int J Biol Macromol ; 263(Pt 1): 130309, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382779

ABSTRACT

Maintaining protein balance within a cell is essential for proper cellular function, and disruptions in the ubiquitin-proteasome pathway, which is responsible for degrading and recycling unnecessary or damaged proteins, can lead to various diseases. Deubiquitinating enzymes play a vital role in regulating protein homeostasis by removing ubiquitin chains from substrate proteins, thereby controlling important cellular processes, such as apoptosis and DNA repair. Among these enzymes, ubiquitin-specific protease 7 (USP7) is of particular interest. USP7 is a cysteine protease consisting of a TRAF region, catalytic region, and C-terminal ubiquitin-like (UBL) region, and it interacts with tumor suppressors, transcription factors, and other key proteins involved in cell cycle regulation and epigenetic control. Moreover, USP7 has been implicated in the pathogenesis and progression of various diseases, including cancer, inflammation, neurodegenerative conditions, and viral infections. Overall, characterizing the functions of USP7 is crucial for understanding the pathophysiology of diverse diseases and devising innovative therapeutic strategies. This article reviews the structure and function of USP7 and its complexes, its association with diseases, and its known inhibitors and thus represents a valuable resource for advancing USP7 inhibitor development and promoting potential future treatment options for a wide range of diseases.


Subject(s)
Proteostasis , Ubiquitin , Ubiquitin-Specific Peptidase 7/genetics , Ubiquitin-Specific Peptidase 7/chemistry , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin/chemistry , Catalytic Domain , Ubiquitin Thiolesterase/chemistry
17.
Life Sci Alliance ; 7(2)2024 02.
Article in English | MEDLINE | ID: mdl-38170641

ABSTRACT

Intracellular bacteria are threatened by ubiquitin-mediated autophagy, whenever the bacterial surface or enclosing membrane structures become targets of host ubiquitin ligases. As a countermeasure, many intracellular pathogens encode deubiquitinase (DUB) effectors to keep their surfaces free of ubiquitin. Most bacterial DUBs belong to the OTU or CE-clan families. The betaproteobacteria Burkholderia pseudomallei and Burkholderia mallei, causative agents of melioidosis and glanders, respectively, encode the TssM effector, the only known bacterial DUB belonging to the USP class. TssM is much shorter than typical eukaryotic USP enzymes and lacks the canonical ubiquitin-recognition region. By solving the crystal structures of isolated TssM and its complex with ubiquitin, we found that TssM lacks the entire "Fingers" subdomain of the USP fold. Instead, the TssM family has evolved the functionally analog "Littlefinger" loop, which is located towards the end of the USP domain and recognizes different ubiquitin interfaces than those used by USPs. The structures revealed the presence of an N-terminal immunoglobulin-fold domain, which is able to form a strand-exchange dimer and might mediate TssM localization to the bacterial surface.


Subject(s)
Burkholderia mallei , Burkholderia pseudomallei , Glanders , Melioidosis , Humans , Horses , Animals , Burkholderia pseudomallei/genetics , Glanders/microbiology , Melioidosis/microbiology , Ubiquitin/chemistry
18.
Nat Chem Biol ; 20(4): 463-472, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37945894

ABSTRACT

Ubiquitination plays essential roles in eukaryotic cellular processes. The effector protein CteC from Chromobacterium violaceum blocks host ubiquitination by mono-ADP-ribosylation of ubiquitin (Ub) at residue T66. However, the structural basis for this modification is unknown. Here we report three crystal structures of CteC in complexes with Ub, NAD+ or ADP-ribosylated Ub, which represent different catalytic states of CteC in the modification. CteC adopts a special 'D-E' catalytic motif for catalysis and binds NAD+ in a half-ligand binding mode. The specific recognition of Ub by CteC is determined by a relatively separate Ub-targeting domain and a long loop L6, not the classic ADP-ribosylating turn-turn loop. Structural analyses with biochemical results reveal that CteC represents a large family of poly (ADP-ribose) polymerase (PARP)-like ADP-ribosyltransferases, which harbors chimeric features from the R-S-E and H-Y-E classes of ADP-ribosyltransferases. The family of CteC-like ADP-ribosyltransferases has a common 'D-E' catalytic consensus and exists extensively in bacteria and eukaryotic microorganisms.


Subject(s)
Threonine , Ubiquitin , Ubiquitin/chemistry , Threonine/metabolism , NAD/metabolism , ADP-Ribosylation , ADP Ribose Transferases/chemistry , Poly(ADP-ribose) Polymerases/chemistry , Bacteria/metabolism , Adenosine Diphosphate Ribose
19.
Nat Chem Biol ; 20(2): 190-200, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37620400

ABSTRACT

Ubiquitin (Ub) chain formation by homologous to E6AP C-terminus (HECT)-family E3 ligases regulates vast biology, yet the structural mechanisms remain unknown. We used chemistry and cryo-electron microscopy (cryo-EM) to visualize stable mimics of the intermediates along K48-linked Ub chain formation by the human E3, UBR5. The structural data reveal a ≈ 620 kDa UBR5 dimer as the functional unit, comprising a scaffold with flexibly tethered Ub-associated (UBA) domains, and elaborately arranged HECT domains. Chains are forged by a UBA domain capturing an acceptor Ub, with its K48 lured into the active site by numerous interactions between the acceptor Ub, manifold UBR5 elements and the donor Ub. The cryo-EM reconstructions allow defining conserved HECT domain conformations catalyzing Ub transfer from E2 to E3 and from E3. Our data show how a full-length E3, ubiquitins to be adjoined, E2 and intermediary products guide a feed-forward HECT domain conformational cycle establishing a highly efficient, broadly targeting, K48-linked Ub chain forging machine.


Subject(s)
Ubiquitin-Protein Ligases , Ubiquitin , Humans , Ubiquitin/chemistry , Cryoelectron Microscopy , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitins/metabolism , Ubiquitination
20.
J Pharm Sci ; 113(6): 1470-1477, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38135055

ABSTRACT

Host cell protein (HCP) characterization is a crucial quality parameter for biotherapeutic drug safety and stability. With a liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach, we identified ubiquitin in ultrafiltration/diafiltration (UF/DF) pools of one of our monoclonal antibody (mAb) products. Since ubiquitin occurs physiologically as a post-translational modification (PTM) involved in many cellular functions, we suspected the possibility that if identified as an HCP, it may occur as a covalent modification on the mAb. In fact, in this study we characterized and quantified the ubiquitin modification on the Fc domain of mAbX by data dependent acquisition (DDA) and data independent acquisition (DIA) - MS workflows. Covalent binding and site localization were confirmed by identifying a characteristic diglycine motif on the modified peptide. Initially observed reduced detectability of ubiquitin in samples prepared with native digestion was attributed to impaired digestion and subsequent removal along with the mAb in the precipitation step. Our work has contributed to a better understanding of ubiquitin as an HCP considering its specific features such as occurrence in different topologies and provided insight into how covalent binding to a drug product can affect its identification by MS when native digestion conditions are used.


Subject(s)
Antibodies, Monoclonal , Tandem Mass Spectrometry , Ubiquitin , Tandem Mass Spectrometry/methods , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Ubiquitin/chemistry , Ubiquitin/metabolism , Chromatography, Liquid/methods , CHO Cells , Cricetulus , Animals , Protein Processing, Post-Translational , Humans , Liquid Chromatography-Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...