Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 247
Filter
1.
Eur J Med Chem ; 272: 116468, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38718626

ABSTRACT

High expression of ubiquitin-specific protease 10 (USP10) promote the proliferation of hepatocellular carcinoma (HCC), thus the development of USP10 inhibitors holds promise as a novel therapeutic approach for HCC treatment. However, the development of selective USP10 inhibitor is still limited. In this study, we developed a novel USP10 inhibitor for investigating the feasibility of targeting USP10 for the treatment of HCC. Due to high USP10 inhibition potency and prominent selectivity, compound D1 bearing quinolin-4(1H)-one scaffold was identified as a lead compound. Subsequent research revealed that D1 significantly inhibits cell proliferation and clone formation in HCC cells. Mechanistic insights indicated that D1 targets the ubiquitin pathway, facilitating the degradation of YAP (Yes-associated protein), thereby triggering the downregulation of p53 and its downstream protein p21. Ultimately, this cascade leads to S-phase arrest in HCC cells, followed by cell apoptosis. Collectively, our findings highlight D1 as a promising starting point for USP10-positive HCC treatment, underscoring its potential as a vital tool for unraveling the functional intricacies of USP10.


Subject(s)
Adaptor Proteins, Signal Transducing , Antineoplastic Agents , Carcinoma, Hepatocellular , Cell Proliferation , Drug Discovery , Liver Neoplasms , Transcription Factors , Ubiquitin Thiolesterase , YAP-Signaling Proteins , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Structure-Activity Relationship , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , YAP-Signaling Proteins/metabolism , Molecular Structure , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Apoptosis/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/chemical synthesis , Cell Line, Tumor
2.
Proc Natl Acad Sci U S A ; 121(21): e2322923121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739798

ABSTRACT

The ubiquitin-proteasome system is essential to all eukaryotes and has been shown to be critical to parasite survival as well, including Plasmodium falciparum, the causative agent of the deadliest form of malarial disease. Despite the central role of the ubiquitin-proteasome pathway to parasite viability across its entire life-cycle, specific inhibitors targeting the individual enzymes mediating ubiquitin attachment and removal do not currently exist. The ability to disrupt P. falciparum growth at multiple developmental stages is particularly attractive as this could potentially prevent both disease pathology, caused by asexually dividing parasites, as well as transmission which is mediated by sexually differentiated parasites. The deubiquitinating enzyme PfUCHL3 is an essential protein, transcribed across both human and mosquito developmental stages. PfUCHL3 is considered hard to drug by conventional methods given the high level of homology of its active site to human UCHL3 as well as to other UCH domain enzymes. Here, we apply the RaPID mRNA display technology and identify constrained peptides capable of binding to PfUCHL3 with nanomolar affinities. The two lead peptides were found to selectively inhibit the deubiquitinase activity of PfUCHL3 versus HsUCHL3. NMR spectroscopy revealed that the peptides do not act by binding to the active site but instead block binding of the ubiquitin substrate. We demonstrate that this approach can be used to target essential protein-protein interactions within the Plasmodium ubiquitin pathway, enabling the application of chemically constrained peptides as a novel class of antimalarial therapeutics.


Subject(s)
Peptides , Plasmodium falciparum , Protozoan Proteins , Ubiquitin Thiolesterase , Plasmodium falciparum/enzymology , Plasmodium falciparum/metabolism , Plasmodium falciparum/drug effects , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/genetics , Humans , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/antagonists & inhibitors , Antimalarials/pharmacology , Antimalarials/chemistry , Ubiquitin/metabolism , Malaria, Falciparum/parasitology , Malaria, Falciparum/drug therapy
3.
Bioorg Chem ; 147: 107400, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688196

ABSTRACT

Although certain members of the Ubiquitin-specific peptidases (USPs) have been recognized as promising therapeutic targets for various diseases, research progress regarding USP21 has been relatively sluggish in its early stages. USP21 is a crucial member of the USPs subfamily, involved in diverse cellular processes such as apoptosis, DNA repair, and signal transduction. Research findings from the past decade demonstrate that USP21 mediates the deubiquitination of multiple well-known target proteins associated with critical cellular processes relevant to both disease and homeostasis, particularly in various cancers.This reviewcomprehensively summarizes the structure and biological functions of USP21 with an emphasis on its role in tumorigenesis, and elucidates the advances on the discovery of tens of small-molecule inhibitors targeting USP21, which suggests that targeting USP21 may represent a potential strategy for cancer therapy.


Subject(s)
Neoplasms , Ubiquitin Thiolesterase , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Animals , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Molecular Structure
4.
Biomed Pharmacother ; 174: 116459, 2024 May.
Article in English | MEDLINE | ID: mdl-38518599

ABSTRACT

Ubiquitin-specific protease (USP), an enzyme catalyzing protein deubiquitination, is involved in biological processes related to metabolic disorders and cancer proliferation. We focused on constructing predictive models tailored to unveil compounds boasting USP21 inhibitory attributes. Six models, Extra Trees Classifier, Random Forest Classifier, LightGBM Classifier, XGBoost Classifier, Bagging Classifier, and a convolutional neural network harnessed from empirical data were selected for the screening process. These models guided our selection of 26 compounds from the FDA-approved drug library for further evaluation. Notably, nifuroxazide emerged as the most potent inhibitor, with a half-maximal inhibitory concentration of 14.9 ± 1.63 µM. The stability of protein-ligand complexes was confirmed using molecular modeling. Furthermore, nifuroxazide treatment of HepG2 cells not only inhibited USP21 and its established substrate ACLY but also elevated p-AMPKα, a downstream functional target of USP21. Intriguingly, we unveiled the previously unknown capacity of nifuroxazide to increase the levels of miR-4458, which was identified as downregulating USP21. This discovery was substantiated by manipulating miR-4458 levels in HepG2 cells, resulting in corresponding changes in USP21 protein levels in line with its predicted interaction with ACLY. Lastly, we confirmed the in vivo efficacy of nifuroxazide in inhibiting USP21 in mice livers, observing concurrent alterations in ACLY and p-AMPKα levels. Collectively, our study establishes nifuroxazide as a promising USP21 inhibitor with potential implications for addressing metabolic disorders and cancer proliferation. This multidimensional investigation sheds light on the intricate regulatory mechanisms involving USP21 and its downstream effects, paving the way for further exploration and therapeutic development.


Subject(s)
Drug Repositioning , Hydroxybenzoates , Machine Learning , Nitrofurans , Humans , Nitrofurans/pharmacology , Animals , Drug Repositioning/methods , Hep G2 Cells , Hydroxybenzoates/pharmacology , Mice , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism
5.
Cell Death Differ ; 31(5): 574-591, 2024 May.
Article in English | MEDLINE | ID: mdl-38491202

ABSTRACT

Drug resistance in cancer therapy is the major reason for poor prognosis. Addressing this clinically unmet issue is important and urgent. In this study, we found that targeting USP24 by the specific USP24 inhibitors, USP24-i and its analogues, dramatically activated autophagy in the interphase and mitotic periods of lung cancer cells by inhibiting E2F4 and TRAF6, respectively. USP24 functional knockout, USP24C1695A, or targeting USP24 by USP24-i-101 inhibited drug resistance and activated autophagy in gefitinib-induced drug-resistant mice with doxycycline-induced EGFRL858R lung cancer, but this effect was abolished after inhibition of autophagy, indicating that targeting USP24-mediated induction of autophagy is required for inhibition of drug resistance. Genomic instability and PD-L1 levels were increased in drug resistant lung cancer cells and were inhibited by USP24-i-101 treatment or knockdown of USP24. In addition, inhibition of autophagy by bafilomycin-A1 significantly abolished the effect of USP24-i-101 on maintaining genomic integrity, decreasing PD-L1 and inhibiting drug resistance acquired in chemotherapy or targeted therapy. In summary, an increase in the expression of USP24 in cancer cells is beneficial for the induction of drug resistance and targeting USP24 by USP24-i-101 optimized from USP24-i inhibits drug resistance acquired during cancer therapy by increasing PD-L1 protein degradation and genomic stability in an autophagy induction-dependent manner.


Subject(s)
Autophagy , Drug Resistance, Neoplasm , Ubiquitin Thiolesterase , Autophagy/drug effects , Humans , Drug Resistance, Neoplasm/drug effects , Animals , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/antagonists & inhibitors , Mice , Cell Line, Tumor , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics
6.
Br J Cancer ; 130(11): 1855-1865, 2024 May.
Article in English | MEDLINE | ID: mdl-38519707

ABSTRACT

BACKGROUND: More than half of mesothelioma tumours show alterations in the tumour suppressor gene BAP1. BAP1-deficient mesothelioma is shown to be sensitive to EZH2 inhibition in preclinical settings but only showed modest efficacy in clinical trial. Adding a second inhibitor could potentially elevate EZH2i treatment efficacy while preventing acquired resistance at the same time. METHODS: A focused drug synergy screen consisting of 20 drugs was performed by combining EZH2 inhibition with a panel of anti-cancer compounds in mesothelioma cell lines. The compounds used are under preclinical investigation or already used in the clinic. The synergistic potential of the combinations was assessed by using the Bliss model. To validate our findings, in vivo xenograft experiments were performed. RESULTS: Combining EZH2i with ATMi was found to have synergistic potential against BAP1-deficient mesothelioma in our drug screen, which was validated in clonogenicity assays. Tumour growth inhibition potential was significantly increased in BAP1-deficient xenografts. In addition, we observe lower ATM levels upon depletion of BAP1 and hypothesise that this might be mediated by E2F1. CONCLUSIONS: We demonstrated the efficacy of the combination of ATM and EZH2 inhibition against BAP1-deficient mesothelioma in preclinical models, indicating the potential of this combination as a novel treatment modality using BAP1 as a biomarker.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Enhancer of Zeste Homolog 2 Protein , Mesothelioma , Tumor Suppressor Proteins , Ubiquitin Thiolesterase , Xenograft Model Antitumor Assays , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/deficiency , Humans , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/genetics , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/deficiency , Animals , Mice , Mesothelioma/drug therapy , Mesothelioma/pathology , Mesothelioma/genetics , Cell Line, Tumor , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/deficiency , Drug Synergism , Female
7.
J Mol Biol ; 435(23): 168316, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37858708

ABSTRACT

Deubiquitinases (DUBs) are proteolytic enzymes that catalyze the removal of ubiquitin from protein substrates. The critical role of DUBs in regulating protein ubiquitination makes them attractive drug targets in oncology, neurodegenerative disease, and antiviral development. Biochemical assays for quantifying DUB activity have enabled characterization of substrate preferences and discovery of small molecule inhibitors. However, assessing the efficacy of these inhibitors in cellular contexts to support clinical drug development has been limited by a lack of tractable cell-based assays. To address this gap, we developed a two-color flow cytometry-based assay that allows for sensitive quantification of DUB activity and inhibition in living cells. The utility of this system was demonstrated by quantifying the potency of GRL0617 against the viral DUB SARS-CoV-2 PLpro, identifying potential GRL0617 resistance mutations, and performing structure-function analysis of the vOTU domain from the recently emerged Yezo virus. In addition, the system was optimized for cellular DUBs by modifying a GFP-targeting nanobody to recruit USP7 and USP28 to benchmark a panel of reported inhibitors and assess inhibition kinetics. Together, these results demonstrate the utility of these assays for studying DUB biology in a cellular context with potential to aid in inhibitor discovery and development.


Subject(s)
Deubiquitinating Enzymes , Flow Cytometry , Protease Inhibitors , Humans , Aniline Compounds/pharmacology , Benzamides/pharmacology , Deubiquitinating Enzymes/analysis , Deubiquitinating Enzymes/antagonists & inhibitors , Neurodegenerative Diseases/enzymology , Ubiquitin/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Ubiquitination/drug effects , Flow Cytometry/methods , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Coronavirus Papain-Like Proteases/analysis , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Single-Domain Antibodies
8.
Sci Rep ; 13(1): 2264, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36754982

ABSTRACT

BRCA1-associated protein-1 (BAP1) is a ubiquitin C-terminal hydrolase domain-containing deubiquitinase. The gene encoding BAP1 is mutated in various human cancers, including mesothelioma, uveal melanoma and renal cell carcinoma. BAP1 plays roles in many cancer-related cellular functions, including cell proliferation, cell death, and nuclear processes crucial for genome stability, such as DNA repair and replication. While these findings suggest that BAP1 functions as a tumor suppressor, recent data also suggest that BAP1 might play tumor-promoting roles in certain cancers, such as breast cancer and hematopoietic malignancies. Here, we show that BAP1 is upregulated in colon cancer cells and tissues and that BAP1 depletion reduces colon cancer cell proliferation and tumor growth. BAP1 contributes to colon cancer cell proliferation by accelerating DNA replication and suppressing replication stress and concomitant apoptosis. A recently identified BAP1 inhibitor, TG2-179-1, which seems to covalently bind to the active site of BAP1, exhibits potent cytotoxic activity against colon cancer cells, with half-maximal inhibitory concentrations of less than 10 µM, and inhibits colon tumor growth. TG2-179-1 exerts cytotoxic activity by targeting BAP1, leading to defective replication and increased apoptosis. This work therefore shows that BAP1 acts oncogenically in colon cancer and is a potential therapeutic target for this cancer. Our work also suggests that TG2-179-1 can be developed as a potential therapeutic agent for colon cancer.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Ubiquitin Thiolesterase , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/genetics
9.
Biochem Pharmacol ; 207: 115355, 2023 01.
Article in English | MEDLINE | ID: mdl-36442624

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, which is characterized by progressive growth of multiple renal cysts in bilateral kidneys. In the past decades, mechanistic studies have entailed many essential signalling pathways that were regulated through post-translational modifications (PTMs) during cystogenesis. Among the numerous PTMs involved, the effect of ubiquitination and deubiquitination remains largely unknown. Herein, we identified that USP28, a deubiquitinase aberrantly upregulated in patients with ADPKD, selectively removed K48-linked polyubiquitination and reversed protein degradation of signal transducer and activator of transcription 3 (STAT3). We also observed that USP28 could directly interact with and stabilize c-Myc, a transcriptional target of STAT3. Both processes synergistically enhanced renal cystogenesis. Furthermore, pharmacological inhibition of USP28 attenuated the cyst formation both in vivo and in vitro. Collectively, USP28 regulates STAT3 turnover and its transcriptional target c-Myc in ADPKD. USP28 inhibition could be a novel therapeutic strategy against ADPKD.


Subject(s)
Cysts , Polycystic Kidney, Autosomal Dominant , Ubiquitin Thiolesterase , Humans , Cysts/metabolism , Deubiquitinating Enzymes , Kidney/metabolism , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Signal Transduction , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism , Animals , Mice , STAT3 Transcription Factor/metabolism , Proto-Oncogene Proteins c-myc/metabolism
10.
Clin Transl Med ; 12(9): e1038, 2022 09.
Article in English | MEDLINE | ID: mdl-36082692

ABSTRACT

BACKGROUND: Chronic myeloid leukaemia (CML) is a haematological cancer featured by the presence of BCR-ABL fusion protein with abnormal tyrosine kinase activation. Classical tyrosine kinase inhibitor (TKI)-based therapies are available to patients with CML. However, acquired resistance to TKI has been a challenging obstacle, especially stubborn T315I mutation is the most common cause. Therefore, it is especially urgent to find more effective targets to overcome TKI resistance induced by BCR-ABLT315I . Proteasomal deubiquitinases (USP14 and UCHL5) have fundamental roles in the ubiquitin-proteasome system and possess multiple functions during cancer progression. METHODS: The human peripheral blood mononuclear cells were collected to measure the mRNA expression of USP14 and UCHL5, as well as to detect the toxicity effect of b-AP15. We explored the effect of b-AP15 on the activity of proteasomal deubiquitinases. We detected the effects of b-AP15 on BCR-ABLWT and BCR-ABLT315I CML cells in vitro and in the subcutaneous tumour model. We knocked down USP14 and/or UCHL5 by shRNA to explore whether these proteasomal deubiquitinases are required for cell proliferation of CML. RESULTS: In this study, we found that increased expression of the proteasomal deubiquitinase USP14 and UCHL5 in primary cancer cells from CML patients compared to healthy donors. b-AP15, an inhibitor of USP14 and UCHL5, exhibited potent tumour-killing activity in BCR-ABLWT and BCR-ABLT315I CML cell lines, as well as in CML xenografts and primary CML cells. Mechanically, pharmacological or genetic inhibition of USP14 and UCHL5 induced cell apoptosis and decreased the protein level of BCR-ABL in CML cells expressing BCR-ABLWT and BCR-ABLT315I . Moreover, b-AP15 synergistically enhanced the cytotoxic effect caused by TKI imatinib in BCR-ABLWT and BCR-ABLT315I CML cells. CONCLUSION: Collectively, our results demonstrate targeting USP14 and UCHL5 as a potential strategy for combating TKI resistance in CML.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Proteasome Endopeptidase Complex , Protein Kinase Inhibitors , Ubiquitin Thiolesterase , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/therapeutic use , Drug Resistance, Neoplasm/genetics , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Fusion Proteins, bcr-abl/pharmacology , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Piperidones/metabolism , Piperidones/pharmacology , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/genetics
11.
Nat Commun ; 13(1): 1700, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35361799

ABSTRACT

Anti-PD-1/PD-L1 immunotherapy has achieved impressive therapeutic outcomes in patients with multiple cancer types. However, the underlined molecular mechanism(s) for moderate response rate (15-25%) or resistance to PD-1/PD-L1 blockade remains not completely understood. Here, we report that inhibiting the deubiquitinase, USP8, significantly enhances the efficacy of anti-PD-1/PD-L1 immunotherapy through reshaping an inflamed tumor microenvironment (TME). Mechanistically, USP8 inhibition increases PD-L1 protein abundance through elevating the TRAF6-mediated K63-linked ubiquitination of PD-L1 to antagonize K48-linked ubiquitination and degradation of PD-L1. In addition, USP8 inhibition also triggers innate immune response and MHC-I expression largely through activating the NF-κB signaling. Based on these mechanisms, USP8 inhibitor combination with PD-1/PD-L1 blockade significantly activates the infiltrated CD8+ T cells to suppress tumor growth and improves the survival benefit in several murine tumor models. Thus, our study reveals a potential combined therapeutic strategy to utilize a USP8 inhibitor and PD-1/PD-L1 blockade for enhancing anti-tumor efficacy.


Subject(s)
Endopeptidases , Endosomal Sorting Complexes Required for Transport , Immunotherapy , Neoplasms , Tumor Microenvironment , Ubiquitin Thiolesterase , Animals , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Endopeptidases/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Humans , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/genetics
12.
Biochem Pharmacol ; 197: 114900, 2022 03.
Article in English | MEDLINE | ID: mdl-34995485

ABSTRACT

Deubiquitinases (DUBs) mediate the removal of ubiquitin from diverse proteins that participate in the regulation of cell survival, DNA damage repair, apoptosis and drug resistance. Previous studies have shown an association between activation of cell survival pathways and platinum-drug resistance in ovarian carcinoma cell lines. Among the strategies available to inhibit DUBs, curcumin derivatives appear promising, thus we hypothesized their use to enhance the efficacy of cisplatin in ovarian carcinoma preclinical models. The caffeic acid phenethyl ester (CAPE), inhibited ubiquitin-specific protease 8 (USP8), but not proteasomal DUBs in cell-free assays. When CAPE was combined with cisplatin in nine cell lines representative of various histotypes a synergistic effect was observed in TOV112D cells and in the cisplatin-resistant IGROV-1/Pt1 variant, both of endometrioid type and carrying mutant TP53. In the latter cells, persistent G1 accumulation upon combined treatment associated with p27kip1 protein levels was observed. The synergy was not dependent on apoptosis induction, and appeared to occur in cells with higher USP8 levels. In vivo antitumor activity studies supported the advantage of the combination of CAPE and cisplatin in the subcutaneous model of cisplatin-resistant IGROV-1/Pt1 ovarian carcinoma as well as CAPE activity on intraperitoneal disease. This study reveals the therapeutic potential of CAPE in cisplatin-resistant ovarian tumors as well as in tumors expressing USP8.


Subject(s)
Antineoplastic Agents/administration & dosage , Caffeic Acids/administration & dosage , Cisplatin/administration & dosage , Endopeptidases/biosynthesis , Endosomal Sorting Complexes Required for Transport/antagonists & inhibitors , Endosomal Sorting Complexes Required for Transport/biosynthesis , Ovarian Neoplasms/enzymology , Phenylethyl Alcohol/analogs & derivatives , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/biosynthesis , Animals , Cell Line, Tumor , Drug Delivery Systems/methods , Female , Humans , Mice , Mice, Nude , Ovarian Neoplasms/drug therapy , Phenylethyl Alcohol/administration & dosage , Xenograft Model Antitumor Assays/methods
13.
Br J Cancer ; 126(1): 24-33, 2022 01.
Article in English | MEDLINE | ID: mdl-34497382

ABSTRACT

Breast cancer has the highest incidence and death rate among cancers in women worldwide. In particular, metastatic estrogen receptor negative (ER-) breast cancer and triple-negative breast cancer (TNBC) subtypes have very limited treatment options, with low survival rates. Ubiquitin carboxyl terminal hydrolase L1 (UCHL1), a ubiquitin C-terminal hydrolase belonging to the deubiquitinase (DUB) family of enzymes, is highly expressed in these cancer types, and several key reports have revealed emerging and important roles for UCHL1 in breast cancer. However, selective and potent small-molecule UCHL1 inhibitors have been disclosed only very recently, alongside chemical biology approaches to detect regulated UHCL1 activity in cancer cells. These tools will enable novel insights into oncogenic mechanisms driven by UCHL1, and identification of substrate proteins deubiquitinated by UCHL1, with the ultimate goal of realising the potential of UCHL1 as a drug target in breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Molecular Targeted Therapy/methods , Triple Negative Breast Neoplasms/pathology , Ubiquitin Thiolesterase/antagonists & inhibitors , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Female , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Ubiquitin Thiolesterase/metabolism
14.
Biochem Biophys Res Commun ; 588: 147-153, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34954522

ABSTRACT

Among acute leukemias, mixed-lineage leukemia-rearranged (MLL-r) leukemia is associated with poor prognosis. Bromodomain and extra-terminal inhibitors (BETi) are promising agents for treatment of hematological malignancies; however, the mechanisms underlying sensitivity to BETi and biomarkers to predict sensitivity are yet to be clarified. Here, we established OTX015-resistant MLL-r cell lines (OTX015-R cells) and used them to explore therapeutic targets in BETi-resistant MLL-r leukemia. OTX015-R cells exhibited resistance to various BETi, and levels of bromodomain-containing protein 4 (BRD4) and BRD4-regulated molecules, such as c-MYC and B-cell/CLL lymphoma-2 (BCL-2), were remarkably increased in OTX015-R cells relative to those in the parental cells; however, BRD4 mRNA transcript levels were not elevated. These results suggest that overexpression of BRD4 protein, through suppression of BRD4 degradation, may contribute to BETi-resistance. Notably, expression of ubiquitin carboxyl-terminal hydrolase isozyme L5 (UCHL5) was increased in OTX015-R cells. Further, a UCHL5 inhibitor, b-AP15, and UCHL5 knockdown had antitumor effects by degrading BRD4. In addition, sensitivity to OTX015 was partially recovered in OTX015-R cells pretreated with b-AP15. Furthermore, cyclin-dependent kinase 4/6 (CDK4/6) inhibition decreased UCHL5 expression, suppressed OTX015-R cell proliferation, and induced apoptosis. These results indicate that the CDK4/6-UCHL5-BRD4 axis confers resistance to BETi by suppressing BRD4 degradation. We propose that this pathway is a potential novel therapeutic target in BETi-resistant MLL-r leukemia with BRD4 overexpression.


Subject(s)
Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , Gene Rearrangement , Histone-Lysine N-Methyltransferase/genetics , Leukemia/pathology , Myeloid-Lymphoid Leukemia Protein/genetics , Proteolysis , Transcription Factors/metabolism , Ubiquitin Thiolesterase/metabolism , Acetanilides/pharmacology , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Knockdown Techniques , Heterocyclic Compounds, 3-Ring/pharmacology , Histone-Lysine N-Methyltransferase/metabolism , Humans , Mice , Myeloid-Lymphoid Leukemia Protein/metabolism , Ubiquitin/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors
15.
Eur J Med Chem ; 227: 113970, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34752952

ABSTRACT

In the past few years, researchers have shed light on the immense importance of ubiquitin in numerous regulatory pathways. The post-translational addition of mono or poly-ubiquitin molecules namely "ubiquitinoylation" is therefore pivotal to maintain the cell's vitality, maturation, differentiation, and division. Part of conserving homeostasis stems from maintaining the ubiquitin pool in the vicinity of the cell's intracellular environment; this crucial role is played by deubiquitylating enzymes (DUBs) that cleave ubiquitin molecules from target molecules. To date, they are categorized into 7 families with ubiquitin carboxyl c-terminal de-hydrolase family (UCH) as the most common and well-studied. Ubiquitin C-terminal hydrolase L (UCH-L3) is a significant protein in this family as it has been implicated in many molecular and cellular processes with its mRNA identified in a range of body tissues including the brain. It goes without saying that it manifests in maintaining health and when abnormally regulated in disease. As it is an attractive small molecule drug target, scientists have used high throughput screening (HTS) and other drug discovery methods to discover inhibitors for this enzyme for the treatment of cancer and neurodegenerative diseases. In this review we present an overview of UCH-L3 catalytic mechanism, structure, its role in DNA repair and cancer along with the inhibitors discovered so far to halt its activity.


Subject(s)
Enzyme Inhibitors/pharmacology , Ubiquitin Thiolesterase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Humans , Structure-Activity Relationship , Ubiquitin Thiolesterase/chemistry , Ubiquitin Thiolesterase/metabolism
16.
Int J Mol Sci ; 22(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34948233

ABSTRACT

Fatty acid synthase (FASN) plays an important role in cancer development, providing excess lipid sources for cancer growth by participating in de novo lipogenesis. Although several inhibitors of FASN have been developed, there are many limitations to using FASN inhibitors alone as cancer therapeutics. We therefore attempted to effectively inhibit cancer cell growth by using a FASN inhibitor in combination with an inhibitor of a deubiquitinating enzyme USP14, which is known to maintain FASN protein levels in hepatocytes. However, when FASN and USP14 were inhibited together, there were no synergistic effects on cancer cell death compared to inhibition of FASN alone. Surprisingly, USP14 rather reduced the protein levels and activity of FASN in cancer cells, although it slightly inhibited the ubiquitination of FASN. Indeed, treatment of an USP14 inhibitor IU1 did not significantly affect FASN levels in cancer cells. Furthermore, from an analysis of metabolites involved in lipid metabolism, metabolite changes in IU1-treated cells were significantly different from those in cells treated with a FASN inhibitor, Fasnall. These results suggest that FASN may not be a direct substrate of USP14 in the cancer cells. Consequently, we demonstrate that USP14 regulates proliferation of the cancer cells in a fatty acid synthase-independent manner, and targeting USP14 in combination with FASN may not be a viable method for effective cancer treatment.


Subject(s)
Cell Proliferation , Fatty Acid Synthase, Type I/metabolism , Neoplasm Proteins/metabolism , Neoplasms/enzymology , Ubiquitin Thiolesterase/metabolism , A549 Cells , Fatty Acid Synthase, Type I/genetics , HEK293 Cells , Humans , MCF-7 Cells , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology , Pyrroles/pharmacology , Pyrrolidines/pharmacology , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/genetics , Ubiquitination/drug effects , Ubiquitination/genetics
17.
Pharmacol Res ; 174: 105933, 2021 12.
Article in English | MEDLINE | ID: mdl-34634471

ABSTRACT

Ischemic stroke poses a significant health risk due to its high rate of disability and mortality. To address this problem, several therapeutic approaches have been proposed, including interruption targeting programmed cell death (PCD). Ferroptosis is a newly defined PCD characterized by iron-dependent accumulation of lipid peroxidation, and is becoming a promising target for treating numerous diseases. To explore the underlying mechanisms of the initiation and execution of ferroptosis in ischemic stroke, we established stroke models in vivo and in vitro simulating ischemia/reperfusion (I/R) neuronal injury. Different from previous reports on stroke, we tested ferroptosis by measuring the levels of core proteins, such as ACSL4, 15-LOX2, Ferritin and GPX4. In addition, I/R injury induces excessive degradation of ferritin via the autophagy pathway and subsequent increase of free iron in neurons. This phenomenon has recently been termed ferritinophagy and reported to be regulated by nuclear receptor coactivator 4 (NCOA4) in some cell lines. Increased NCOA4 in cytoplasm was detected in our study and then silenced by shRNA to investigate its function. Both in vivo and in vitro, NCOA4 deletion notably abrogated ferritinophagy caused by I/R injury and thus inhibited ferroptosis. Furthermore, we found that NCOA4 was upregulated by ubiquitin specific peptidase 14 (USP14) via a deubiquitination process in damaged neurons, and we found evidence of pharmacological inhibition of USP14 effectively reducing NCOA4 levels to protect neurons from ferritinophagy-mediated ferroptosis. These findings suggest a novel and effective target for treating ischemic stroke.


Subject(s)
Ferroptosis , Infarction, Middle Cerebral Artery , Ischemic Stroke , Nuclear Receptor Coactivators , Reperfusion Injury , Animals , Brain/metabolism , Cells, Cultured , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/metabolism , Ischemic Stroke/genetics , Ischemic Stroke/metabolism , Lipid Peroxidation , Male , Malondialdehyde/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Nuclear Receptor Coactivators/genetics , Nuclear Receptor Coactivators/metabolism , Pyrroles/pharmacology , Pyrrolidines/pharmacology , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism
18.
Cells ; 10(10)2021 10 04.
Article in English | MEDLINE | ID: mdl-34685632

ABSTRACT

Squamous cell carcinomas are therapeutically challenging tumor entities. Low response rates to radiotherapy and chemotherapy are commonly observed in squamous patients and, accordingly, the mortality rate is relatively high compared to other tumor entities. Recently, targeting USP28 has been emerged as a potential alternative to improve the therapeutic response and clinical outcomes of squamous patients. USP28 is a catalytically active deubiquitinase that governs a plethora of biological processes, including cellular proliferation, DNA damage repair, apoptosis and oncogenesis. In squamous cell carcinoma, USP28 is strongly expressed and stabilizes the essential squamous transcription factor ΔNp63, together with important oncogenic factors, such as NOTCH1, c-MYC and c-JUN. It is presumed that USP28 is an oncoprotein; however, recent data suggest that the deubiquitinase also has an antineoplastic effect regulating important tumor suppressor proteins, such as p53 and CHK2. In this review, we discuss: (1) The emerging role of USP28 in cancer. (2) The complexity and mutational landscape of squamous tumors. (3) The genetic alterations and cellular pathways that determine the function of USP28 in squamous cancer. (4) The development and current state of novel USP28 inhibitors.


Subject(s)
Carcinoma, Squamous Cell/genetics , Genes, Tumor Suppressor , Oncogenes , Ubiquitin Thiolesterase/genetics , Animals , Carcinoma, Squamous Cell/therapy , Humans , Models, Molecular , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/chemistry , Ubiquitin Thiolesterase/metabolism
19.
Cells ; 10(9)2021 08 31.
Article in English | MEDLINE | ID: mdl-34571917

ABSTRACT

Osteosarcoma (OS) is the most common malignant bone tumor in children and teenagers. In many cases, such as poor response to treatment or the presence of metastases at diagnosis, the survival rate of patients remains very low. Although in the literature, more and more studies are emerging on the role of Ubiquitin-Specific Proteases (USPs) in the development of many cancers, few data exist regarding OS. In this context, RNA-sequencing analysis of OS cells and mesenchymal stem cells differentiated or not differentiated into osteoblasts reveals increased expression of four USPs in OS tumor cells: USP6, USP27x, USP41 and USP43. Tissue microarray analysis of patient biopsies demonstrates the nucleic and/or cytoplasmic expression of these four USPs at the protein level. Interestingly, Kaplan-Meyer analysis shows that the expression of two USPs, USP6 and USP41, is correlated with patient survival. In vivo experiments using a preclinical OS model, finally demonstrate that PR619, a USP inhibitor able to enhance protein ubiquitination in OS cell lines, reduces primary OS tumor growth and the development of lung metastases. In this context, in vitro experiments show that PR619 decreases the viability of OS cells, mainly by inducing a caspase3/7-dependent cell apoptosis. Overall, these results demonstrate the relevance of targeting USPs in OS.


Subject(s)
Bone Neoplasms/drug therapy , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Lung Neoplasms/drug therapy , Osteosarcoma/drug therapy , Protease Inhibitors/pharmacology , Ubiquitin-Specific Proteases/antagonists & inhibitors , Animals , Apoptosis , Bone Neoplasms/enzymology , Bone Neoplasms/pathology , Cell Movement , Cell Proliferation , Female , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/secondary , Mice , Osteosarcoma/enzymology , Osteosarcoma/pathology , Prognosis , Tumor Cells, Cultured , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Specific Proteases/metabolism , Xenograft Model Antitumor Assays
20.
FASEB J ; 35(9): e21870, 2021 09.
Article in English | MEDLINE | ID: mdl-34436790

ABSTRACT

COVID-19 is often characterized by dysregulated inflammatory and immune responses. It has been shown that the Traditional Chinese Medicine formulation Qing-Fei-Pai-Du decoction (QFPDD) is effective in the treatment of the disease, especially for patients in the early stage. Our network pharmacology analyses indicated that many inflammation and immune-related molecules were the targets of the active components of QFPDD, which propelled us to examine the effects of the decoction on inflammation. We found in the present study that QFPDD effectively alleviated dextran sulfate sodium-induced intestinal inflammation in mice. It inhibited the production of pro-inflammatory cytokines IL-6 and TNFα, and promoted the expression of anti-inflammatory cytokine IL-10 by macrophagic cells. Further investigations found that QFPDD and one of its active components wogonoside markedly reduced LPS-stimulated phosphorylation of transcription factor ATF2, an important regulator of multiple cytokines expression. Our data revealed that both QFPDD and wogonoside decreased the half-life of ATF2 and promoted its proteasomal degradation. Of note, QFPDD and wogonoside down-regulated deubiquitinating enzyme USP14 along with inducing ATF2 degradation. Inhibition of USP14 with the small molecular inhibitor IU1 also led to the decrease of ATF2 in the cells, indicating that QFPDD and wogonoside may act through regulating USP14 to promote ATF2 degradation. To further assess the importance of ubiquitination in regulating ATF2, we generated mice that were intestinal-specific KLHL5 deficiency, a CUL3-interacting protein participating in substrate recognition of E3s. In these mice, QFPDD mitigated inflammatory reaction in the spleen, but not intestinal inflammation, suggesting CUL3-KLHL5 may function as an E3 for ATF2 degradation.


Subject(s)
Activating Transcription Factor 2/metabolism , Down-Regulation/drug effects , Drugs, Chinese Herbal/pharmacology , Flavanones/pharmacology , Glucosides/pharmacology , Inflammation/drug therapy , Proteolysis/drug effects , Ubiquitin Thiolesterase/deficiency , Animals , Cell Line , Colitis/chemically induced , Colitis/drug therapy , Cullin Proteins/metabolism , Cytokines/metabolism , Dextran Sulfate/pharmacology , Dextran Sulfate/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Flavanones/therapeutic use , Glucosides/therapeutic use , Inflammation/chemically induced , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Phosphorylation/drug effects , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , Pyrroles/pharmacology , Pyrrolidines/pharmacology , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...