Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.700
Filter
1.
J Mol Model ; 30(6): 173, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767734

ABSTRACT

CONTEXT: Ubiquitin-like with PHD and RING finger domain containing protein 1 (UHRF1) is responsible for preserving the stability of genomic methylation through the recruitment of DNA methyltransferase 1 (DNMT1). However, the interaction between Developmental pluripotency associated 3 (DPPA3) and the pre-PHD-PHD (PPHD) domain of UHRF1 hinders the nuclear localization of UHRF1. This disruption has implications for potential cancer treatment strategies. Drugs that mimic the binding pattern between DPPA3 and PPHD could offer a promising approach to cancer treatment. Our study reveals that DPPA3 undergoes dissociation from the C-terminal through three different modes of helix unfolding. Furthermore, we have identified key residue pairs involved in this dissociation process and potential drug-targeting residues. These findings offer valuable insights into the dissociation mechanism of DPPA3 from PPHD and have the potential to inform the design of novel drugs targeting UHRF1 for cancer therapy. METHODS: To comprehend the dissociation process and binding patterns of PPHD-DPPA3, we employed enhanced sampling techniques, including steered molecular dynamics (SMD) and conventional molecular dynamics (cMD). Additionally, we utilized self-organizing maps (SOM) and time-resolved force distribution analysis (TRFDA) methodologies. The Gromacs software was used for performing molecular dynamics simulations, and the AMBER FF14SB force field was applied to the protein.


Subject(s)
CCAAT-Enhancer-Binding Proteins , Molecular Dynamics Simulation , Protein Binding , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , CCAAT-Enhancer-Binding Proteins/chemistry , CCAAT-Enhancer-Binding Proteins/metabolism , Humans , Binding Sites
2.
Nature ; 629(8014): 1158-1164, 2024 May.
Article in English | MEDLINE | ID: mdl-38750355

ABSTRACT

Plant pattern-recognition receptors perceive microorganism-associated molecular patterns to activate immune signalling1,2. Activation of the pattern-recognition receptor kinase CERK1 is essential for immunity, but tight inhibition of receptor kinases in the absence of pathogen is crucial to prevent autoimmunity3,4. Here we find that the U-box ubiquitin E3 ligase OsCIE1 acts as a molecular brake to inhibit OsCERK1 in rice. During homeostasis, OsCIE1 ubiquitinates OsCERK1, reducing its kinase activity. In the presence of the microorganism-associated molecular pattern chitin, active OsCERK1 phosphorylates OsCIE1 and blocks its E3 ligase activity, thus releasing the brake and promoting immunity. Phosphorylation of a serine within the U-box of OsCIE1 prevents its interaction with E2 ubiquitin-conjugating enzymes and serves as a phosphorylation switch. This phosphorylation site is conserved in E3 ligases from plants to animals. Our work identifies a ligand-released brake that enables dynamic immune regulation.


Subject(s)
Oryza , Plant Immunity , Plant Proteins , Ubiquitin , Animals , Chitin/metabolism , Homeostasis , Ligands , Oryza/enzymology , Oryza/immunology , Oryza/metabolism , Oryza/microbiology , Phosphorylation , Plant Proteins/antagonists & inhibitors , Plant Proteins/immunology , Plant Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Phosphoserine/metabolism , Conserved Sequence
3.
Nat Commun ; 15(1): 3789, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710693

ABSTRACT

The CUL3-RING E3 ubiquitin ligases (CRL3s) play an essential role in response to extracellular nutrition and stress stimuli. The ubiquitin ligase function of CRL3s is activated through dimerization. However, how and why such a dimeric assembly is required for its ligase activity remains elusive. Here, we report the cryo-EM structure of the dimeric CRL3KLHL22 complex and reveal a conserved N-terminal motif in CUL3 that contributes to the dimerization assembly and the E3 ligase activity of CRL3KLHL22. We show that deletion of the CUL3 N-terminal motif impairs dimeric assembly and the E3 ligase activity of both CRL3KLHL22 and several other CRL3s. In addition, we found that the dynamics of dimeric assembly of CRL3KLHL22 generates a variable ubiquitination zone, potentially facilitating substrate recognition and ubiquitination. These findings demonstrate that a CUL3 N-terminal motif participates in the assembly process and provide insights into the assembly and activation of CRL3s.


Subject(s)
Amino Acid Motifs , Cryoelectron Microscopy , Cullin Proteins , Receptors, Interleukin-17 , Ubiquitin-Protein Ligases , Ubiquitination , Cullin Proteins/metabolism , Cullin Proteins/chemistry , Cullin Proteins/genetics , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , HEK293 Cells , Protein Multimerization , Conserved Sequence , Protein Binding , Models, Molecular
4.
FEBS Lett ; 598(9): 978-994, 2024 May.
Article in English | MEDLINE | ID: mdl-38575527

ABSTRACT

Patients with Skraban-Deardorff syndrome (SKDEAS), a neurodevelopmental syndrome associated with a spectrum of developmental and intellectual delays and disabilities, harbor diverse mutations in WDR26, encoding a subunit of the multiprotein CTLH E3 ubiquitin ligase complex. Structural studies revealed that homodimers of WDR26 bridge two core-CTLH E3 complexes to generate giant, hollow oval-shaped supramolecular CTLH E3 assemblies. Additionally, WDR26 mediates CTLH E3 complex binding to subunit YPEL5 and functions as substrate receptor for the transcriptional repressor HBP1. Here, we mapped SKDEAS-associated mutations on a WDR26 structural model and tested their functionality in complementation studies using genetically engineered human cells lacking CTLH E3 supramolecular assemblies. Despite the diversity of mutations, 15 of 16 tested mutants impaired at least one CTLH E3 complex function contributing to complex assembly and interactions, thus providing first mechanistic insights into SKDEAS pathology.


Subject(s)
Intellectual Disability , Mutation , Ubiquitin-Protein Ligases , Humans , Intellectual Disability/genetics , Intellectual Disability/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/chemistry , HEK293 Cells , Models, Molecular , Adaptor Proteins, Signal Transducing
5.
Nat Commun ; 15(1): 3531, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670961

ABSTRACT

E6AP dysfunction is associated with Angelman syndrome and Autism spectrum disorder. Additionally, the host E6AP is hijacked by the high-risk HPV E6 to aberrantly ubiquitinate the tumor suppressor p53, which is linked with development of multiple types of cancer, including most cervical cancers. Here we show that E6AP and the E6AP/E6 complex exist, respectively, as a monomer and a dimer of the E6AP/E6 protomer. The short α1-helix of E6AP transforms into a longer helical structure when in complex with E6. The extended α1-helices of the dimer intersect symmetrically and contribute to the dimerization. The two protomers sway around the crossed region of the two α1-helices to promote the attachment and detachment of substrates to the catalytic C-lobe of E6AP, thus facilitating ubiquitin transfer. These findings, complemented by mutagenesis analysis, suggest that the α1-helix, through conformational transformations, controls the transition between the inactive monomer and the active dimer of E6AP.


Subject(s)
Protein Multimerization , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , Humans , Ubiquitin/metabolism , Ubiquitin/chemistry , Ubiquitination , Models, Molecular , Crystallography, X-Ray , Oncogene Proteins, Viral/metabolism , Oncogene Proteins, Viral/chemistry , Oncogene Proteins, Viral/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Protein Binding , Protein Conformation, alpha-Helical
6.
Nat Commun ; 15(1): 3558, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670995

ABSTRACT

The E3 ligase-degron interaction determines the specificity of the ubiquitin‒proteasome system. We recently discovered that FEM1B, a substrate receptor of Cullin 2-RING ligase (CRL2), recognizes C-degrons containing a C-terminal proline. By solving several cryo-EM structures of CRL2FEM1B bound to different C-degrons, we elucidate the dimeric assembly of the complex. Furthermore, we reveal distinct dimerization states of unmodified and neddylated CRL2FEM1B to uncover the NEDD8-mediated activation mechanism of CRL2FEM1B. Our research also indicates that, FEM1B utilizes a bipartite mechanism to recognize both the C-terminal proline and an upstream aromatic residue within the substrate. These structural findings, complemented by in vitro ubiquitination and in vivo cell-based assays, demonstrate that CRL2FEM1B-mediated polyubiquitination and subsequent protein turnover depend on both FEM1B-degron interactions and the dimerization state of the E3 ligase complex. Overall, this study deepens our molecular understanding of how Cullin-RING E3 ligase substrate selection mediates protein turnover.


Subject(s)
Cryoelectron Microscopy , NEDD8 Protein , Receptors, Interleukin-17 , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/chemistry , NEDD8 Protein/metabolism , NEDD8 Protein/genetics , Proline/metabolism , Protein Multimerization , HEK293 Cells , Protein Binding , Substrate Specificity , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/chemistry , Models, Molecular , Cullin Proteins/metabolism , Cullin Proteins/chemistry , Cullin Proteins/genetics , Degrons
7.
Chembiochem ; 25(10): e202400184, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38573110

ABSTRACT

Genetic aberrations of the maternal UBE3A allele, which encodes the E3 ubiquitin ligase E6AP, are the cause of Angelman syndrome (AS), an imprinting disorder. In most cases, the maternal UBE3A allele is not expressed. Yet, approximately 10 percent of AS individuals harbor distinct point mutations in the maternal allele resulting in the expression of full-length E6AP variants that frequently display compromised ligase activity. In a high-throughput screen, we identified cyanocobalamin, a vitamin B12-derivative, and several alloxazine derivatives as activators of the AS-linked E6AP-F583S variant. Furthermore, we show by cross-linking coupled to mass spectrometry that cobalamins affect the structural dynamics of E6AP-F583S and apply limited proteolysis coupled to mass spectrometry to obtain information about the regions of E6AP that are involved in, or are affected by binding cobalamins and alloxazine derivatives. Our data suggest that dietary supplementation with vitamin B12 can be beneficial for AS individuals.


Subject(s)
Angelman Syndrome , Ubiquitin-Protein Ligases , Vitamin B 12 , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , Angelman Syndrome/genetics , Angelman Syndrome/drug therapy , Angelman Syndrome/metabolism , Humans , Allosteric Regulation/drug effects , Vitamin B 12/metabolism , Vitamin B 12/chemistry , Vitamin B 12/pharmacology
8.
Analyst ; 149(11): 3178-3185, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38639441

ABSTRACT

In this application of native mass spectrometry (nMS) to investigate complexes formed by molecular glues (MGs), we have demonstrated its efficiency in delineating stoichiometric rearrangements of E3 ligases that occur during targeted protein degradation (TPD). MGs stabilise interactions between an E3 ligase and a protein of interest (POI) targeted for degradation, and these ternary interactions are challenging to characterise. We have shown that nMS can unambiguously identify complexes formed between the CRBN : DDB1 E3 ligase and the POI GSPT1 upon the addition of lenalidomide, pomalidomide or thalidomide. Ternary complex formation was also identified involving the DCAF15 : DDA1 : DDB1 E3 ligase in the presence of MG (E7820 or indisulam) and POI RBM39. Moreover, we uncovered that the DCAF15 : DDA1 : DDB1 E3 ligase self-associates into dimers and trimers when analysed alone at low salt concentrations (100 mM ammonium acetate) which dissociate into single copies of the complex at higher salt concentrations (500 mM ammonium acetate), or upon the addition of MG and POI, forming a 1 : 1 : 1 ternary complex. This work demonstrates the strength of nMS in TPD research, reveals novel binding mechanisms of the DCAF15 E3 ligase, and its self-association into dimers and trimers at reduced salt concentration during structural analysis.


Subject(s)
Mass Spectrometry , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/chemistry , Mass Spectrometry/methods , Thalidomide/chemistry , Thalidomide/analogs & derivatives , Humans , Lenalidomide/chemistry , Protein Multimerization , Protein Binding
9.
Curr Opin Struct Biol ; 86: 102811, 2024 06.
Article in English | MEDLINE | ID: mdl-38598983

ABSTRACT

Molecular glue (MG) degraders are monovalent small molecule compounds that co-opt E3 ubiquitin ligases to target neo-substrates for proteasomal degradation. Here, we provide a concise review of recent advances in rational MG discovery, which are categorized into two major strategies, ligand modification and de novo discovery. We also highlight the structural mechanisms underlying the formation of MG-enabled ternary complexes and their thermodynamic properties. Finally, we summarize the broader category of proximity inducers including MGs, proteolysis-targeting chimeras (PROTACs), peptides, and viral proteins. MGs are specified as a unique class of proximity inducers with chemical simplicity and a requirement of pre-existing weak protein-protein interactions. We propose that leveraging the weak basal interaction provides a starting point to prospectively develop MGs to degrade high-value therapeutic targets.


Subject(s)
Drug Discovery , Proteolysis , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/chemistry , Ligands , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/metabolism , Protein Binding , Thermodynamics
10.
J Chem Inf Model ; 64(8): 3034-3046, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38504115

ABSTRACT

Proteolysis-targeting chimeras (PROTACs) that engage two biological targets at once are a promising technology in degrading clinically relevant protein targets. Since factors that influence the biological activities of PROTACs are more complex than those of a small molecule drug, we explored a combination of computational chemistry and deep learning strategies to forecast PROTAC activity and enable automated design. A new method named PROTACable was developed for the de novo design of PROTACs, which includes a robust 3-D modeling workflow to model PROTAC ternary complexes using a library of E3 ligase and linker and an SE(3)-equivariant graph transformer network to predict the activity of newly designed PROTACs. PROTACable is available at https://github.com/giaguaro/PROTACable/.


Subject(s)
Deep Learning , Drug Design , Models, Molecular , Proteolysis , Proteolysis Targeting Chimera , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/chemistry
11.
Science ; 383(6688): eadk4422, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38484051

ABSTRACT

Conditional protein degradation tags (degrons) are usually >100 amino acids long or are triggered by small molecules with substantial off-target effects, thwarting their use as specific modulators of endogenous protein levels. We developed a phage-assisted continuous evolution platform for molecular glue complexes (MG-PACE) and evolved a 36-amino acid zinc finger (ZF) degron (SD40) that binds the ubiquitin ligase substrate receptor cereblon in complex with PT-179, an orthogonal thalidomide derivative. Endogenous proteins tagged in-frame with SD40 using prime editing are degraded by otherwise inert PT-179. Cryo-electron microscopy structures of SD40 in complex with ligand-bound cereblon revealed mechanistic insights into the molecular basis of SD40's activity and specificity. Our efforts establish a system for continuous evolution of molecular glue complexes and provide ZF tags that overcome shortcomings associated with existing degrons.


Subject(s)
Degrons , Directed Molecular Evolution , Proteolysis , Ubiquitin-Protein Ligases , Zinc Fingers , Cryoelectron Microscopy , Thalidomide/chemistry , Ubiquitin-Protein Ligases/chemistry , Ubiquitination , Degrons/genetics , Zinc Fingers/genetics , Proteolysis Targeting Chimera , Directed Molecular Evolution/methods , Humans
12.
Nature ; 627(8005): 873-879, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418882

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) senses aberrant DNA during infection, cancer and inflammatory disease, and initiates potent innate immune responses through the synthesis of 2'3'-cyclic GMP-AMP (cGAMP)1-7. The indiscriminate activity of cGAS towards DNA demands tight regulatory mechanisms that are necessary to maintain cell and tissue homeostasis under normal conditions. Inside the cell nucleus, anchoring to nucleosomes and competition with chromatin architectural proteins jointly prohibit cGAS activation by genomic DNA8-15. However, the fate of nuclear cGAS and its role in cell physiology remains unclear. Here we show that the ubiquitin proteasomal system (UPS) degrades nuclear cGAS in cycling cells. We identify SPSB3 as the cGAS-targeting substrate receptor that associates with the cullin-RING ubiquitin ligase 5 (CRL5) complex to ligate ubiquitin onto nuclear cGAS. A cryo-electron microscopy structure of nucleosome-bound cGAS in a complex with SPSB3 reveals a highly conserved Asn-Asn (NN) minimal degron motif at the C terminus of cGAS that directs SPSB3 recruitment, ubiquitylation and cGAS protein stability. Interference with SPSB3-regulated nuclear cGAS degradation primes cells for type I interferon signalling, conferring heightened protection against infection by DNA viruses. Our research defines protein degradation as a determinant of cGAS regulation in the nucleus and provides structural insights into an element of cGAS that is amenable to therapeutic exploitation.


Subject(s)
Nuclear Proteins , Nucleosomes , Nucleotidyltransferases , Proteolysis , Ubiquitin-Protein Ligases , Animals , Humans , Mice , Cell Nucleus/metabolism , Cryoelectron Microscopy , Degrons , DNA Virus Infections/immunology , DNA Viruses/immunology , DNA Viruses/metabolism , DNA, Viral/immunology , DNA, Viral/metabolism , Immunity, Innate , Innate Immunity Recognition , Interferon Type I/immunology , Nuclear Proteins/metabolism , Nucleosomes/chemistry , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/ultrastructure , Proteasome Endopeptidase Complex/metabolism , Protein Stability , Substrate Specificity , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/ultrastructure , Ubiquitination
13.
Nature ; 627(8003): 445-452, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383785

ABSTRACT

Reversible modification of target proteins by ubiquitin and ubiquitin-like proteins (UBLs) is widely used by eukaryotic cells to control protein fate and cell behaviour1. UFM1 is a UBL that predominantly modifies a single lysine residue on a single ribosomal protein, uL24 (also called RPL26), on ribosomes at the cytoplasmic surface of the endoplasmic reticulum (ER)2,3. UFM1 conjugation (UFMylation) facilitates the rescue of 60S ribosomal subunits (60S) that are released after ribosome-associated quality-control-mediated splitting of ribosomes that stall during co-translational translocation of secretory proteins into the ER3,4. Neither the molecular mechanism by which the UFMylation machinery achieves such precise target selection nor how this ribosomal modification promotes 60S rescue is known. Here we show that ribosome UFMylation in vivo occurs on free 60S and we present sequential cryo-electron microscopy snapshots of the heterotrimeric UFM1 E3 ligase (E3(UFM1)) engaging its substrate uL24. E3(UFM1) binds the L1 stalk, empty transfer RNA-binding sites and the peptidyl transferase centre through carboxy-terminal domains of UFL1, which results in uL24 modification more than 150 Å away. After catalysing UFM1 transfer, E3(UFM1) remains stably bound to its product, UFMylated 60S, forming a C-shaped clamp that extends all the way around the 60S from the transfer RNA-binding sites to the polypeptide tunnel exit. Our structural and biochemical analyses suggest a role for E3(UFM1) in post-termination release and recycling of the large ribosomal subunit from the ER membrane.


Subject(s)
Endoplasmic Reticulum , Protein Processing, Post-Translational , Ribosome Subunits, Large, Eukaryotic , Ubiquitin-Protein Ligases , Binding Sites , Biocatalysis , Cryoelectron Microscopy , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Intracellular Membranes/chemistry , Intracellular Membranes/metabolism , Intracellular Membranes/ultrastructure , Peptidyl Transferases/chemistry , Peptidyl Transferases/metabolism , Peptidyl Transferases/ultrastructure , Protein Binding , Ribosomal Proteins/chemistry , Ribosomal Proteins/metabolism , Ribosomal Proteins/ultrastructure , Ribosome Subunits, Large, Eukaryotic/chemistry , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosome Subunits, Large, Eukaryotic/ultrastructure , RNA, Transfer/metabolism , Substrate Specificity , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/ultrastructure
14.
Nature ; 627(8003): 437-444, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383789

ABSTRACT

Stalled ribosomes at the endoplasmic reticulum (ER) are covalently modified with the ubiquitin-like protein UFM1 on the 60S ribosomal subunit protein RPL26 (also known as uL24)1,2. This modification, which is known as UFMylation, is orchestrated by the UFM1 ribosome E3 ligase (UREL) complex, comprising UFL1, UFBP1 and CDK5RAP3 (ref. 3). However, the catalytic mechanism of UREL and the functional consequences of UFMylation are unclear. Here we present cryo-electron microscopy structures of UREL bound to 60S ribosomes, revealing the basis of its substrate specificity. UREL wraps around the 60S subunit to form a C-shaped clamp architecture that blocks the tRNA-binding sites at one end, and the peptide exit tunnel at the other. A UFL1 loop inserts into and remodels the peptidyl transferase centre. These features of UREL suggest a crucial function for UFMylation in the release and recycling of stalled or terminated ribosomes from the ER membrane. In the absence of functional UREL, 60S-SEC61 translocon complexes accumulate at the ER membrane, demonstrating that UFMylation is necessary for releasing SEC61 from 60S subunits. Notably, this release is facilitated by a functional switch of UREL from a 'writer' to a 'reader' module that recognizes its product-UFMylated 60S ribosomes. Collectively, we identify a fundamental role for UREL in dissociating 60S subunits from the SEC61 translocon and the basis for UFMylation in regulating protein homeostasis at the ER.


Subject(s)
Endoplasmic Reticulum , Protein Processing, Post-Translational , Ribosome Subunits, Large, Eukaryotic , Ubiquitin-Protein Ligases , Adaptor Proteins, Signal Transducing/metabolism , Binding Sites , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/ultrastructure , Cryoelectron Microscopy , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Homeostasis , Intracellular Membranes/metabolism , Peptidyl Transferases/chemistry , Peptidyl Transferases/metabolism , Peptidyl Transferases/ultrastructure , Ribosomal Proteins/chemistry , Ribosomal Proteins/metabolism , Ribosomal Proteins/ultrastructure , RNA, Transfer/metabolism , SEC Translocation Channels/chemistry , SEC Translocation Channels/metabolism , SEC Translocation Channels/ultrastructure , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/ultrastructure , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/ultrastructure , Ribosome Subunits, Large, Eukaryotic/chemistry , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosome Subunits, Large, Eukaryotic/ultrastructure
15.
J Biochem ; 175(5): 495-505, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38378744

ABSTRACT

Mysterin is a large intracellular protein harboring a RING finger ubiquitin ligase domain and is also referred to as RING finger protein 213 (RNF213). The author performed the first molecular cloning of the mysterin gene as the final step in genetic exploration of cerebrovascular moyamoya disease (MMD) and initiated the next round of exploration to understand its molecular and cellular functions. Although much remains unknown, accumulating findings suggest that mysterin functions in cells by targeting massive intracellular structures, such as lipid droplets (LDs) and various invasive pathogens. In the latter case, mysterin appears to directly surround and ubiquitylate the surface of pathogens and stimulate cell-autonomous antimicrobial reactions, such as xenophagy and inflammatory response. To date, multiple mutations causing MMD have been identified within and near the RING finger domain of mysterin; however, their functional relevance remains largely unknown. Besides the RING finger, mysterin harbors a dynein-like ATPase core and an RZ finger, another ubiquitin ligase domain unique to mysterin, while functional exploration of these domains has also just commenced. In this review, the author attempts to summarize the core findings regarding the molecular structure and function of the mysterin protein, with an emphasis on the perspective of MMD research.


Subject(s)
Adenosine Triphosphatases , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/chemistry , Animals , Moyamoya Disease/metabolism , Moyamoya Disease/genetics
16.
Proteins ; 92(7): 819-829, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38337153

ABSTRACT

Proteolysis Targeting Chimeras (PROTACs) are an emerging therapeutic modality and chemical biology tools for Targeted Protein Degradation (TPD). PROTACs contain a ligand targeting the protein of interest, a ligand recruiting an E3 ligase and a linker connecting these two ligands. There are over 600 E3 ligases known so far, but only a handful have been exploited for TPD applications. A key reason for this is the scarcity of ligands binding various E3 ligases and the paucity of structural data available, which complicates ligand design across the family. In this study, we aim to progress PROTAC discovery by proposing a shortlist of E3 ligases that can be prioritized for covalent targeting by performing systematic structural ligandability analysis on a chemoproteomic dataset of potentially reactive cysteines across hundreds of E3 ligases. One of the goals of this study is to apply AlphaFold (AF) models for ligandability evaluations, as for a vast majority of these ligases an experimental structure is not available in the protein data bank (PDB). Using a combination of pocket features, AF model quality and additional aspects, we propose a shortlist of E3 ligases and corresponding cysteines that can be prioritized to potentially discover covalent ligands and expand the PROTAC toolbox.


Subject(s)
Cysteine , Protein Binding , Proteolysis , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ligands , Cysteine/chemistry , Cysteine/metabolism , Humans , Models, Molecular , Binding Sites , Databases, Protein
17.
Proteins ; 92(7): 830-841, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38372168

ABSTRACT

Infected cell protein 0 (ICP0) is an immediate-early regulatory protein of herpes simplex virus 1 (HSV-1) that possesses E3 ubiquitin ligase activity. ICP0 transactivates viral genes, in part, through its C-terminal dimer domain (residues 555-767). Deletion of this dimer domain results in reduced viral gene expression, lytic infection, and reactivation from latency. Since ICP0's dimer domain is associated with its transactivation activity and efficient viral replication, we wanted to determine the structure of this specific domain. The C-terminus of ICP0 was purified from bacteria and analyzed by X-ray crystallography to solve its structure. Each subunit or monomer in the ICP0 dimer is composed of nine ß-strands and two α-helices. Interestingly, two adjacent ß-strands from one monomer "reach" into the adjacent subunit during dimer formation, generating two ß-barrel-like structures. Additionally, crystallographic analyses indicate a tetramer structure is formed from two ß-strands of each dimer, creating a "stacking" of the ß-barrels. The structural protein database searches indicate the fold or structure adopted by the ICP0 dimer is novel. The dimer is held together by an extensive network of hydrogen bonds. Computational analyses reveal that ICP0 can either form a dimer or bind to SUMO1 via its C-terminal SUMO-interacting motifs but not both. Understanding the structure of the dimer domain will provide insights into the activities of ICP0 and, ultimately, the HSV-1 life cycle.


Subject(s)
Herpesvirus 1, Human , Immediate-Early Proteins , Protein Multimerization , Ubiquitin-Protein Ligases , Immediate-Early Proteins/chemistry , Immediate-Early Proteins/metabolism , Immediate-Early Proteins/genetics , Crystallography, X-Ray , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Models, Molecular , Humans , Protein Domains , Protein Folding , Amino Acid Sequence , Protein Conformation, beta-Strand
18.
Mol Biotechnol ; 66(5): 1095-1115, 2024 May.
Article in English | MEDLINE | ID: mdl-38172369

ABSTRACT

Lysine-based post-translational modification (PTM) such as acylation, acetylation, deamination, methylation, SUMOylation, and ubiquitination has proven to be a major regulator of gene expression, chromatin structure, protein stability, protein-protein interaction, protein degradation, and cellular localization. However, besides all the PTMs, ubiquitination stands as the second most common PTM after phosphorylation that is involved in the etiology of neurodegenerative diseases (NDDs) namely, Alzheimer's disease (AD) and Parkinson's disease (PD). NDDs are characterized by the accumulation of misfolded protein aggregates in the brain that lead to disease-related gene mutation and irregular protein homeostasis. The ubiquitin-proteasome system (UPS) is in charge of degrading these misfolded proteins, which involve an interplay of E1, E2, E3, and deubiquitinase enzymes. Impaired UPS has been commonly observed in NDDs and E3 ligases are the key members of the UPS, thus, dysfunction of the same can accelerate the neurodegeneration process. Therefore, the aim of this study is firstly, to find E3 ligases that are common in both AD and PD through data mining. Secondly, to study the impact of mutation on its structure and function. The study deciphered 74 E3 ligases that were common in both AD and PD. Later, 10 hub genes were calculated of which protein-protein interaction, pathway enrichment, lysine site prediction, domain, and motif analysis were performed. The results predicted BRCA1, PML, and TRIM33 as the top three putative lysine-modified E3 ligases involved in AD and PD pathogenesis. However, based on structural characterization, BRCA1 was taken further to study RING domain mutation that inferred K32Y, K32L, K32C, K45V, K45Y, and K45G as potential mutants that alter the structural and functional ability of BRCA1 to interact with Ube2k, E2-conjugating enzyme. The most probable mutant observed after molecular dynamics simulation of 50 ns is K32L. Therefore, our study concludes BRCA1, a potential E3 ligase common in AD and PD, and RING domain mutation at sites K32 and K45 possibly disturbs its interaction with its E2, Ube2k.


Subject(s)
Alzheimer Disease , BRCA1 Protein , Mutation , Parkinson Disease , Ubiquitin-Conjugating Enzymes , Humans , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , BRCA1 Protein/chemistry , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/chemistry , Parkinson Disease/genetics , Parkinson Disease/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/chemistry , Molecular Dynamics Simulation , Protein Domains , Ubiquitination , Protein Binding
19.
J Mol Biol ; 436(4): 168434, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38182103

ABSTRACT

Certain members of the ADP-ribosyltransferase superfamily (ARTD or PARP enzymes) catalyse ADP-ribosylation in response to cellular stress, DNA damage and viral infection and are upregulated in various tumours. PARP9, its binding partner DTX3L and PARP14 protein levels are significantly correlated in head and neck squamous cell carcinoma (HNSCC) and other tumour types though a mechanism where PARP9/DTX3L regulates PARP14 post-transcriptionally. Depleting PARP9, DTX3L or PARP14 expression in HNSCC or HeLa cell lines decreases cell survival through a reduction of proliferation and an increase in apoptosis. A partial rescue of survival was achieved by expressing a PARP14 truncation containing a predicted eukaryotic type I KH domain. KH-like domains were also found in PARP9 and in DTX3L and contributed to protein-protein interactions between PARP9-DTX3L and PARP14-DTX3L. Homodimerization of DTX3L was also coordinated by a KH-like domain and was disrupted by site-specific mutation. Although, cell survival promoted by PARP14 did not require ADP-ribosyltransferase activity, interaction of DTX3L in vitro suppressed PARP14 auto-ADP-ribosylation and promoted trans-ADP-ribosylation of PARP9 and DTX3L. In summary, we characterised PARP9-DTX3L-PARP14 interactions important to pro-survival signalling in HNSCC cells, albeit in PARP14 catalytically independent fashion.


Subject(s)
Head and Neck Neoplasms , Neoplasm Proteins , Poly(ADP-ribose) Polymerases , Squamous Cell Carcinoma of Head and Neck , Ubiquitin-Protein Ligases , Humans , Cell Survival , Head and Neck Neoplasms/enzymology , Head and Neck Neoplasms/pathology , HeLa Cells , Neoplasm Proteins/chemistry , Poly(ADP-ribose) Polymerases/chemistry , Squamous Cell Carcinoma of Head and Neck/enzymology , Squamous Cell Carcinoma of Head and Neck/pathology , Ubiquitin-Protein Ligases/chemistry , Protein Domains
20.
Chem Pharm Bull (Tokyo) ; 72(2): 161-165, 2024.
Article in English | MEDLINE | ID: mdl-38296558

ABSTRACT

YM-1, an allosteric modulator of heat-shock 70 kDa protein (Hsp70), inhibits cancer cell growth, but the mechanism is not yet fully understood. Here, we show that YM-1 induces the degradation of bromodomain containing 4 (BRD4), which mediates oncogene expression. Overall, our results indicate that YM-1 promotes the binding of HSP70 to BRD4, and this in turn promotes the ubiquitination of BRD4 by C-terminus of Hsc70-interacting protein (CHIP), an E3 ubiquitin ligase working in concert with Hsp70, leading to proteasomal degradation of BRD4. This YM-1-induced decrease of BRD4 would contribute at least in part to the inhibition of cancer cell growth.


Subject(s)
Doxorubicin/analogs & derivatives , Heat-Shock Proteins , Nuclear Proteins , Heat-Shock Proteins/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Ubiquitination , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...