Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Cycle ; 19(1): 124-141, 2020 01.
Article in English | MEDLINE | ID: mdl-31775559

ABSTRACT

Cockayne syndrome group B (CSB) protein participates in transcription-coupled nucleotide excision repair. The stability of CSB is known to be regulated by ubiquitin-specific protease 7 (USP7). Yet, whether USP7 acts as a deubiquitinating enzyme for CSB is not clear. Here, we demonstrate that USP7 deubiquitinates CSB to maintain its levels after ultraviolet (UV)-induced DNA damage. While both CSB and UV-stimulated scaffold protein A (UVSSA) exhibit a biphasic decrease and recovery upon UV irradiation, only CSB recovery depends on USP7, which physically interacts with and deubiquitinates CSB. Meanwhile, CSB overexpression stabilizes UVSSA, but decrease UVSSA's presence in nuclease-releasable/soluble chromatin, and increase the presence of ubiquitinated UVSSA in insoluble chromatin alongside CSB-ubiquitin conjugates. Remarkably, CSB overexpression also decreases CSB association with USP7 and UVSSA in soluble chromatin. UVSSA exists in several ubiquitinated forms, of which mono-ubiquitinated form and other ubiquitinated UVSSA forms are detectable upon 6xHistidine tag-based purification. The ubiquitinated UVSSA forms, however, are not cleavable by USP7 in vitro. Furthermore, USP7 disruption does not affect RNA synthesis but decreases the recovery of RNA synthesis following UV exposure. These results reveal a role of USP7 as a CSB deubiquitinating enzyme for fine-tuning the process of TC-NER in human cells.


Subject(s)
Carrier Proteins/metabolism , DNA Damage , DNA Helicases/metabolism , DNA Repair Enzymes/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitination , Ultraviolet Rays , Chromatin/metabolism , HCT116 Cells , HeLa Cells , Humans , Polyubiquitin/metabolism , Protein Binding , RNA/biosynthesis , Ubiquitin-Specific Peptidase 7/deficiency , Valosin Containing Protein/metabolism
2.
J Leukoc Biol ; 104(6): 1105-1115, 2018 12.
Article in English | MEDLINE | ID: mdl-30024656

ABSTRACT

The treatment of multiple myeloma (MM) with bortezomib (BTZ) is promising; however, the emergence of resistance is challenging in the clinical treatment. Thus, a novel targeted treatment or exploring the mechanism underlying BTZ resistance is an urgent requisite. The current data showed that high expression of USP7 in myeloma was a predictor of short overall survival and poor outcome. USP7 knockout significantly suppressed the colony formation, inhibited the proliferation of BTZ-resistant MM cells even in the presence of growth factors, and overcame BTZ resistance. The knockout markedly inhibited the tumor growth and prolonged the survival of mice bearing BTZ-resistant MM cells. Mechanistically, USP7 knockout remarkably increased the sensitivity to BTZ by stabilizing ΙκΒα and blocking the NF-κB pathway. Not surprisingly, when IκBα was knocked down by siRNA transfection, the MM cells restored the BTZ resistance. Importantly, usage of USP7 inhibitors also suppressed the activation of NF-κB and combination with BTZ triggered the synergistic antitumor activity in BTZ-resistant MM cells. Taken together, this study provides the rationale for clinical protocols evaluating USP7 inhibition, alone and in combination with BTZ, to overcome BTZ resistance and improve the patient outcome in MM.


Subject(s)
Bortezomib/pharmacology , Drug Resistance, Neoplasm/physiology , Multiple Myeloma/drug therapy , NF-kappa B/physiology , Neoplasm Proteins/antagonists & inhibitors , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Bortezomib/administration & dosage , Cell Cycle/drug effects , Cell Line, Tumor , Cytokines/pharmacology , Gene Editing , Gene Expression Regulation, Neoplastic , Histone Deacetylase Inhibitors/administration & dosage , Humans , Mice , Multiple Myeloma/enzymology , Multiple Myeloma/mortality , Multiple Myeloma/pathology , NF-KappaB Inhibitor alpha/physiology , Neoplasm Proteins/deficiency , Neoplasm Proteins/genetics , Neoplasm Proteins/physiology , Prognosis , Protease Inhibitors/administration & dosage , RNA Interference , RNA, Small Interfering/pharmacology , Signal Transduction/physiology , Tumor Stem Cell Assay , Ubiquitin-Specific Peptidase 7/deficiency , Ubiquitin-Specific Peptidase 7/genetics , Ubiquitin-Specific Peptidase 7/physiology , Xenograft Model Antitumor Assays
3.
Nature ; 550(7677): 534-538, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29045385

ABSTRACT

The ubiquitin system regulates essential cellular processes in eukaryotes. Ubiquitin is ligated to substrate proteins as monomers or chains and the topology of ubiquitin modifications regulates substrate interactions with specific proteins. Thus ubiquitination directs a variety of substrate fates including proteasomal degradation. Deubiquitinase enzymes cleave ubiquitin from substrates and are implicated in disease; for example, ubiquitin-specific protease-7 (USP7) regulates stability of the p53 tumour suppressor and other proteins critical for tumour cell survival. However, developing selective deubiquitinase inhibitors has been challenging and no co-crystal structures have been solved with small-molecule inhibitors. Here, using nuclear magnetic resonance-based screening and structure-based design, we describe the development of selective USP7 inhibitors GNE-6640 and GNE-6776. These compounds induce tumour cell death and enhance cytotoxicity with chemotherapeutic agents and targeted compounds, including PIM kinase inhibitors. Structural studies reveal that GNE-6640 and GNE-6776 non-covalently target USP7 12 Å distant from the catalytic cysteine. The compounds attenuate ubiquitin binding and thus inhibit USP7 deubiquitinase activity. GNE-6640 and GNE-6776 interact with acidic residues that mediate hydrogen-bond interactions with the ubiquitin Lys48 side chain, suggesting that USP7 preferentially interacts with and cleaves ubiquitin moieties that have free Lys48 side chains. We investigated this idea by engineering di-ubiquitin chains containing differential proximal and distal isotopic labels and measuring USP7 binding by nuclear magnetic resonance. This preferential binding protracted the depolymerization kinetics of Lys48-linked ubiquitin chains relative to Lys63-linked chains. In summary, engineering compounds that inhibit USP7 activity by attenuating ubiquitin binding suggests opportunities for developing other deubiquitinase inhibitors and may be a strategy more broadly applicable to inhibiting proteins that require ubiquitin binding for full functional activity.


Subject(s)
Aminopyridines/chemistry , Aminopyridines/pharmacology , Indazoles/chemistry , Indazoles/pharmacology , Phenols/chemistry , Phenols/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Ubiquitin/metabolism , Animals , Binding, Competitive , Cell Line, Tumor , Drug Synergism , Female , Humans , Mice , Mice, SCID , Models, Molecular , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/pathology , Protein Binding , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Substrate Specificity , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin/chemistry , Ubiquitin-Specific Peptidase 7/chemistry , Ubiquitin-Specific Peptidase 7/deficiency , Ubiquitin-Specific Peptidase 7/metabolism
4.
Int J Biochem Cell Biol ; 79: 209-221, 2016 10.
Article in English | MEDLINE | ID: mdl-27590858

ABSTRACT

The Ki-67 antigen (Ki-67) is the most reliable immunohistochemical marker for evaluation of cell proliferation in non-small cell lung cancer. However, the mechanisms underlying the regulation of protein levels of Ki-67 in non-small cell lung cancer have remained elusive. In this study, we found that Ki-67 and ubiquitin-specific processing protease 7 (USP7) protein were highly expressed in the nucleus of non-small cell lung cancer cells. Furthermore, statistical analysis uncovered the existence of a strong correlation between Ki-67 and USP7 levels. We could also show that the protein levels of Ki-67 in non-small cell lung cancer cells significantly decreased after treatment with P22077, a selective chemical inhibitor of USP7, while the Ki-67 mRNA levels were unperturbed. Similar results were obtained by knocking down USP7 using short hairpin RNA (shRNA) in lung cancer cells. Interestingly, we noticed that ubiquitination levels of Ki-67 increased dramatically in USP7-silenced cells. The tests in vitro and vivo showed a significant delay in tumor cell growth upon knockdown of USP7. Additionally, drug sensitivity tests indicated that USP7-silenced A549 cells had enhanced sensitivity to paclitaxel and docetaxel, while there was no significant change in sensitivity toward carboplatin and cisplatin. Taken together, these data strongly suggest that the overexpression of USP7 might promote cell proliferation by deubiquitinating Ki-67 protein, thereby maintaining its high levels in the non-small cell lung cancer. Our study also hints potential for the development of deubiquitinase-based therapies, especially those targeting USP7 to improve the condition of patients diagnosed with non-small cell lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Ki-67 Antigen/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Ubiquitin-Specific Peptidase 7/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic , Cytoprotection , Female , Gene Knockdown Techniques , Humans , Lung Neoplasms/genetics , Male , Mice , Middle Aged , Protein Stability , Ubiquitin-Specific Peptidase 7/deficiency , Ubiquitin-Specific Peptidase 7/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...