Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theranostics ; 10(23): 10769-10790, 2020.
Article in English | MEDLINE | ID: mdl-32929379

ABSTRACT

Rationale: A number of guanine nucleotide exchange factors (GEFs) including epithelial cell transforming factor ECT2 are believed to drive carcinogenesis through activating distinct oncogenic GTPases. Yet, whether GEF-independent activity of ECT2 also plays a role in tumorigenesis remains unclear. Methods: Immunohistochemical (IHC) staining, colony formation and xenograft assays were used to examine the role of ECT2 in breast carcinogenesis. Co-immunoprecipitation, immunofluorescent stainings, in vivo deubiquitination and in vitro deubiquitination experiments were performed to examine the physical and functional interaction between ECT2 and ubiquitin-specific protease USP7. High-throughput RNA sequencing, quantitative reverse transcription-PCR and Western blotting were employed to investigate the biological significance of the interplay between ECT2 and USP7. Results: We report that ECT2 plays a tumor-promoting role in breast cancer, and GEF activity-deficient ECT2 is able to alleviate ECT2 depletion associated growth defects in breast cancer cells. Mechanistically, we demonstrated that ECT2 physically interacts with ubiquitin-specific protease USP7 and functionally facilitates USP7 intermolecular self-association, -deubiquitination and -stabilization in a GEF activity-independent manner. USP7 in turn, deubiquitinates and stabilizes ECT2, resulting in a feedforward regulatory circuit that ultimately sustains the expression of oncogenic protein MDM2. Conclusion: Our study uncovers a GEF-independent role of ECT2 in promoting survival of breast cancer cells, provides a molecular insight for the reciprocal regulation of ECT2 and USP7, and supports the pursuit of ECT2/USP7 as potential targets for breast cancer intervention.


Subject(s)
Breast Neoplasms/genetics , Carcinogenesis/genetics , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins/metabolism , Ubiquitin-Specific Peptidase 7/metabolism , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/genetics , Enzyme Assays , Feedback, Physiological , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Gene Knockout Techniques , HEK293 Cells , Humans , Mice , Protein Binding/genetics , Protein Stability , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/isolation & purification , RNA-Seq , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Ubiquitin-Specific Peptidase 7/genetics , Ubiquitin-Specific Peptidase 7/isolation & purification , Ubiquitination , Xenograft Model Antitumor Assays
2.
Nat Commun ; 10(1): 231, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30651545

ABSTRACT

USP7 is a highly abundant deubiquitinating enzyme (DUB), involved in cellular processes including DNA damage response and apoptosis. USP7 has an unusual catalytic mechanism, where the low intrinsic activity of the catalytic domain (CD) increases when the C-terminal Ubl domains (Ubl45) fold onto the CD, allowing binding of the activating C-terminal tail near the catalytic site. Here we delineate how the target protein promotes the activation of USP7. Using NMR analysis and biochemistry we describe the order of activation steps, showing that ubiquitin binding is an instrumental step in USP7 activation. Using chemically synthesised p53-peptides we also demonstrate how the correct ubiquitinated substrate increases catalytic activity. We then used transient reaction kinetic modelling to define how the USP7 multistep mechanism is driven by target recognition. Our data show how this pleiotropic DUB can gain specificity for its cellular targets.


Subject(s)
Protein Processing, Post-Translational , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin/metabolism , Carbon Isotopes/chemistry , Catalytic Domain/genetics , Enzyme Assays/methods , Kinetics , Models, Chemical , Mutagenesis, Site-Directed , Nitrogen Isotopes/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Peptides/chemistry , Peptides/metabolism , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Substrate Specificity , Surface Plasmon Resonance , Tumor Suppressor Protein p53/chemistry , Ubiquitin/chemistry , Ubiquitin-Specific Peptidase 7/chemistry , Ubiquitin-Specific Peptidase 7/genetics , Ubiquitin-Specific Peptidase 7/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...