Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.678
Filter
1.
Commun Biol ; 7(1): 644, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802699

ABSTRACT

The post-translational modification of proteins by ubiquitin-like modifiers (UbLs), such as SUMO, ubiquitin, and Nedd8, regulates a vast array of cellular processes. Dedicated UbL deconjugating proteases families reverse these modifications. During bacterial infection, effector proteins, including deconjugating proteases, are released to disrupt host cell defenses and promote bacterial survival. NopD, an effector protein from rhizobia involved in legume nodule symbiosis, exhibits deSUMOylation activity and, unexpectedly, also deubiquitination and deNeddylation activities. Here, we present two crystal structures of Bradyrhizobium (sp. XS1150) NopD complexed with either Arabidopsis SUMO2 or ubiquitin at 1.50 Å and 1.94 Å resolution, respectively. Despite their low sequence similarity, SUMO and ubiquitin bind to a similar NopD interface, employing a unique loop insertion in the NopD sequence. In vitro binding and activity assays reveal specific residues that distinguish between deubiquitination and deSUMOylation. These unique multifaceted deconjugating activities against SUMO, ubiquitin, and Nedd8 exemplify an optimized bacterial protease that disrupts distinct UbL post-translational modifications during host cell infection.


Subject(s)
Bacterial Proteins , Bradyrhizobium , Ubiquitin , Bradyrhizobium/metabolism , Bradyrhizobium/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Ubiquitin/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Arabidopsis/microbiology , Arabidopsis/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Crystallography, X-Ray , Protein Processing, Post-Translational , Ubiquitins/metabolism , Ubiquitins/genetics , Protein Binding
2.
PLoS Pathog ; 20(5): e1012230, 2024 May.
Article in English | MEDLINE | ID: mdl-38776321

ABSTRACT

While macrophage is one of the major type I interferon (IFN-I) producers in multiple tissues during viral infections, it also serves as an important target cell for many RNA viruses. However, the regulatory mechanism for the IFN-I response of macrophages to respond to a viral challenge is not fully understood. Here we report ADAP, an immune adaptor protein, is indispensable for the induction of the IFN-I response of macrophages to RNA virus infections via an inhibition of the conjugation of ubiquitin-like ISG15 (ISGylation) to RIG-I. Loss of ADAP increases RNA virus replication in macrophages, accompanied with a decrease in LPS-induced IFN-ß and ISG15 mRNA expression and an impairment in the RNA virus-induced phosphorylation of IRF3 and TBK1. Moreover, using Adap-/- mice, we show ADAP deficiency strongly increases the susceptibility of macrophages to RNA-virus infection in vivo. Mechanically, ADAP selectively interacts and functionally cooperates with RIG-I but not MDA5 in the activation of IFN-ß transcription. Loss of ADAP results in an enhancement of ISGylation of RIG-I, whereas overexpression of ADAP exhibits the opposite effect in vitro, indicating ADAP is detrimental to the RNA virus-induced ISGylation of RIG-I. Together, our data demonstrate a novel antagonistic activity of ADAP in the cell-intrinsic control of RIG-I ISGylation, which is indispensable for initiating and sustaining the IFN-I response of macrophages to RNA virus infections and replication.


Subject(s)
Adaptor Proteins, Signal Transducing , DEAD Box Protein 58 , Interferon Type I , Macrophages , Mice, Knockout , RNA Virus Infections , Ubiquitins , Animals , Macrophages/virology , Macrophages/metabolism , Macrophages/immunology , Mice , RNA Virus Infections/immunology , RNA Virus Infections/metabolism , Ubiquitins/metabolism , Ubiquitins/genetics , DEAD Box Protein 58/metabolism , Interferon Type I/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cytokines/metabolism , Mice, Inbred C57BL , Humans , Receptors, Immunologic/metabolism , Interferon-beta/metabolism , RNA Viruses/immunology , Interferon Regulatory Factor-3/metabolism
3.
Physiol Plant ; 176(2): e14240, 2024.
Article in English | MEDLINE | ID: mdl-38561015

ABSTRACT

Under stress conditions, plants modulate their internal states and initiate various defence mechanisms to survive. The ubiquitin-proteasome system is one of the critical modules in these mechanisms, and Plant U-Box proteins play an important role in this process as E3 ubiquitin ligases. Here, we isolated the Plant U-box 24 gene CaPUB24 (Capsicum annuum Plant U-Box 24) from pepper and characterized its functions in response to drought stress. We found that, compared to the other CaPUBs in the same group, the expression of CaPUB24 was significantly induced by drought stress. We also found that CaPUB24 was localized to the nucleus and cytoplasm and had E3 ubiquitin ligase activity. To investigate the biological role of CaPUB24 in response to drought stress further, we generated CaPUB24-silenced pepper plants and CaPUB24-overexpressing Arabidopsis transgenic plants. CaPUB24-silenced pepper plants exhibited enhanced drought tolerance compared to the control plants due to reduced transpirational water loss and increased abscisic acid (ABA) sensitivity. In contrast, CaPUB24-overexpressing Arabidopsis transgenic plants exhibited reduced drought tolerance and ABA-insensitive phenotypes. Our findings suggest that CaPUB24 negatively modulates drought stress response in an ABA-dependent manner.


Subject(s)
Arabidopsis , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Droughts , Arabidopsis/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Plants, Genetically Modified/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Ubiquitins/genetics , Ubiquitins/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant
5.
Proc Natl Acad Sci U S A ; 121(17): e2314353121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38635634

ABSTRACT

Auxin regulates plant growth and development through downstream signaling pathways, including the best-known SCFTIR1/AFB-Aux/IAA-ARF pathway and several other less characterized "noncanonical" pathways. Recently, one SCFTIR1/AFB-independent noncanonical pathway, mediated by Transmembrane Kinase 1 (TMK1), was discovered through the analyses of its functions in Arabidopsis apical hook development. Asymmetric accumulation of auxin on the concave side of the apical hook triggers DAR1-catalyzed release of the C-terminal of TMK1, which migrates into the nucleus, where it phosphorylates and stabilizes IAA32/34 to inhibit cell elongation, which is essential for full apical hook formation. However, the molecular factors mediating IAA32/34 degradation have not been identified. Here, we show that proteins in the CYTOKININ INDUCED ROOT WAVING 1 (CKRW1)/WAVY GROWTH 3 (WAV3) subfamily act as E3 ubiquitin ligases to target IAA32/34 for ubiquitination and degradation, which is inhibited by TMK1c-mediated phosphorylation. This antagonistic interaction between TMK1c and CKRW1/WAV3 subfamily E3 ubiquitin ligases regulates IAA32/34 levels to control differential cell elongation along opposite sides of the apical hook.


Subject(s)
Arabidopsis Proteins , Arabidopsis , F-Box Proteins , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Signal Transduction , Ubiquitins/metabolism , Gene Expression Regulation, Plant , F-Box Proteins/genetics , F-Box Proteins/metabolism
6.
J Cancer Res Clin Oncol ; 150(4): 206, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644421

ABSTRACT

PURPOSE: Periodontitis-associated bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, are closely linked to the risk of oral squamous cell carcinoma (OSCC). Emerging studies have indicated that another common periodontal pathogen, Prevotella intermedia (P. intermedia), is enriched in OSCC and could affect the occurrence and progression of OSCC. Our aim is to determine the effects of P. intermedia on the progression of OSCC and the role of antibiotics in reversing these effects. METHODS: In this study, a murine xenograft model of OSCC was established, and the mice were injected intratumorally with PBS (control group), P. intermedia (P.i group), or P. intermedia combined with an antibiotic cocktail administration (P.i + ABX group), respectively. The effects of P. intermedia and ABX administration on xenograft tumor growth, invasion, angiogenesis, and metastasis were investigated by tumor volume measurement and histopathological examination. Enzyme-linked immunosorbent assay (ELISA) was used to investigate the changes in serum cytokine levels. Immunohistochemistry (IHC) was adopted to analyze the alterations in the levels of inflammatory cytokines and infiltrated immune cells in OSCC tissues of xenograft tumors. Transcriptome sequencing and analysis were conducted to determine differential expression genes among various groups. RESULTS: Compared with the control treatment, P. intermedia treatment significantly promoted tumor growth, invasion, angiogenesis, and metastasis, markedly affected the levels of inflammatory cytokines, and markedly altered M2 macrophages and regulatory T cells (Tregs) infiltration in the tumor microenvironment. However, ABX administration clearly abolished these effects of P. intermedia. Transcriptome and immunohistochemical analyses revealed that P. intermedia infection increased the expression of interferon-stimulated gene 15 (ISG15). Correlation analysis indicated that the expression level of ISG15 was positively correlated with the Ki67 expression level, microvessel density, serum concentrations and tissue expression levels of inflammatory cytokines, and quantities of infiltrated M2 macrophages and Tregs. However, it is negatively correlated with the quantities of infiltrated CD4+ and CD8+ T cells. CONCLUSION: In conclusion, intratumoral P. intermedia infection aggravated OSCC progression, which may be achieved through upregulation of ISG15. This study sheds new light on the possible pathogenic mechanism of intratumoral P. intermedia in OSCC progression, which could be a prospective target for OSCC prevention and treatment.


Subject(s)
Cytokines , Disease Progression , Mouth Neoplasms , Prevotella intermedia , Ubiquitins , Up-Regulation , Animals , Mice , Cytokines/metabolism , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/microbiology , Ubiquitins/metabolism , Squamous Cell Carcinoma of Head and Neck/microbiology , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Xenograft Model Antitumor Assays , Mice, Nude , Bacteroidaceae Infections/microbiology , Cell Line, Tumor , Mice, Inbred BALB C , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/microbiology , Carcinoma, Squamous Cell/drug therapy , Anti-Bacterial Agents/pharmacology
7.
Cell Rep ; 43(5): 114135, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38652662

ABSTRACT

Optimal activation of stimulator of interferon genes (STING) protein is crucial for host defenses against pathogens and avoiding detrimental effects. Various post-translational modifications control STING activity. However, the function of interferon (IFN)-stimulated gene (ISG) 15 modification (ISGylation) in controlling STING stability and activation is unclear. Here, we show that the E3 ISGylation ligases HECT domain- and RCC1-like domain-containing proteins (HERCs; HERC5 in humans and HERC6 in mice) facilitate STING activation by mediating ISGylation of STING at K150, preventing its K48-linked ubiquitination and degradation. Concordantly, Herc6 deficiency suppresses herpes simplex virus 1 infection-induced type I IFN responses and facilitates viral replication both in vitro and in vivo. Notably, severe acute respiratory syndrome coronavirus 2 protein papain-like protease cleaves HERC5-mediated ISGylation of STING, suppressing host antiviral responses. These data identify a mechanism by which HERCs-mediated ISGylation controls STING stability and activation and uncover the correlations and interactions of ISGylation and ubiquitination during STING activation.


Subject(s)
Membrane Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Ubiquitins , Membrane Proteins/metabolism , Humans , Animals , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism , Mice , HEK293 Cells , Cytokines/metabolism , Herpesvirus 1, Human/physiology , SARS-CoV-2/metabolism , Mice, Inbred C57BL , Herpes Simplex/virology , Herpes Simplex/metabolism , Herpes Simplex/immunology , Virus Replication , Interferon Type I/metabolism , Intracellular Signaling Peptides and Proteins
8.
Viruses ; 16(4)2024 03 22.
Article in English | MEDLINE | ID: mdl-38675828

ABSTRACT

The innate immune response to viruses is formed in part by interferon (IFN)-induced restriction factors, including ISG15, p21, and SAMHD1. IFN production can be blocked by the ISG15-specific protease USP18. HIV-1 has evolved to circumvent host immune surveillance. This mechanism might involve USP18. In our recent studies, we demonstrate that HIV-1 infection induces USP18, which dramatically enhances HIV-1 replication by abrogating the antiviral function of p21. USP18 downregulates p21 by accumulating misfolded dominant negative p53, which inactivates wild-type p53 transactivation, leading to the upregulation of key enzymes involved in de novo dNTP biosynthesis pathways and inactivated SAMHD1. Despite the USP18-mediated increase in HIV-1 DNA in infected cells, it is intriguing to note that the cGAS-STING-mediated sensing of the viral DNA is abrogated. Indeed, the expression of USP18 or knockout of ISG15 inhibits the sensing of HIV-1. We demonstrate that STING is ISGylated at residues K224, K236, K289, K347, K338, and K370. The inhibition of STING K289-linked ISGylation suppresses its oligomerization and IFN induction. We propose that human USP18 is a novel factor that potentially contributes in multiple ways to HIV-1 replication.


Subject(s)
HIV-1 , Ubiquitin Thiolesterase , Ubiquitins , Virus Replication , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Humans , HIV-1/physiology , HIV-1/genetics , Ubiquitins/metabolism , Ubiquitins/genetics , Cytokines/metabolism , Cytokines/genetics , Immunity, Innate , HIV Infections/virology , HIV Infections/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Host-Pathogen Interactions , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
9.
Biochem J ; 481(7): 515-545, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38572758

ABSTRACT

Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.


Subject(s)
Peptide Hydrolases , Ubiquitin , Humans , Ubiquitin/genetics , Ubiquitin/metabolism , Peptide Hydrolases/metabolism , Ubiquitination , Protein Processing, Post-Translational , Ubiquitins/genetics , Ubiquitins/metabolism , DNA Damage , Endopeptidases/metabolism , Genomic Instability
10.
Development ; 151(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38546043

ABSTRACT

The timely degradation of proteins that regulate the cell cycle is essential for oocyte maturation. Oocytes are equipped to degrade proteins via the ubiquitin-proteasome system. In meiosis, anaphase promoting complex/cyclosome (APC/C), an E3 ubiquitin-ligase, is responsible for the degradation of proteins. Ubiquitin-conjugating enzyme E2 S (UBE2S), an E2 ubiquitin-conjugating enzyme, delivers ubiquitin to APC/C. APC/C has been extensively studied, but the functions of UBE2S in oocyte maturation and mouse fertility are not clear. In this study, we used Ube2s knockout mice to explore the role of UBE2S in mouse oocytes. Ube2s-deleted oocytes were characterized by meiosis I arrest with normal spindle assembly and spindle assembly checkpoint dynamics. However, the absence of UBE2S affected the activity of APC/C. Cyclin B1 and securin are two substrates of APC/C, and their levels were consistently high, resulting in the failure of homologous chromosome separation. Unexpectedly, the oocytes arrested in meiosis I could be fertilized and the embryos could become implanted normally, but died before embryonic day 10.5. In conclusion, our findings reveal an indispensable regulatory role of UBE2S in mouse oocyte meiosis and female fertility.


Subject(s)
M Phase Cell Cycle Checkpoints , Meiosis , Animals , Female , Mice , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Oocytes/metabolism , Ubiquitins/metabolism
11.
Microb Pathog ; 190: 106633, 2024 May.
Article in English | MEDLINE | ID: mdl-38554778

ABSTRACT

Interferon-stimulated gene product 15 (ISG15) can be conjugated to substrates through ISGylation. Currently, the E3 ligase for porcine ISGylation remains unclear. Here, we identified porcine HERC5 and HERC6 (pHERC5/6) as ISGylation E3 ligases with pHERC6 acting as a major one by reconstitution of porcine ISGylation system in HEK-293 T cell via co-transfecting E1, E2 and porcine ISG15(pISG15) genes. Meanwhile, our data demonstrated that co-transfection of pISG15 and pHERC5/6 was sufficient to confer ISGylation, suggesting E1 and E2 of ISGylation are interchangeable between human and porcine. Using an immunoprecipitation based ISGylation analysis, our data revealed pHERC6 was a substrate for ISGylation and confirmed that K707 and K993 of pHERC6 were auto-ISGylation sites. Mutation of these sites reduced pHERC6 half-life and inhibited ISGylation, suggesting that auto-ISGylation of pHERC6 was required for effective ISGylation. Conversely, sustained ISGylation induced by overexpression of pISG15 and pHERC6 could be inhibited by a well-defined porcine ISGylation antagonist, the ovarian tumor (OTU) protease domain of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV)-nsp2 and PRRSV-nsp1ß, further indicating such method could be used for identification of virus-encoded ISG15 antagonist. In conclusion, our study contributes new insights towards porcine ISGylation system and provides a novel tool for screening viral-encoded ISG15 antagonist.


Subject(s)
Ubiquitin-Protein Ligases , Ubiquitins , Animals , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Swine , Humans , HEK293 Cells , Ubiquitins/metabolism , Ubiquitins/genetics , Porcine respiratory and reproductive syndrome virus/metabolism , Porcine respiratory and reproductive syndrome virus/genetics , Cytokines/metabolism , Ubiquitination , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics
12.
Plant Cell Rep ; 43(4): 93, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38467927

ABSTRACT

KEY MESSAGE: VyPUB21 plays a key role during the defense against powdery mildew in grapes. Ubiquitin-ligating enzyme (E3), a type of protein widely found in plants, plays a key role in their resistance to disease. Yet how E3 participates in the disease-resistant response of Chinese wild grapevine (Vitis yeshanensis) remains unclear. Here we isolated and identified a U-box type E3 ubiquitin ligase, VyPUB21, from V. yeshanensis. This gene's expression level rose rapidly after induction by exogenous salicylic acid (SA), jasmonic acid (JA), and ethylene (ETH) and powdery mildew. In vitro ubiquitination assay results revealed VyPUB21 could produce ubiquitination bands after co-incubation with ubiquitin, ubiquitin-activating enzyme (E1), and ubiquitin-conjugating enzyme (E2); further, mutation of the conserved amino acid site in the U-box can inhibit the ubiquitination. Transgenic VyPUB21 Arabidopsis had low susceptibility to powdery mildew, and significantly fewer conidiophores and spores on its leaves. Expression levels of disease resistance-related genes were also augmented in transgenic Arabidopsis, and its SA concentration also significantly increased. VyPUB21 interacts with VyNIMIN and targets VyNIMIN protein hydrolysis through the 26S proteasome system. Thus, the repressive effect of the NIMIN-NPR complex on the late systemic acquired resistance (SAR) gene was attenuated, resulting in enhanced resistance to powdery mildew. These results indicate that VyPUB21 encoding ubiquitin ligase U-box E3 activates the SA signaling pathway, and VyPUB21 promotes the expression of late SAR gene by degrading the important protein VyNIMIN of SA signaling pathway, thus enhancing grape resistance to powdery mildew.


Subject(s)
Arabidopsis , Ascomycota , Vitis , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Vitis/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Ascomycota/physiology , Ubiquitins/metabolism , Disease Resistance/genetics , Plant Diseases/genetics
13.
Int J Biol Macromol ; 264(Pt 1): 130581, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447828

ABSTRACT

Neutrophilic asthma is a persistent and severe inflammatory lung disease characterized by neutrophil activation and the mechanisms of which are not completely elucidated. Ubiquitin D (UBD) is a ubiquitin-like modifier participating in infections, immune responses, and tumorigenesis, while whether UBD involves in neutrophilic asthma needs further study. In this study, we initially found that UBD expression was significantly elevated and interleukin 17 (IL-17) signaling was enriched in the endobronchial biopsies of severe asthma along with neutrophils increasing by bioinformatics analysis. We further confirmed that UBD was upregulated in the lung tissues of neutrophilic asthma mouse model. UBD overexpression promoted IL-17 signaling activation. Knockdown of UBD suppressed the activation of IL-17 signaling. UBD interacted with TRAF2 and reduced the total and the K48-linked ubiquitination of TRAF2. However, IL-17 A stimulation increased both the total and the K48-linked ubiquitination of TRAF2. Together, these findings indicated that UBD was upregulated and played a critical role in IL-17 signaling which contributed to a better understanding of the complex mechanisms in neutrophilic asthma.


Subject(s)
Asthma , Interleukin-17 , Animals , Mice , TNF Receptor-Associated Factor 2/metabolism , Asthma/metabolism , Lung/metabolism , Neutrophils/metabolism , Ubiquitins/metabolism , Inflammation/pathology
14.
Exp Cell Res ; 437(2): 114018, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38556072

ABSTRACT

The altered protein expression of inverted CCAAT box-binding protein of 90 kDa/ubiquitin-like with PHD and RING finger domains 1 (ICBP90/UHRF1), and Np95-like ring finger protein (NIRF)/UHRF2, which belong to the ubiquitin-like with PHD and RING finger domains (UHRF) family, is linked to tumor malignancy and the progression of various cancers. In this study, we analyzed the UHRF family expression in cervical cancers, and it's regulation by human papillomavirus (HPV). Western blotting was performed to analyze protein expression in cervical cancer cell lines. Immunohistochemical analysis were used to investigate the expression of UHRF family and MIB-1 in cervical cancer tissues. Transfection were done for analyze the relationship between UHRF family and HPVs. We showed that NIRF expression was decreased and ICBP90 expression was increased in cervical cancers compared to normal counterparts. Western blotting also showed that NIRF expression was quite low levels, but ICBP90 was high in human cervical cancer cell lines. Interestingly, ICBP90 was up regulated by high risk type HPV16 E6 and E7, but not low-risk type HPV11. On the other hand, NIRF was down regulated by high risk type HPV16 E6 but not by E7. Low risk type HPV11 E6 did not affect the NIRF expression at all. We propose that ICBP90 overexpression, and reduced NIRF expression, found in cervical cancers, is an important event of a cervical carcinogenesis, and especially ICBP90 may offer a proliferating marker and therapeutic target for treating uterine cervical cancers.


Subject(s)
Oncogene Proteins, Viral , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/pathology , Human papillomavirus 16/metabolism , Papillomavirus E7 Proteins/metabolism , Oncogene Proteins, Viral/metabolism , Ubiquitins/metabolism , Ubiquitin-Protein Ligases/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism
15.
Int J Mol Sci ; 25(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38473923

ABSTRACT

Lewy body diseases (LBDs) feature α-synuclein (α-syn)-containing Lewy bodies, with misfolded α-syn potentially propagating as seeds. Using a seeding amplification assay, we previously reported distinct α-syn seeding in LBD cases based on the area under seeding curves. This study revealed that LBD cases showing different α-syn seeding kinetics have distinct proteomics profiles, emphasizing disruptions in mitochondria and lipid metabolism in high-seeder cases. Though the mechanisms underlying LBD development are intricate, the factors influencing α-syn seeding activity remain elusive. To address this and complement our previous findings, we conducted targeted transcriptome analyses in the substantia nigra using the nanoString nCounter assay together with histopathological evaluations in high (n = 4) and low (n = 3) nigral α-syn seeders. Neuropathological findings (particularly the substantia nigra) were consistent between these groups and were characterized by neocortical LBD associated with Alzheimer's disease neuropathologic change. Among the 1811 genes assessed, we identified the top 20 upregulated and downregulated genes and pathways in α-syn high seeders compared with low seeders. Notably, alterations were observed in genes and pathways related to transmembrane transporters, lipid metabolism, and the ubiquitin-proteasome system in the high α-syn seeders. In conclusion, our findings suggest that the molecular behavior of α-syn is the driving force in the neurodegenerative process affecting the substantia nigra through these identified pathways. These insights highlight their potential as therapeutic targets for attenuating LBD progression.


Subject(s)
Lewy Body Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Lewy Body Disease/metabolism , Proteasome Endopeptidase Complex/metabolism , Lipid Metabolism , Ubiquitins/metabolism
16.
Sci Rep ; 14(1): 3010, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38321224

ABSTRACT

Activated microglia have been implicated in the pathogenesis of age-related macular degeneration (AMD), diabetic retinopathy, and other neurodegenerative and neuroinflammatory disorders, but our understanding of the mechanisms behind their activation is in infant stages. With the goal of identifying novel genes associated with microglial activation in the retina, we applied a semiquantitative fundus spot scoring scale to an unbiased, state-of-the-science mouse forward genetics pipeline. A mutation in the gene encoding the E3 ubiquitin ligase Herc3 led to prominent accumulation of fundus spots. CRISPR mutagenesis was used to generate Herc3-/- mice, which developed prominent accumulation of fundus spots and corresponding activated Iba1 + /CD16 + subretinal microglia, retinal thinning on OCT and histology, and functional deficits by Optomotory and electrophysiology. Bulk RNA sequencing identified activation of inflammatory pathways and differentially expressed genes involved in the modulation of microglial activation. Thus, despite the known expression of multiple E3 ubiquitin ligases in the retina, we identified a non-redundant role for Herc3 in retinal homeostasis. Our findings are significant given that a dysregulated ubiquitin-proteasome system (UPS) is important in prevalent retinal diseases, in which activated microglia appear to play a role. This association between Herc3 deficiency, retinal microglial activation and retinal degeneration merits further study.


Subject(s)
Microglia , Retinal Degeneration , Animals , Humans , Mice , Microglia/metabolism , Retina/pathology , Retinal Degeneration/pathology , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism
17.
mBio ; 15(4): e0023224, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38411954

ABSTRACT

Neddylation is a type of posttranslational modification known to regulate a wide range of cellular processes by covalently conjugating the ubiquitin-like protein Nedd8 to target proteins at lysine residues. However, the role of neddylation in malaria parasites has not been determined. Here, for the first time, we showed that neddylation plays an essential role in malaria transmission in Plasmodium berghei. We found that disruption of Nedd8 did not affect blood-stage propagation, gametocyte development, gamete formation, or zygote formation while abolishing the formation of ookinetes and further transmission of the parasites in mosquitoes. These phenotypic defects in Nedd8 knockout parasites were complemented by reintroducing the gene that restored mosquito transmission to wild-type levels. Our data establish the role of P. berghei Nedd8 in malaria parasite transmission.IMPORTANCENeddylation is a process by which Nedd8 is covalently attached to target proteins through three-step enzymatic cascades. The attachment of Nedd8 residues results in a range of diverse functions, such as cell cycle regulation, metabolism, immunity, and tumorigenesis. The potential neddylation substrates are cullin (CUL) family members, which are implicated in controlling the cell cycle. Cullin neddylation leads to the activation of cullin-RING ubiquitin ligases, which regulate a myriad of biological processes through target-specific ubiquitylation. Neddylation possibly regulates meiosis in zygotes, which subsequently develop into ookinetes. Our findings point to an essential function of this neddylation pathway and highlight its possible importance in designing novel intervention strategies.


Subject(s)
Plasmodium berghei , Ubiquitins , Animals , Ubiquitins/genetics , Ubiquitins/metabolism , Plasmodium berghei/genetics , Plasmodium berghei/metabolism , Cullin Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism
18.
Phytother Res ; 38(4): 1783-1798, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38323338

ABSTRACT

Macrophage inflammation plays a central role during the development and progression of sepsis, while the regulation of macrophages by parthanatos has been recently identified as a novel strategy for anti-inflammatory therapies. This study was designed to investigate the therapeutic potential and mechanism of pimpinellin against LPS-induced sepsis. PARP1 and PAR activation were detected by western blot or immunohistochemistry. Cell death was assessed by flow cytometry and western blot. Cell metabolism was measured with a Seahorse XFe24 extracellular flux analyzer. C57, PARP1 knockout, and PARP1 conditional knock-in mice were used in a model of sepsis caused by LPS to assess the effect of pimpinellin. Here, we found that pimpinellin can specifically inhibit LPS-induced macrophage PARP1 and PAR activation. In vitro studies showed that pimpinellin could inhibit the expression of inflammatory cytokines and signal pathway activation in macrophages by inhibiting overexpression of PARP1. In addition, pimpinellin increased the survival rate of LPS-treated mice, thereby preventing LPS-induced sepsis. Further research confirmed that LPS-induced sepsis in PARP1 overexpressing mice was attenuated by pimpinellin, and PARP1 knockdown abolished the protective effect of pimpinellin against LPS-induced sepsis. Further study found that pimpinellin can promote ubiquitin-mediated degradation of PARP1 through RNF146. This is the first study to demonstrate that pimpinellin inhibits excessive inflammatory responses by promoting the ubiquitin-mediated degradation of PARP1.


Subject(s)
Lipopolysaccharides , Methoxsalen , Sepsis , Animals , Mice , Inflammation/metabolism , Macrophages , Methoxsalen/analogs & derivatives , Mice, Inbred C57BL , Sepsis/chemically induced , Sepsis/drug therapy , Ubiquitination , Ubiquitins/metabolism
19.
J Biol Chem ; 300(3): 105779, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395305

ABSTRACT

The newly discovered zoonotic coronavirus swine acute diarrhea syndrome coronavirus (SADS-CoV) causes acute diarrhea, vomiting, dehydration, and high mortality rates in newborn piglets. Although SADS-CoV uses different strategies to evade the host's innate immune system, the specific mechanism(s) by which it blocks the interferon (IFN) response remains unidentified. In this study, the potential of SADS-CoV nonstructural proteins (nsp) to inhibit the IFN response was detected. The results determined that nsp1 was a potent antagonist of IFN response. SADS-CoV nsp1 efficiently inhibited signal transducer and activator of transcription 1 (STAT1) phosphorylation by inducing Janus kinase 1 (JAK1) degradation. Subsequent research revealed that nsp1 induced JAK1 polyubiquitination through K11 and K48 linkages, leading to JAK1 degradation via the ubiquitin-proteasome pathway. Furthermore, SADS-CoV nsp1 induced CREB-binding protein degradation to inhibit IFN-stimulated gene production and STAT1 acetylation, thereby inhibiting STAT1 dephosphorylation and blocking STAT1 transport out of the nucleus to receive antiviral signaling. In summary, the results revealed the novel mechanisms by which SADS-CoV nsp1 blocks the JAK-STAT signaling pathway via the ubiquitin-proteasome pathway. This study yielded valuable findings on the specific mechanism of coronavirus nsp1 in inhibiting the JAK-STAT signaling pathway and the strategies of SADS-CoV in evading the host's innate immune system.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Proteasome Endopeptidase Complex , Swine Diseases , Viral Nonstructural Proteins , Animals , Acetylation , Alphacoronavirus/physiology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Swine , Ubiquitins/metabolism , Swine Diseases/metabolism , Swine Diseases/virology , HEK293 Cells , Vero Cells , Humans , Chlorocebus aethiops , Viral Nonstructural Proteins/metabolism
20.
Front Immunol ; 15: 1331731, 2024.
Article in English | MEDLINE | ID: mdl-38384473

ABSTRACT

The establishment of a virus infection is the result of the pathogen's ability to replicate in a hostile environment generated by the host's immune system. Here, we found that ISG15 restricts Dengue and Zika viruses' replication through the stabilization of its binding partner USP18. ISG15 expression was necessary to control DV replication driven by both autocrine and paracrine type one interferon (IFN-I) signaling. Moreover, USP18 competes with NS5-mediated STAT2 degradation, a major mechanism for establishment of flavivirus infection. Strikingly, reconstitution of USP18 in ISG15-deficient cells was sufficient to restore the STAT2's stability and restrict virus growth, suggesting that the IFNAR-mediated ISG15 activity is also antiviral. Our results add a novel layer of complexity in the virus/host interaction interface and suggest that NS5 has a narrow window of opportunity to degrade STAT2, therefore suppressing host's IFN-I mediated response and promoting virus replication.


Subject(s)
Dengue , Interferon Type I , Zika Virus Infection , Zika Virus , Humans , Interferon Type I/metabolism , Zika Virus Infection/genetics , Virus Replication , Dengue/genetics , Ubiquitins/metabolism , Cytokines/metabolism , Ubiquitin Thiolesterase/metabolism , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...