Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Crit Care ; 20(1): 318, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27719682

ABSTRACT

This article reports the conclusions of a consensus expert conference on the basic principles and nomenclature of renal replacement therapy (RRT) currently utilized to manage acute kidney injury (AKI). This multidisciplinary consensus conference discusses common definitions, components, techniques, and operations of the machines and platforms used to deliver extracorporeal therapies, utilizing a "machine-centric" rather than a "patient-centric" approach. We provide a detailed description of the performance characteristics of membranes, filters, transmembrane transport of solutes and fluid, flows, and methods of measurement of delivered treatment, focusing on continuous renal replacement therapies (CRRT) which are utilized in the management of critically ill patients with AKI. This is a consensus report on nomenclature harmonization for principles of extracorporeal renal replacement therapies. Devices and operations are classified and defined in detail to serve as guidelines for future use of terminology in papers and research.


Subject(s)
Acute Kidney Injury/classification , Acute Kidney Injury/therapy , Renal Replacement Therapy/classification , Terminology as Topic , Critical Illness/therapy , Humans , Renal Dialysis/classification , Renal Dialysis/methods , Renal Replacement Therapy/methods , Ultrafiltration/classification , Ultrafiltration/methods
2.
Braz. j. pharm. sci ; 50(2): 257-259, Apr-Jun/2014. tab, graf
Article in English | LILACS | ID: lil-722190

ABSTRACT

Sucrose hydrolysis by invertase [EC.3.2.1.26] produces inverted sugar syrup, an ingredient mainly used in the food industry. To properly catalyze hydrolysis, the enzyme should be reused after this reaction. It is advisable to maintain constant activity over a considerable period. Thus, sucrose hydrolysis was performed in a membrane bioreactor - a continuously stirred tank reactor coupled with an ultrafiltration membrane (UFM) which provides good diffusion and high activity per unit volume. Molecular weight cut-off for soluble invertase UFMs was up to 100kDa. This study focused on the role of UFM invertase cut-off as it is the main element in the process. We demonstrated that both the cut-off and chemical nature of the UFM affected specific invertase activity.


A hidrólise da sacarose através da invertase [EC.3.2.1.26] gera xarope de açúcar invertido, que é usado principalmente como ingrediente na indústria alimentícia. Para ter-se uma hidrólise satisfatória, a enzima deve ser reaproveitada após a reação. É desejável que sua atividade seja mantida constante durante um período considerável de reação. A hidrólise da sacarose foi realizada em um reator com membrana (RM) - que é um reator continuamente agitado acoplado a uma membrana de ultrafiltração (MUF) -, porque apresenta efeitos mínimos de difusão e elevada atividade por unidade de volume. O corte molecular da MUF utilizada para reter a invertase solúvel dentro do MR foi de até 100kDa. Como a invertase é o elemento principal deste processo, este trabalho foi focado no papel do corte molecular da MUF na sua atividade. O corte molecular e a natureza química da membrana-UF mostraram afetar a atividade específica da invertase.


Subject(s)
Sucrose/analysis , Membranes , Ultrafiltration/classification , Hydrolysis
3.
Water Res ; 43(15): 3685-92, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19564035

ABSTRACT

Characterization of molecular size of natural organic matter (NOM) is a valuable tool when assessing its effect on the performance of water treatment systems as well as its geochemical origin. Size fractionation can be accomplished by ultrafiltration (UF). Unfortunately, membrane manufacturing generates a range of pore sizes. Many membrane manufacturers use molecular weight cutoff (MWCO) metric based on a 90% retention of given solute after specified duration of filtration. The objective of this study was to characterize the ability of different commercially available UF membranes to separate different size fractions of NOM. The UF membranes characterized were YM (regenerated cellulose, negatively charged) and PB (polyethersulfone, negatively charged) product lines by Millipore. The probes used to represent the size, shape and charge of NOM were polymers (polyethylene glycols (PEGs), dextrans, polystyrene sulfonates (PSSs)), dyes (bromocresol green, congo red, methyl red, methyl orange) and biological molecules (vitamin B-12 and bacitracin). The results show that MWCO definition does not hold for membranes of 5kDa and 10kDa pore openings using most polymers and dyes. The MWCO definition holds for 1kDa membrane for all tested probes. Under natural water conditions PSSs assume random coil configurations that are nearly identical to Suwannee fulvic acid. The results show that PSS agrees with stated MWCOs. The study demonstrates that ultrafiltration is not a simple mechanical sieving process, but that charges on the membrane and the constituent play a significant role in the rejection process. Effective probe size was increased seven- to fourteen-fold by charge interactions between the negative probes and negatively charged membrane. Uncharged molecules larger than specified MWCOs are able to pass through pores (PEGs), while small charged molecules (dyes) do not pass. For probes with low or neutral charges, shape becomes an important factor, with globular being favored over linear structure. Thus, MWCOs cannot be trusted for purposes of NOM size characterization. The study recommends the use of YM 1K, PB 5K and YM 10kDa membranes for comparative-only NOM size ultrafiltration characterization within the 1-10kDa size range.


Subject(s)
Ultrafiltration/standards , Water Purification/methods , Bacitracin/analysis , Bacitracin/chemistry , Coloring Agents/analysis , Coloring Agents/chemistry , Dextrans/analysis , Dextrans/chemistry , Micropore Filters/classification , Micropore Filters/standards , Molecular Weight , Organic Chemicals/chemistry , Polyethylene Glycols/analysis , Polyethylene Glycols/chemistry , Polystyrenes/analysis , Polystyrenes/chemistry , Quality Control , Ultrafiltration/classification , Ultrafiltration/methods , Vitamin B 12/analysis , Vitamin B 12/chemistry
4.
Carbohydr Res ; 341(17): 2777-84, 2006 Dec 11.
Article in English | MEDLINE | ID: mdl-17045252

ABSTRACT

A novel composite nanofiltration (NF) membrane was prepared by over-coating the PAN ultrafiltration (UF) membrane with a GCTACC thin layer. The effects of membrane preparation techniques and operating conditions on the performance of the composite membrane were studied. The results indicate that a composite NF membrane from 1.0wt% GCTACC casting solution, vaporized for 2h at 50 degrees C, cross-linked for 20h at 50 degrees C and pH approximately 12 with ethanol/epichlorohydrin (50/0.45 wt/wt) had optimum performance. The resultant GCTACC/PAN composite membrane was positively charged. Scanning electron microscopy showed its asymmetric and composite features. At 25 degrees C and 30L/h of cycling flow, the permeability of pure water through this membrane is 6.3L/hm(2)MPa. At 25 degrees C, 1.2MPa and 30L/h of cycling flow, the rejection of 1000mg/L MgCl(2), CaCl(2), MgSO(4), Na(2)SO(4), and NaCl solutions is 0.976, 0.972, 0.897, 0.65, and 0.407, respectively, with fluxes of 6.8, 6.12, 6.12, 5.57, and 5.51L/hm(2), respectively. The order of rejection of different salts follows the decreasing order of MgCl(2), CaCl(2), MgSO(4), NaCl, KCl, Na(2)SO(4), and K(2)SO(4), which reveals the characteristics of the positively charged NF membrane. In addition, the curve for the streaming potential also illustrates the positively charged characteristics of this membrane, with a pressure osmotic coefficient of 11.7mVMPa(-1).


Subject(s)
Chitosan/analogs & derivatives , Cross-Linking Reagents/chemistry , Membranes, Artificial , Nanocomposites/chemistry , Nanotechnology/methods , Polyethylene Glycols/chemistry , Acrylonitrile/chemistry , Chitosan/chemistry , Epichlorohydrin/chemistry , Permeability , Polymers/chemical synthesis , Polymers/chemistry , Ultrafiltration/classification , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...