Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.585
Filter
1.
Int J Hyperthermia ; 41(1): 2350759, 2024.
Article in English | MEDLINE | ID: mdl-38719202

ABSTRACT

INTRODUCTION: Magnetic Resonance-guided Focused Ultrasound (MRgFUS) thermal ablation is an effective noninvasive ultrasonic therapy to disrupt in vivo porcine tendon but is prone to inducing skin burns. We evaluated the safety profile of a novel hybrid protocol that minimizes thermal spread by combining long-pulse focused ultrasound followed by thermal ablation. METHODS: In-vivo Achilles tendons (hybrid N = 15, thermal ablation alone N = 21) from 15 to 20 kg Yorkshire pigs were randomly assigned to 6 treatment groups in two studies. The first (N = 21) was ablation (600, 900, or 1200 J). The second (N = 15) was hybrid: pulsed FUS (13.5 MPa peak negative pressure) followed by ablation (600, 900, or 1200 J). Measurements of ankle range of motion, tendon temperature, thermal dose (240 CEM43), and assessment of skin burn were performed in both groups. RESULTS: Rupture was comparable between the two protocols: 1/5 (20%), 5/5 (100%) and 5/5 (100%) for hybrid protocol, compared to 2/7 (29%), 6/7 (86%) and 7/7 (100%) for the ablation-only protocol with energies of 600, 900, and 1200 J, respectively. The hybrid protocol produced lower maximum temperatures, smaller areas of thermal dose, fewer thermal injuries to the skin, and fewer full-thickness skin burns. The standard deviation for the area of thermal injury was also smaller for the hybrid protocol, suggesting greater predictability. CONCLUSION: This study demonstrated a hybrid MRgFUS protocol combining long-pulse FUS followed by thermal ablation to be noninferior and safer than an ablation-only protocol for extracorporeal in-vivo tendon rupture for future clinical application for noninvasive release of contracted tendon.


Subject(s)
Magnetic Resonance Imaging , Animals , Swine , Magnetic Resonance Imaging/methods , High-Intensity Focused Ultrasound Ablation/methods , Tendons/diagnostic imaging , Ultrasonic Therapy/methods
2.
Front Endocrinol (Lausanne) ; 15: 1393251, 2024.
Article in English | MEDLINE | ID: mdl-38752180

ABSTRACT

Objective: Research data suggests that ultrasound-assisted wound debridement (UAWD) can effectively promote the healing of diabetic foot ulcers (DFU). However, existing research is not consistent with this viewpoint. Therefore, we conducted this study to investigate the effect of UAWD on the healing of diabetic foot ulcers. Methods: From the establishment of the database to January 2024, we searched 8 databases to study the effectiveness and safety of UAWD in the treatment of DFU. Two authors independently screened the qualifications of the articles, while two authors extracted relevant data. Statistical analysis was conducted using Review Manager 5.4 and STATA 18.0 software. Results: A total of 11 randomized controlled studies were included, with 6 countries and 696 participants participating. Our findings showed that UAWD was associated with a significant benefit in healing rate (OR = 2.60, 95% CI: [1.67, 4.03], P < 0.0001, I2 = 25%), wound healing time (MD = -11.94, 95% CI: [-23.65, -0.23], P = 0.05, I2 = 99%), percentage reduction in wound size (MD = 14.2, 95% CI: [10.8, 17.6], P = 0.47, I2 = 32%), effectiveness of treatment (OR = 10.3, 95% CI: [4.68, 22.66], P < 0.00001, I2 = 0%). Moreover, UAWD did not cause any significant adverse reactions. However, there was no obvious difference in wound blood perfusion (MD = 0.25, 95% CI: [-0.01, 0.52], P = 0.06, I2 = 90%), transcutaneous oxygen partial pressure (MD = 14.34, 95% CI: [-10.03, 38.71], P = 0.25, I2 = 98%). Conclusion: UAWD can significantly improve wound healing rate, shorten wound healing time, accelerate wound area reduction, and improve clinical treatment effectiveness without significant adverse reactions. Although there is no significant difference in transcutaneous oxygen pressure and wound blood flow perfusion between UAWD and SWC. So we look forward to more scientifically blinded, placebo-controlled, high-quality studies in the future, to enable researchers to obtain more complete and accurate analytical data, in order to improve the scientific and credibility of the evidence. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42024501198.


Subject(s)
Debridement , Diabetic Foot , Randomized Controlled Trials as Topic , Ultrasonic Therapy , Wound Healing , Diabetic Foot/therapy , Humans , Debridement/methods , Ultrasonic Therapy/methods , Treatment Outcome
3.
PLoS One ; 19(5): e0304398, 2024.
Article in English | MEDLINE | ID: mdl-38814913

ABSTRACT

OBJECTIVE: Minimally invasive surgery for spontaneous intracerebral hemorrhage is impeded by inadequate lysis of the target blood clot. Ultrasound is thought to expedite intravascular thrombolysis, thereby facilitating vascular recanalization. However, the impact of ultrasound on intracerebral blood clot lysis remains uncertain. This study aimed to explore the feasibility of combining ultrasound with urokinase to enhance blood clot lysis in an in vitro model of spontaneous intracerebral hemorrhage. METHODS: The blood clots were divided into four groups: control group, ultrasound group, urokinase group, and ultrasound + urokinase group. Using our experimental setup, which included a key-shaped bone window, we simulated a minimally invasive puncture and drainage procedure for spontaneous intracerebral hemorrhage. The blood clot was then irradiated using ultrasound. Blood clot lysis was assessed by weighing the blood clot before and after the experiment. Potential adverse effects were evaluated by measuring the temperature variation around the blood clot in the ultrasound + urokinase group. RESULTS: A total of 40 blood clots were observed, with 10 in each experimental group. The blood clot lysis rate in the ultrasound group, urokinase group, and ultrasound + urokinase group (24.83 ± 4.67%, 47.85 ± 7.09%, 61.13 ± 4.06%) was significantly higher than that in the control group (16.11 ± 3.42%) (p = 0.02, p < 0.001, p < 0.001). The blood clot lysis rate in the ultrasound + urokinase group (61.13 ± 4.06%) was significantly higher than that in the ultrasound group (24.83 ± 4.67%) (p < 0.001) or urokinase group (47.85 ± 7.09%) (p < 0.001). In the ultrasound + urokinase group, the mean increase in temperature around the blood clot was 0.26 ± 0.15°C, with a maximum increase of 0.38 ± 0.09°C. There was no significant difference in the increase in temperature regarding the main effect of time interval (F = 0.705, p = 0.620), the main effect of distance (F = 0.788, p = 0.563), or the multiplication interaction between time interval and distance (F = 1.100, p = 0.342). CONCLUSIONS: Our study provides evidence supporting the enhancement of blood clot lysis in an in vitro model of spontaneous intracerebral hemorrhage through the combined use of ultrasound and urokinase. Further animal experiments are necessary to validate the experimental methods and results.


Subject(s)
Cerebral Hemorrhage , Urokinase-Type Plasminogen Activator , Urokinase-Type Plasminogen Activator/pharmacology , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/therapy , Ultrasonic Therapy/methods , Humans , Thrombosis , Animals , Thrombolytic Therapy/methods , Fibrinolysis/drug effects , Blood Coagulation/drug effects
4.
Acta Biomater ; 181: 67-97, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697383

ABSTRACT

Sonodynamic therapy (SDT), utilizing ultrasound (US) as the trigger, has gained popularity recently as a therapeutic approach with significant potential for treating various diseases. Metal-organic frameworks (MOFs), characterized by structural flexibility, are prominently emerging in the SDT realm as an innovative type of sonosensitizer, offering functional tunability and biocompatibility. However, due to the inherent limitations of MOFs, such as low reactivity to reactive oxygen species and challenges posed by the complex tumor microenvironment, MOF-based sonosensitizers with singular functions are unable to demonstrate the desired therapeutic efficacy and may pose risks of toxicity, limiting their biological applications to superficial tissues. MOFs generally possess distinctive crystalline structures and properties, and their controlled coordination environments provide a flexible platform for exploring structure-effect relationships and guiding the design and development of MOF-based nanomaterials to unlock their broader potential in biological fields. The primary focus of this paper is to summarize cases involving the modification of different MOF materials and the innovative strategies developed for various complex conditions. The paper outlines the diverse application areas of functionalized MOF-based sonosensitizers in tumor synergistic therapies, highlighting the extensive prospects of SDT. Additionally, challenges confronting SDT are briefly summarized to stimulate increased scientific interest in the practical application of MOFs and the successful clinical translation of SDT. Through these discussions, we strive to foster advancements that lead to early-stage clinical benefits for patients. STATEMENT OF SIGNIFICANCE: 1. An overview for the progresses in SDT explored from a novel and fundamental perspective. 2. Different modification strategies to improve the MOFs-mediated SDT efficacy are provided. 3. Guidelines for the design of multifunctional MOFs-based sonosensitizers are offered. 4. Powerful tumor ablation potential is reflected in SDT-led synergistic therapies. 5. Future challenges in the field of MOFs-based SDT in clinical translation are suggested.


Subject(s)
Metal-Organic Frameworks , Neoplasms , Ultrasonic Therapy , Metal-Organic Frameworks/chemistry , Humans , Neoplasms/therapy , Neoplasms/pathology , Ultrasonic Therapy/methods , Animals
5.
Int Immunopharmacol ; 134: 112233, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38735256

ABSTRACT

Immunotherapy has become a revolutionary method for treating tumors, offering new hope to cancer patients worldwide. Immunotherapy strategies such as checkpoint inhibitors, chimeric antigen receptor T-cell (CAR-T) therapy, and cancer vaccines have shown significant potential in clinical trials. Despite the promising results, there are still limitations that impede the overall effectiveness of immunotherapy; the response to immunotherapy is uneven, the response rate of patients is still low, and systemic immune toxicity accompanied with tumor cell immune evasion is common. Ultrasound technology has evolved rapidly in recent years and has become a significant player in tumor immunotherapy. The introductions of high intensity focused ultrasound and ultrasound-stimulated microbubbles have opened doors for new therapeutic strategies in the fight against tumor. This paper explores the revolutionary advancements of ultrasound combined with immunotherapy in this particular field.


Subject(s)
Immunotherapy , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/diagnostic imaging , Immunotherapy/methods , Animals , Ultrasonography/methods , Cancer Vaccines/therapeutic use , Cancer Vaccines/immunology , Immune Checkpoint Inhibitors/therapeutic use , Microbubbles , Immunotherapy, Adoptive/methods , Combined Modality Therapy , Ultrasonic Therapy/methods
6.
Medicine (Baltimore) ; 103(19): e38092, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728468

ABSTRACT

Ultrasound therapy is a method of applying ultrasonic energy to the stimulation produced by human body to change the function and tissue state of the body in order to achieve the purpose of treating diseases. Chronic venous ulcer is a common chronic skin ulcer. GSE222503 for ultrasound therapy of chronic venous ulcers was downloaded from gene expression omnibus database, which were used to identify differentially expressed genes. Weighted gene co-expression network analysis, functional enrichment analysis, gene set enrichment analysis, immune infiltration analysis and construction and analysis of protein-protein interaction network were performed. Draw gene expression heatmaps. Comparative toxicogenomics database analysis was performed. Two hundred thirty-five differentially expressed genes were obtained. According to gene ontology analysis, in biological process analysis, they were mainly enriched in positive regulation of cellular biosynthetic process, reproductive cell development, vasculogenesis, vascular morphogenesis, and inflammatory response. In cellular component analysis, they were mainly enriched in leading edge of growing cell, extracellular matrix binding organelle, F-actin capping protein complex. In molecular function analysis, they were mainly concentrated in receptor ligand activity, cytokine receptor binding. In Kyoto encyclopedia of genes and genomes analysis, they were mainly enriched in cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, HIF-1 signaling pathway, heme biosynthesis. In weighted gene co-expression network analysis, the soft threshold power was set to 9. Thirty modules were generated. PF4, NR1I2, TTC16, H3C12, KLRB1, CYP21A2 identified by 4 algorithms (MCC, EPC, closeness, stress). Heatmap of core gene expression showed that H3C12, KLRB1, PF4, NR1I2 were all underexpressed in samples of ultrasound-treated chronic venous ulcers and overexpressed in samples of untreated chronic venous ulcers. Comparative toxicogenomics database analysis showed that H3C12, KLRB1, PF4, NR1I2 are associated with thrombophlebitis, phlebitis, vascular malformations, metabolic syndrome, ulcers, and inflammation. In samples of chronic venous ulcer tissue treated with ultrasound, NR1I2 shows low expression, while in samples of chronic venous ulcer tissue without ultrasound treatment, it shows high expression. This finding suggests a potential role of NR1I2 in the process of ultrasound therapy for chronic venous ulcers, which may be related to the therapeutic effect of ultrasound therapy on chronic venous ulcers.


Subject(s)
Pregnane X Receptor , Ultrasonic Therapy , Varicose Ulcer , Humans , Chronic Disease , Gene Expression Profiling/methods , Gene Ontology , Protein Interaction Maps , Ultrasonic Therapy/methods , Varicose Ulcer/therapy , Varicose Ulcer/genetics , Varicose Ulcer/metabolism , Pregnane X Receptor/genetics , Pregnane X Receptor/metabolism
7.
Trials ; 25(1): 275, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650028

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a progressive, neurodegenerative illness marked by the loss of dopaminergic neurons, causing motor symptoms. Oral levodopa replacement therapy remains the gold standard in the treatment of PD. It is, nevertheless, a symptomatic treatment. There is currently no effective treatment for PD. Therefore, new therapies for PD are highly desirable. Low-intensity pulsed ultrasound (LIPUS) has been shown to improve behavioral functions in PD animal models. It is a new type of neuromodulation approach that combines noninvasiveness with high spatial precision. The purpose of this study is to establish a new clinical protocol for LIPUS in the treatment of movement disorders in patients with PD. METHODS: This protocol is a single-site, prospective, double-blind, randomized controlled trial (RCT). Forty-eight participants with clinically confirmed PD will be randomly allocated to one of two groups: LIPUS group or sham group. All of the participants continue to use pharmacological therapy as a fundamental treatment. The primary outcome is the difference between groups from baseline to 4 months in the change in the Unified Parkinson's Disease Rating Scale (UPDRS) motor score (part III). The secondary outcomes include the rating scales such as the Mini-Mental State Examination (MMSE), and other three rating scales, and medical examinations including high-density electroencephalography (hdEEG) and functional magnetic resonance imaging (fMRI). The primary safety outcome will be assessed at 4 months, and adverse events will be recorded. DISCUSSION: This study represents the clinical investigation into the efficacy of therapeutic LIPUS in the treatment of PD for the first time. If LIPUS is determined to be effective, it could offer a practical and innovative means of expanding the accessibility of ultrasound therapy by using a wearable LIPUS device within a home setting. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2100052093. Registered on 17 October 2021.


Subject(s)
Parkinson Disease , Randomized Controlled Trials as Topic , Ultrasonic Therapy , Humans , Parkinson Disease/therapy , Parkinson Disease/complications , Double-Blind Method , Prospective Studies , Treatment Outcome , Ultrasonic Therapy/methods , Male , Wearable Electronic Devices , Aged , Middle Aged , Female , Time Factors , China
8.
Reprod Biol Endocrinol ; 22(1): 51, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671458

ABSTRACT

BACKGROUND: Ovarian damage and follicle loss are major side effects of chemotherapy in young female patients with cancer. However, effective strategies to prevent these injuries are still lacking. The purpose of this study was to verify low-intensity pulsed ultrasound (LIPUS) can reduce ovarian injury caused by chemotherapy and to explore its underlying mechanisms in mice model. METHODS: The mice were randomly divided into the Control group, Cisplatin group, and Cisplatin + LIPUS group. The Cisplatin group and Cisplatin + LIPUS group were intraperitoneally injected with cisplatin every other day for a total of 10 injections, and the Control group was injected with saline. On the second day of each injection, the Cisplatin + LIPUS group received irradiation, whereas the other two groups received sham irradiation. We used a variety of biotechnologies to detect the differences in follicle count, granulosa cell apoptosis, fibrosis, transcriptome level, oxidative damage, and inflammation in differently treated mice. RESULT: LIPUS was able to reduce primordial follicle pool depletion induced by cisplatin and inhibit the apoptosis of granulosa cells. Transcriptomic results confirmed that LIPUS can reduce ovarian tissue injury. We demonstrated that LIPUS can relieve ovarian fibrosis by inhibiting TGF-ß1/Smads pathway. Meanwhile, it can reduce the oxidative damage and reduced the mRNA levels of proinflammatory cytokines caused by chemotherapy. CONCLUSION: LIPUS can reduce the toxic effects of chemotherapy drugs on ovaries, inhibit ovarian fibrosis, reduce the inflammatory response, and redcue the oxidative damage, reduce follicle depletion and to maintain the number of follicle pools.


Subject(s)
Antineoplastic Agents , Cisplatin , Ovary , Ultrasonic Waves , Animals , Female , Mice , Cisplatin/adverse effects , Ovary/drug effects , Ovary/radiation effects , Ovary/pathology , Antineoplastic Agents/adverse effects , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Apoptosis/radiation effects , Ovarian Follicle/drug effects , Ovarian Follicle/radiation effects , Ultrasonic Therapy/methods
9.
Photodiagnosis Photodyn Ther ; 46: 104075, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574879

ABSTRACT

BACKGROUND: Urinary tract infections (UTIs) are the most common type of nosocomial infection and severe health issues because of the difficulties and frequent recurrence. Today, alternative methods such as sonodynamic therapy (SDT), photodynamic therapy (PDT) and herbal materials use for treating infections like UTI in many countries. METHOD: We conducted searches of the biomedical databases (Google Scholar, Scopus, PubMed, and Web of sciences) to identify related studies from 2008 to 2023. RESULT: SDT aims to use ultrasound to activate a sonosensitizer, which causes a biological effect by raising reactive oxygen species (ROS). When bacteria are exposed to ROS, several important effects occur: oxidative damage, DNA damage, protein dysfunction etc. SDT with herbal medicine significantly reduced the number of colony-forming units and bactericidal activity for Klebsiella pneumonia and E. coli. PDT is a promising treatment for cancer and microbial infections, combining a photosensitiser, light and tissue molecular oxygen. It involves a photosensitizer, light source, and oxygen, with variations affecting microbial binding and bactericidal activity. Factors affecting antibacterial properties include plant type, growing conditions, harvesting, and processing. This review highlights the recent advancements in sonodynamic, photodynamic, herbal, and bio-material-based approaches in the treatment of E. coli infections. CONCLUSIONS: These alternative therapies offer exciting prospects for addressing UTIs, especially in cases where traditional antibiotic treatments may be less effective. Further research and clinical studies are warranted to fully explore the potential of these innovative treatment modalities in combating UTIs and improving patient outcomes.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Urinary Tract Infections , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology , Urinary Tract Infections/therapy , Humans , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/pharmacology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/therapy , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Complementary Therapies/methods , Ultrasonic Therapy/methods , Reactive Oxygen Species
11.
Oral Health Prev Dent ; 22: 151-158, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652288

ABSTRACT

PURPOSE: To investigate the effect of full-mouth disinfection on the sizes of the periodontal wound and periodontal inflammatory burden and whether it leads to a decrease in C-reactive protein (CRP) levels. MATERIALS AND METHODS: The study included 20 systemically healthy subjects (11 women and 9 men) 30 to 68 years old with localised or generalised periodontitis (stage III, grade C). The sizes of the periodontal wound and periodontal inflammatory burden were measured with the web application "Periodontalwound", which is based on measurements of average tooth cervices, as well as probing depths and bleeding on probing assessed at six sites around each tooth present in the oral cavity. The levels of hsCRP (high-sensitivity CRP) were measured with an immunochemical method. All three parameters were measured before initial treatment and 3 months after therapy. Full-mouth disinfection included removal of plaque and calculus with ultrasonic and hand instruments in one session. RESULTS: The results showed a statistically significant decrease in the size of the periodontal wound (p < 0.001), a statistically significant decrease in the size of periodontal inflammatory burden (p < 0.001), and a decrease in hsCRP levels 3 months after therapy. CONCLUSION: Full-mouth disinfection leads to a decrease in the periodontal wound and periodontal inflammatory burden size, as well as a decrease in the levels of hsCRP in patients with localised or generalised periodontitis (stage III, grade C).


Subject(s)
C-Reactive Protein , Disinfection , Humans , Male , Female , C-Reactive Protein/analysis , Middle Aged , Adult , Aged , Disinfection/methods , Periodontitis , Periodontal Index , Dental Plaque , Dental Calculus , Periodontal Pocket , Ultrasonic Therapy/methods
12.
ACS Chem Neurosci ; 15(9): 1728-1731, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38634833

ABSTRACT

Ultrasound neuromodulation is a potential alternative therapy for suppressing epileptic discharges. Recently, several human clinical trials have reported promising results from repeated focused ultrasound (FUS) treatments for temporal lobe epilepsy. In this Viewpoint, we highlight the valuable guidance of preclinical validation methods for choosing the optimal FUS parameters, thus ensuring consistency with the outcomes of clinical trials and leading human trials to the safest and most effective approaches.


Subject(s)
Disease Models, Animal , Epilepsy , Animals , Humans , Epilepsy/therapy , Epilepsy, Temporal Lobe/therapy , Ultrasonic Therapy/methods
13.
J Drugs Dermatol ; 23(4): 249-254, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38564386

ABSTRACT

BACKGROUND: Micro-focused ultrasound with visualization (MFU-V) delivers energy to specific soft tissue layers beneath the epidermis with the ability to lift and tighten the lower face and neck.  Objective: To determine the efficacy of microfocused ultrasound with visualization (MFU-V) using a standard treatment line protocol versus a customized treatment line protocol based on the patient's unique anatomy targeting the superficial muscular aponeurotic system and fibrous septae for lifting and tightening of the lower face and neck. METHODS: This was a single-center, prospective, randomized, investigator-blinded clinical trial. 51 subjects were randomized to receive a single treatment of MFU-V targeting the lower face and neck using either a standard or custom treatment protocol.   Results: Subjects in both standard and custom treatment groups noted a greater than one-point improvement in jawline laxity. Three-dimensional photography measurements also demonstrated lifting of the lower face and neck in both treatment groups. CONCLUSION: Custom and standard treatment MFU-V protocols produce a safe and effective treatment for tightening and lifting the lower face and neck. Custom treatment protocols aid in maximizing results for patients with variations in the anatomy of the lower face and neck.  J Drugs Dermatol. 2024;23(4):7647.     doi:10.36849/JDD.7647.


Subject(s)
Cosmetic Techniques , Rhytidoplasty , Skin Aging , Ultrasonic Therapy , Humans , Rhytidoplasty/methods , Ultrasonic Therapy/adverse effects , Ultrasonic Therapy/methods , Prospective Studies , Ultrasonography , Treatment Outcome , Neck/diagnostic imaging , Patient Satisfaction , Randomized Controlled Trials as Topic
14.
Neurotherapeutics ; 21(3): e00352, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38636309

ABSTRACT

The blood-brain barrier (BBB) presents a formidable challenge in delivering therapeutic agents to the central nervous system. Ultrasound-mediated BBB disruption has emerged as a promising non-invasive technique to enhance drug delivery to the brain. This manuscript reviews fundamental principles of ultrasound-based techniques and their mechanisms of action in temporarily permeabilizing the BBB. Clinical trials employing ultrasound for BBB disruption are discussed, summarizing diverse applications ranging from the treatment of neurodegenerative diseases to targeted drug delivery for brain tumors. The review also addresses safety considerations, outlining the current understanding of potential risks and mitigation strategies associated with ultrasound exposure, including real-time monitoring and assessment of treatment efficacy. Among the large number of studies, significant successes are highlighted thus providing perspective on the future direction of the field.


Subject(s)
Blood-Brain Barrier , Drug Delivery Systems , Blood-Brain Barrier/radiation effects , Humans , Drug Delivery Systems/methods , Animals , Ultrasonic Therapy/methods
15.
PLoS One ; 19(4): e0301825, 2024.
Article in English | MEDLINE | ID: mdl-38687759

ABSTRACT

BACKGROUND: Short-term poor uterine involution manifests as uterine contraction weakness. This is one of the important causes of postpartum hemorrhage, posing a serious threat to the mother's life and safety. The study aims to investigate whether low-intensity focused ultrasound (LIFUS) can effectively shorten lochia duration, alleviate postpartum complications, and accelerate uterine involution compared with the sham treatment. METHODS: A multicenter, concealed, randomized, blinded, and sham-controlled clinical trial was conducted across three medical centers involving 176 subjects, utilizing a parallel group design. Enrollment occurred between October 2019 and September 2020, with a 42-day follow-up period. Participants meeting the inclusion and exclusion criteria based on normal prenatal examinations were randomly divided into the LIFUS group or the sham operation group via computer-generated randomization. Patients in the LIFUS group received usual care with the LIFUS protocol, wherein a LIFUS signal was transmitted to the uterine site through coupling gel, or sham treatment, where no low-intensity ultrasound signal output was emitted. The primary outcome, lochia duration, was assessed via weekly telephonic follow-ups post-discharge. The involution of the uterus, measured by uterine fundus height, served as the secondary outcome. RESULTS: Among the 256 subjects screened for eligibility, 176 subjects were enrolled and randomly assigned to either the LIFUS group (n = 88) or the Sham group (n = 88). Data on the height of the uterine fundus were obtained from all the patients, with 696 out of 704 measurements (99%) successfully recorded. Overall, a statistically significant difference was noted in time to lochia termination (hazard ratio: 2.65; 95% confidence interval [CI]: 1.82-3.85; P < 0.001). The decline in fundal height exhibited notable discrepancies between the two groups following the second treatment session (mean difference: -1.74; 95% CI: -1.23 to -2.25; P < 0.001) and the third treatment session (mean difference: -3.26; 95% CI: -2.74 to -3.78; P < 0.001) after delivery. None of the subjects had any adverse reactions, such as skin damage or allergies during the treatment. CONCLUSIONS: This study found that LIFUS treatment can promote uterine involution and abbreviate the duration of postpartum lochia. Ultrasound emerges as a safe and effective intervention, poised to address further clinical inquiries in the domain of postpartum rehabilitation.


Subject(s)
Postpartum Period , Uterus , Humans , Female , Adult , Uterus/diagnostic imaging , Pregnancy , Ultrasonic Therapy/methods , Postpartum Hemorrhage/therapy , Treatment Outcome , Uterine Contraction/physiology
16.
Phys Med Biol ; 69(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38537292

ABSTRACT

Objective.To optimize and ensure the safety of ultrasound brain therapy, personalized transcranial ultrasound simulations are very useful. They allow to predict the pressure field, depending on the patient skull and probe position. Most transcranial ultrasound simulations are based on numerical methods which have a long computation time and a high memory usage. The goal of this study is to develop a new semi-analytical field computation method that combines realism and computation speed.Approach.Instead of the classic ray tracing, the ultrasonic paths are computed by time of flight minimization. Then the pressure field is computed using the pencil method. This method requires a smooth and homogeneous skull model. The simulation algorithm, so-called SplineBeam, was numerically validated, by comparison with existing solvers, and experimentally validated by comparison with hydrophone measured pressure fields through anex vivohuman skull.Main results.SplineBeam simulated pressure fields were close to the experimentally measured ones, with a focus position difference of the order of the positioning error and a maximum pressure difference lower than 6.02%. In addition, for those configurations, SplineBeam computation time was lower than another simulation software, k-Wave's, by two orders of magnitude, thanks to its capacity to compute the field only at the focal spot.Significance.These results show the potential of this new method to compute fast and realistic transcranial pressure fields. The combination of this two assets makes it a promising tool for real time transcranial pressure field prediction during ultrasound brain therapy interventions.


Subject(s)
Skull , Skull/diagnostic imaging , Humans , Time Factors , Pressure , Computer Simulation , Ultrasonic Therapy/methods , Algorithms , Ultrasonography/methods
17.
Int J Pharm ; 655: 124015, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38527565

ABSTRACT

Sonodynamic therapy (SDT) utilizes ultrasonic excitation of a sensitizer to generate reactive oxygen species (ROS) to destroy tumor. Two dimensional (2D) black phosphorus (BP) is an emerging sonosensitizer that can promote ROS production to be used in SDT but it alone lacks active targeting effect and showed low therapy efficiency. In this study, a stable dispersion of integrated micro-nanoplatform consisting of BP nanosheets loaded and Fe3O4 nanoparticles (NPs) connected microbubbles was introduced for ultrasound imaging guided and magnetic field directed precision SDT of breast cancer. The targeted ultrasound imaging at 18 MHz and efficient SDT effects at 1 MHz were demonstrated both in-vitro and in-vivo on the breast cancer. The magnetic microbubbles targeted deliver BP nanosheets to the tumor site under magnetic navigation and increased the uptake of BP nanosheets by inducing cavitation effect for increased cell membrane permeability via ultrasound targeted microbubble destruction (UTMD). The mechanism of SDT by magnetic black phosphorus microbubbles was proposed to be originated from the ROS triggered mitochondria mediated apoptosis by up-regulating the pro-apoptotic proteins while down-regulating the anti-apoptotic proteins. In conclusion, the ultrasound theranostic was realized via the magnetic black phosphorus microbubbles, which could realize targeting and catalytic sonodynamic therapy.


Subject(s)
Breast Neoplasms , Ultrasonic Therapy , Humans , Female , Microbubbles , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Ultrasonography , Ultrasonic Therapy/methods , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/therapy , Phosphorus , Magnetic Phenomena
18.
Int J Nanomedicine ; 19: 2793-2806, 2024.
Article in English | MEDLINE | ID: mdl-38525011

ABSTRACT

Background: Prostate cancer (PCa) poses a significant global health threaten. Immunotherapy has emerged as a novel strategy to augment the inhibition of tumor proliferation. However, the sole use of anti-PD-L1 Ab for PCa has not yielded improvements, mirroring outcomes observed in other tumor types. Methods: This study employed the thin film hydration method to develop lipid nanobubbles (NBs) encapsulating chlorin e6 (Ce6) and anti-PD-L1 Ab (Ce6@aPD-L1 NBs). Our experimental approach included cellular assays and mouse immunization, providing a comprehensive evaluation of Ce6@aPD-L1 NBs' impact. Results: The Ce6@aPD-L1 NBs effectively induced reactive oxygen species generation, leading to tumor cells death. In mice, they demonstrated a remarkable enhancement of immune responses compared to control groups. These immune responses encompassed immunogenic cell death induced by sonodynamic therapy and PD-1/PD-L1 blockade, activating dendritic cells maturation and effectively stimulating CD8+T cells. Conclusion: Ce6@aPD-L1 NBs facilitate tumor-targeted delivery, activating anti-tumor effects through direct sonodynamic therapy action and immune system reactivation in the tumor microenvironment. Ce6@aPD-L1 NBs exhibit substantial potential for achieving synergistic anti-cancer effects in PCa.


Subject(s)
Photochemotherapy , Prostatic Neoplasms , Ultrasonic Therapy , Humans , Male , Mice , Animals , Ultrasonic Therapy/methods , Ultrasonography , Prostatic Neoplasms/drug therapy , Photochemotherapy/methods , Immunotherapy , Cell Line, Tumor , Tumor Microenvironment
19.
Ultrasound Med Biol ; 50(6): 869-881, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38538442

ABSTRACT

OBJECTIVE: Novel strategies for treating triple-negative breast cancer (TNBC) are ongoing because of the lack of standard-of-care treatment. Nanoframed materials with a protein pillar are considered a valuable tool for designing multigoals of energy-absorbing/medication cargo and are a bridge to cross-conventional treatment strategies. METHODS: Nanobioconjugates of gold nanoclusters-bovine serum albumin (AuNCs-BSA) and doxorubicin-AuNCs-BSA (Dox-AuNCs-BSA) were prepared and employed as a simultaneous double photosensitizer/sonosensitizer and triple chemotherapeutic/photosensitizer/sonosensitizer, respectively. RESULTS: The highly stable AuNCs-BSA and Dox-AuNCs-BSA have ζ potentials of -29 and -18 mV, respectively, and represent valuable photothermal and sonodynamic activities for the combination of photothermal therapy and sonodynamic therapy (PTT/SDT) and synchronized chemotherapy/photothermal therapy/sonodynamic therapy (CTX/PTT/SDT) of human TNBC cells, respectively. The efficiency of photothermal conversion of AuNCs-BSA was calculated to be a promising value of 32.9%. AuNCs-BSA and Dox-AuNCs-BSA were activated on either laser light irradiation or ultrasound exposure with the highest efficiency on the combination of both types of radiation. CTX/PTT/SDT of MCF-7 and MDA-MB-231 breast cancer cell lines by Dox-AuNCs-BSA were evaluated with the MTT cell proliferation assay and found to progress synergistically. CONCLUSION: Results of the MTT assay, detection of the generation of intracellular reactive oxygen species and occurrence of apoptosis in the cells confirmed that CTX/PTT/SDT by Dox-AuNCs-BSA was attained with lower needed doses of the drug and improved tumor cell ablation, which would result in the enhancement of therapeutic efficacy and overcoming of therapeutic resistance.


Subject(s)
Antibiotics, Antineoplastic , Doxorubicin , Gold , Photothermal Therapy , Serum Albumin, Bovine , Triple Negative Breast Neoplasms , Ultrasonic Therapy , Humans , Gold/chemistry , Doxorubicin/pharmacology , Triple Negative Breast Neoplasms/therapy , Female , Ultrasonic Therapy/methods , Photothermal Therapy/methods , Antibiotics, Antineoplastic/pharmacology , Nanoconjugates/chemistry , Combined Modality Therapy , Metal Nanoparticles , Receptors, Estrogen , Cell Line, Tumor , Breast Neoplasms/therapy
20.
Psychiatry Clin Neurosci ; 78(5): 273-281, 2024 May.
Article in English | MEDLINE | ID: mdl-38505983

ABSTRACT

Low-intensity focused transcranial ultrasound stimulation (TUS) is an emerging noninvasive technique capable of stimulating both the cerebral cortex and deep brain structures with high spatial precision. This method is recognized for its potential to comprehensively perturb various brain regions, enabling the modulation of neural circuits, in a manner not achievable through conventional magnetic or electrical brain stimulation techniques. The underlying mechanisms of neuromodulation are based on a phenomenon where mechanical waves of ultrasound kinetically interact with neurons, specifically affecting neuronal membranes and mechanosensitive channels. This interaction induces alterations in the excitability of neurons within the stimulated region. In this review, we briefly present the fundamental principles of ultrasound physics and the physiological mechanisms of TUS neuromodulation. We explain the experimental apparatus and procedures for TUS in humans. Due to the focality, the integration of various methods, including magnetic resonance imaging and magnetic resonance-guided neuronavigation systems, is important to perform TUS experiments for precise targeting. We then review the current state of the literature on TUS neuromodulation, with a particular focus on human subjects, targeting both the cerebral cortex and deep subcortical structures. Finally, we outline future perspectives of TUS in clinical applications in psychiatric and neurological fields.


Subject(s)
Cerebral Cortex , Humans , Cerebral Cortex/physiology , Cerebral Cortex/diagnostic imaging , Ultrasonic Therapy/methods , Brain/physiology , Brain/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...