Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 366
Filter
1.
Food Res Int ; 186: 114375, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729732

ABSTRACT

The proximal composition and its seasonal variation of the green seaweed Ulva sp. harvested in a traditional saline (earthen ponds used for marine salt extraction) from Cadiz Bay (Southern Spain) was evaluated. Ulva sp. was also collected in a reference location within the Bay in order to compare and evaluate the effects of the particular characteristics of the saline in the composition of the macroalgae. Moisture, protein, lipid, ash, carbohydrate, fiber and macro- (Na, K, Ca, Mg), micro-mineral contents (Fe, Zn, Cu) and heavy metals (As, Cd, Co, Cr, Hg, Ni, Pb, Sn) of harvested biomass samples as well as environmental parameters of seawater (temperature, salinity, pH, DO, NH4+, NO3-, NO2- and PO43-) were measured. The results showed that Ulva sp. from the earthen ponds in the traditional salina was a better source of proteins, lipids, K and Mg, highlighting in summer with values of 27.54 % versus 6.11 %; 6.71 % versus 3.26 %; 26.60 mg g-1 versus 14.21 mg g-1 and 23.13 mg g-1 versus 17.79 mg g-1, respectively. It also had Na/K and Ca/Mg ratios of less than one, suggesting a healthy food source. Considering the Commission Recommendation (EU) 2018/464 as a working reference, Ulva sp. did not exceed the limit of toxic metals for human consumption.A season and site-season significant interaction on the composition of the seaweeds was observed. The proximal and mineral composition of Ulva sp. was influenced by the special features and environmental conditions of the earthen ponds. Hence, significant differences were observed in the macroalgae collected in the earthen ponds in summer and autumn, in contrast to the winter and spring samples, whose characteristics were similar to those from the inner bay. The closure of the lock-gates in summer to favor the production of salt significantly modified the environmental characteristics of the saline, affecting the physiological capacity of Ulva sp. to assimilate and storage nutrients, and therefore its tissue composition. As a consequence, the highest contents of lipid, ash, Ca, K, Mg and Fe were estimated in the macroalgae.


Subject(s)
Metals, Heavy , Minerals , Nutritive Value , Seawater , Ulva , Ulva/chemistry , Minerals/analysis , Metals, Heavy/analysis , Seawater/chemistry , Humans , Spain , Seasons , Seaweed/chemistry , Lactuca/chemistry , Salinity
2.
J Agric Food Chem ; 72(20): 11773-11781, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38722333

ABSTRACT

Ulvan is a complex sulfated polysaccharide extracted from Ulva, and ulvan lyases can degrade ulvan through a ß-elimination mechanism to obtain oligosaccharides. In this study, a new ulvan lyase, EPL15085, which belongs to the polysaccharide lyase (PL) 28 family from Tamlana fucoidanivorans CW2-9, was characterized in detail. The optimal pH and salinity are 9.0 and 0.4 M NaCl, respectively. The Km and Vmax of recombinant EPL15085 toward ulvan are 0.80 mg·mL-1 and 11.22 µmol·min -1 mg-1·mL-1, respectively. Unexpectedly, it is very resistant to high temperatures. After treatment at 100 °C, EPL15085 maintained its ability to degrade ulvan. Molecular dynamics simulation analysis and site-directed mutagenesis analysis indicated that the strong rigidity of the disulfide bond between Cys74-Cys102 in the N-terminus is related to its thermostability. In addition, oligosaccharides with disaccharides and tetrasaccharides were the end products of EPL15085. Based on molecular docking and site-directed mutagenesis analysis, Tyr177 and Leu134 are considered to be the crucial residues for enzyme activity. In conclusion, our study identified a new PL28 family of ulvan lyases, EPL15085, with excellent heat resistance that can expand the database of ulvan lyases and provide the possibility to make full use of ulvan.


Subject(s)
Enzyme Stability , Polysaccharide-Lyases , Polysaccharides , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Kinetics , Hot Temperature , Hydrogen-Ion Concentration , Mutagenesis, Site-Directed , Substrate Specificity , Molecular Docking Simulation , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Ulva/chemistry , Ulva/enzymology , Ulva/genetics , Molecular Dynamics Simulation
3.
Sci Rep ; 14(1): 11583, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773106

ABSTRACT

The present investigation explores the efficacy of green algae Ulva lactuca biochar-sulfur (GABS) modified with H2SO4 and NaHCO3 in adsorbing methylene blue (MB) dye from aqueous solutions. The impact of solution pH, contact duration, GABS dosage, and initial MB dye concentration on the adsorption process are all methodically investigated in this work. To obtain a thorough understanding of the adsorption dynamics, the study makes use of several kinetic models, including pseudo-first order and pseudo-second order models, in addition to isotherm models like Langmuir, Freundlich, Tempkin, and Dubinin-Radushkevich. The findings of the study reveal that the adsorption capacity at equilibrium (qe) reaches 303.78 mg/g for a GABS dose of 0.5 g/L and an initial MB dye concentration of 200 mg/L. Notably, the Langmuir isotherm model consistently fits the experimental data across different GABS doses, suggesting homogeneous adsorption onto a monolayer surface. The potential of GABS as an efficient adsorbent for the extraction of MB dye from aqueous solutions is highlighted by this discovery. The study's use of kinetic and isotherm models provides a robust framework for understanding the intricacies of MB adsorption onto GABS. By elucidating the impact of various variables on the adsorption process, the research contributes valuable insights that can inform the design of efficient wastewater treatment solutions. The comprehensive analysis presented in this study serves as a solid foundation for further research and development in the field of adsorption-based water treatment technologies.


Subject(s)
Charcoal , Methylene Blue , Ulva , Water Pollutants, Chemical , Water Purification , Methylene Blue/chemistry , Charcoal/chemistry , Ulva/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Kinetics , Water Purification/methods , Sulfur/chemistry , Hydrogen-Ion Concentration , Water/chemistry , Edible Seaweeds
4.
Open Vet J ; 14(3): 769-778, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38682138

ABSTRACT

Background: Food poisoning caused by bacterial agents is a worldwide problem, usually accompanied by unpleasant symptoms and may be severe leading to death. Natural compounds from marine algae namely flavonoids may play a role in the remedy of this condition. Aim: This research aims to assess the potency of flavonoids extracted from Enteromorpha intestinalis and Caulerpa prolifera as antibacterial agents. Methods: Enteromorpha intestinalis was collected from Western Libyan Coast and C. prolifera was collected from Farwa Island. The antimicrobial activity and determination of minimum inhibitory concentration of algal flavonoid-containing extracts was performed in vitro against some positive and negative Gram bacteria. Results: Crude extract containing flavonoids from E. intestinalis was more effective than C. prolifera extract against Staphylococcus aureus with antimicrobial essay (25-28 + 1 and 14.5-37.5 + 0.5-1.5), MIC (50 and 50-250 µg/ml), MBC (75 and 75-250 µg/ml). In Bacillus cereus, the antimicrobial assay (19-24.5 + 0.5-1.5: 24 + 1), MIC (50-250 + 100 µg/ml), and MBC (250 and 125 µg/ml). On the other hand, flavonoids containing extract from C. prolifera were more effective than E. intestinalis against Enterohemorrhagic Escherichia coli O157 EHEC O157 (25-28 + 1: 14-18.5 + 0.5-1.5), MIC (100-250:100-500 µg/ml), and MBC (150-250 and 250-500 µg/ml). Salmonella enterica qualitatively combat by flavonoid from E. intestinalis (13.5-14 + 0.5-1: 10.5-13.5 + 0.5-1.5), MIC (100-250: 250 µg/ml), and MBC (100-250: 250 µg/ml). Flavonoids from C. prolifera (4 strains: 2 strains) were effective against S. enterica. Crude flavonoids from both algae were not effective against Bacillus pumilus. Conclusion: Data from this study could conclude that flavonoid extracts from E. intestinalis and C. prolifera could be used against foodborne bacterial agents.


Subject(s)
Anti-Bacterial Agents , Caulerpa , Drug Resistance, Multiple, Bacterial , Flavonoids , Microbial Sensitivity Tests , Flavonoids/pharmacology , Flavonoids/chemistry , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Caulerpa/chemistry , Ulva/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Foodborne Diseases/veterinary , Animals
5.
Carbohydr Polym ; 333: 121962, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38494219

ABSTRACT

Ulva are hardy green seaweeds that contain the sulfated polysaccharide ulvan and grow in two distinct morphologies: foliose and tubular. The authors hypothesise that ulvan from tubular species are more structurally complex than ulvans from foliose species. Herein, using standardised methods, the glycosyl linkage positions and sulfate ester substitutions of constituent monosaccharides of ulvan isolated from foliose (U. lacinulata and U. stenophylloides) and tubular (U. prolifera and U. ralfsii) species of Ulva were investigated. Comparison of native ulvans with 80 and 100 °C desulfated counterparts indicated that 4-linked rhamnose is predominantly 3-O-sulfated in all four ulvans. Ulvans from the foliose species predominantly contained →3,4)-Rhap-(1→, →4)-GlcAp-(1→ and →4)-IdoAp-(1→, collectively accounting for 67 to 81 mol% of the total linkages. In contrast, these same linkages in ulvans from the tubular species only collectively accounted for 29 to 36 mol%. Instead, ulvan from tubular species contained a combination of →2,3,4)-Rhap-(1→, terminal Rhap-(1→, →4)-GlcAp-(1→, →4)-Xylp-(1→, and/or →4)-Galp-(1→ in high proportions; some of the latter three residues were also likely O-2 sulfated. The results presented here suggest that ulvan from foliose species are predominantly unbranched polysaccharides composed of repeat disaccharides while ulvans from tubular species contain a greater diversity of branch and sulfate substitution locations.


Subject(s)
Seaweed , Ulva , Ulva/chemistry , Polysaccharides/chemistry , Sulfates/chemistry
6.
Mar Biotechnol (NY) ; 26(2): 324-337, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430291

ABSTRACT

Seaweed from the genus Ulva (Ulvales, Chlorophyta) has a worldwide distribution and represents a potential biomass source for biotechnological applications. In the present study, we investigated the ulvan polysaccharide-rich fraction (UPRF) isolated from two Ulva species (U. rigida and U. pseudorotundata), naturally occurring on the Spanish Mediterranean coast. Chemical characterization of UPRFs was performed in order to explore the polysaccharides' composition. Biological assessments of UPRFs were compared by antioxidant activity and in vitro toxicity tests in the human cell lines: HCT-116 (colon cancer), G-361 (malignant melanoma), U-937 (leukemia), and HaCaT cells (immortalized keratinocytes). Chemical analysis revealed that both UPRFs presented rhamnose as the major relative sugar constituent, followed by glucose in U. rigida and xylose in U. pseudorotundata. Both also presented glucuronic acid, galactose, ribose, and mannose as the remaining monosaccharides. Similar antioxidant activity was obtained, where we observed increased activity in response to increased polysaccharide concentrations. Both UPRFs presented moderate toxicity against HCT-116 cell lines and a selectivity index ≥ 3, suggesting a good potential for use in pharmaceutical products.


Subject(s)
Antioxidants , Edible Seaweeds , Polysaccharides , Ulva , Ulva/chemistry , Humans , Polysaccharides/pharmacology , Polysaccharides/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , HCT116 Cells , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line , Spain
7.
Int J Biol Macromol ; 262(Pt 2): 130174, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38360235

ABSTRACT

In this study, flash extraction was used to rapidly extract water-soluble polysaccharides from Ulva linza. The optimal extraction process for the flash extraction was determined by Box-Behnken design with extraction temperature 80 °C, extraction time 117 s, liquid-solid ratio 46:1 (mL/g) and a corresponding yield of 18.5 %. The crude Ulva linza polysaccharides (CULP) were subsequently isolated by chromatography technology to obtain purified Ulva linza polysaccharide (ULP) and characterized by monosaccharide composition and molecular weight determination analysis. Furthermore, the antioxidant bioactivity of ULP was studied and the results revealed that it had a good scavenging effect on DPPH, ABTS and OH, with IC50 values of 149.2 µg/mL, 252.5 µg/mL and 1073 µg/mL, respectively. After in vitro fermentation by human fecal microbiota, the pH value of fermentation culture significantly decreased to 5.06, suggesting that ULP could be hydrolyzed and utilized by gut microbiota. The abundance of beneficial bacteria including Bacteroides, Parabacteroides and Faecalibacterium was improved. Meanwhile, the relative abundance of Prevotella, Blautia and Ruminococcus was decreased, and the low ratio of these organisms might reveal positive effects on maintaining the balance of gut microbial biodiversity. These results suggested that the composition of the human gut microbiota could be modulated by ULP, and ULP might possess the potential to maintain gut homeostasis and improve human intestinal health.


Subject(s)
Gastrointestinal Microbiome , Seaweed , Ulva , Humans , Antioxidants/chemistry , Ulva/chemistry , Polysaccharides/chemistry
8.
Int J Biol Macromol ; 257(Pt 2): 128698, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38103664

ABSTRACT

In order to fabricate a novel antioxidant nanofiber facial mask, a metal cone modified in-situ electrospinning with precise deposition was employed by utilizing Enteromorpha prolifera polysaccharides (EPPs). The metal cone could control the deposition area to achieve precise fabrication of facial mask on skin. The EPPs exhibited remarkable antioxidant ability, as evidenced by the half-maximal inhibitory concentrations (IC50) of 1.44 mg/mL and 0.74 mg/mL against DPPH and HO• free radicals, respectively. The antioxidant ability of the facial mask was improved by elevating the electrospinning voltage from 15 kV to 19 kV, due to the improved release capacity of EPPs by 7.09 %. Moreover, the facial mask demonstrated robust skin adhesion and moisture-retaining properties compared with commercial facial mask, which was benefited by the in-situ electrospinning technology. Furthermore, cytotoxicity assay, animal skin irritation test, and ocular irritation test collectively affirmed the safety of the facial mask. Thus, this research introduces a novel in situ electrospinning with precise deposition method and a natural antioxidant additive for preparing facial mask.


Subject(s)
Edible Seaweeds , Nanofibers , Ulva , Animals , Antioxidants/pharmacology , Ulva/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry
9.
Mar Drugs ; 21(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37999380

ABSTRACT

Ulvan, a sulfated heteropolysaccharide with structural and functional properties of interest for various uses, was extracted from the green seaweed Ulva papenfussii. U. papenfussii is an unexplored Ulva species found in the South China Sea along the central coast of Vietnam. Based on dry weight, the ulvan yield was ~15% (w/w) and the ulvan had a sulfate content of 13.4 wt%. The compositional constitution encompassed L-Rhamnose (Rhap), D-Xylose (Xylp), D-Glucuronic acid (GlcAp), L-Iduronic acid (IdoAp), D-Galactose (Galp), and D-Glucose (Glcp) with a molar ratio of 1:0.19:0.35:0.52:0.05:0.11, respectively. The structure of ulvan was determined using High-Performance Liquid Chromatography (HPLC), Fourier Transform Infrared Spectroscopy (FT-IR), and Nuclear Magnetic Resonance spectroscopy (NMR) methods. The results showed that the extracted ulvan comprised a mixture of two different structural forms, namely ("A3s") with the repeating disaccharide [→4)-ß-D-GlcAp-(1→4)-α-L-Rhap 3S-(1→]n, and ("B3s") with the repeating disaccharide [→4)-α-L-IdoAp-(1→4)-α-L-Rhap 3S(1→]n. The relative abundance of A3s, and B3s was 1:1.5, respectively. The potential anticarcinogenic attributes of ulvan were evaluated against a trilogy of human cancer cell lineages. Concomitantly, Quantitative Structure-Activity Relationship (QSAR) modeling was also conducted to predict potential adverse reactions stemming from pharmacological interactions. The ulvan showed significant antitumor growth activity against hepatocellular carcinoma (IC50 ≈ 90 µg/mL), human breast cancer cells (IC50 ≈ 85 µg/mL), and cervical cancer cells (IC50 ≈ 67 µg/mL). The QSAR models demonstrated acceptable predictive power, and seven toxicity indications confirmed the safety of ulvan, warranting its candidacy for further in vivo testing and applications as a biologically active pharmaceutical source for human disease treatment.


Subject(s)
Antineoplastic Agents , Chlorophyta , Neoplasms , Ulva , Humans , Ulva/chemistry , Spectroscopy, Fourier Transform Infrared , Polysaccharides/pharmacology , Polysaccharides/chemistry , Chlorophyta/chemistry , Antineoplastic Agents/pharmacology , Disaccharides
10.
Molecules ; 28(19)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37836624

ABSTRACT

Ulvan is a sulfated polysaccharide extracted from green macroalgae with unique structural and compositional properties. Due to its biocompatibility, biodegradability, and film-forming properties, as well as high stability, ulvan has shown promising potential as an ingredient of biopolymer films such as sustainable and readily biodegradable biomaterials that could replace petroleum-based plastics in diverse applications such as packaging. This work investigates the potential of Ulva fenestrata as a source of ulvan. Enzyme-assisted extraction with commercial cellulases (Viscozyme L and Cellulysin) and proteases (Neutrase 0.8L and Flavourzyme) was used for cell wall disruption, and the effect of the extraction time (3, 6, 17, and 20 h) on the ulvan yield and its main characteristics (molecular weight, functional groups, purity, and antioxidant capacity) were investigated. Furthermore, a combined process based on enzymatic and ultrasound extraction was performed. Results showed that higher extraction times led to higher ulvan yields, reaching a maximum of 14.1% dw with Cellulysin after 20 h. The combination of enzymatic and ultrasound-assisted extraction resulted in the highest ulvan extraction (17.9% dw). The relatively high protein content in U. fenestrata (19.8% dw) makes the residual biomass, after ulvan extraction, a potential protein source in food and feed applications.


Subject(s)
Cellulase , Seaweed , Ulva , Ulva/chemistry , Seaweed/metabolism , Polysaccharides/chemistry
11.
Glycobiology ; 33(10): 837-845, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37593920

ABSTRACT

Ulva is globally distributed specie and has a high economic value. Ulvan is one of the main active substances in Ulva, which has a variety of biological properties. Ulvan lyase degrades ulvan through a ß-elimination mechanism which cleaves the ß-glycosidic bond between Rha3S and GlcA or IdoA. The complex monosaccharide composition of ulvan makes it promising for use in food and pharmaceutical applications. This thesis explores a putative ulvan lyase from Alteromonas sp. KUL_42. We expressed and purified the protein, performed a series of characterizations and signal peptide had been removed. The results showed that the protein molecular weight of ULA-2 was 53.97 kDa, and it had the highest catalytic activity at 45 °C and pH 8.0 in Tris-HCl buffer. The Km and Vmax values were 2.24 mg · mL-1 and 2.048 µmol · min-1 · mL-1, respectively. The activity of ULA-2 was able to maintain more than 80% at 20 ~ 30 °C. ESI-MS analysis showed that the primary end-products were mainly disaccharides to tetrasaccharides. The study of ULA-2 enriches the ulvan lyase library, promotes the development and high-value utilization of Ulva resources, and facilitates further research applications of ulvan lyase in ulva oligosaccharides.


Subject(s)
Ulva , Ulva/chemistry , Ulva/metabolism , Polysaccharides/chemistry , Oligosaccharides/metabolism , Disaccharides
12.
Mar Pollut Bull ; 193: 115266, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37423080

ABSTRACT

Seaweeds have become an important asset in several sectors, including the food and feed industries, cosmetics, and pharmaceuticals, among others. Whether harvested or reared, interest in algae has been growing worldwide due to the resources they offer, including proteins, vitamins, minerals, carbohydrates, essential fatty acids, and dietary fiber, as well as sources of biologically active compounds. However, given their morphology and physiology, as well as their harvest and cultivation environments, algae are prone to the presence of hazards, including pharmaceuticals taken up from the water. Thus, to ensure human and animal safety as well as environmental health, monitoring is essential. Therefore, this work describes the development and validation of a sensitive screening and confirmatory analytical method based on ultra-high-performance liquid chromatography coupled with time-of-flight mass spectrometry (UHPLC-ToF-MS). This multi-residue method enables the determination of 62 pharmaceuticals distributed between 8 therapeutic classes and was fully validated according to Commission Implementing Regulation (EU) 2021/808.


Subject(s)
Seaweed , Ulva , Animals , Humans , Ulva/chemistry , Seaweed/chemistry , Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Pharmaceutical Preparations
13.
Microb Cell Fact ; 22(1): 140, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37525181

ABSTRACT

A sustainable biorefining and bioprocessing strategy was developed to produce edible-ulvan films and non-edible polyhydroxybutyrate films. The preparation of edible-ulvan films by crosslinking and plasticisation of ulvan with citric acid and xylitol was investigated using Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) analysis. The edible ulvan film was tested for its gut-friendliness using Lactobacillus and Bifidobacterium spp. (yoghurt) and was shown to improve these gut-friendly microbiome's growth and simultaneously retarding the activity of pathogens like Escherchia coli and Staphylococcus aureus. Green macroalgal biomass refused after the extraction of ulvan was biologically processed by dark fermentation to produce a maximum of 3.48 (± 0.14) g/L of volatile fatty acids (VFAs). Aerobic processing of these VFAs using Cupriavidus necator cells produced 1.59 (± 0.12) g/L of biomass with 18.2 wt% polyhydroxybutyrate. The present study demonstrated the possibility of producing edible and non-edible packaging films using green macroalgal biomass as the sustainable feedstock.


Subject(s)
Polyhydroxyalkanoates , Seaweed , Ulva , Ulva/chemistry , Seaweed/chemistry , Polysaccharides/chemistry , Vegetables
14.
Molecules ; 28(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37375143

ABSTRACT

In this study, the chemical composition and antioxidant profile of five edible macroalgae, Fucus vesiculosus, Palmaria palmata, Porphyra dioica, Ulva rigida, and Gracilaria gracilis, cultivated in fully controlled closed systems, were determined. Protein, carbohydrates, and fat contents ranged between 12.4% and 41.8%, 27.6% and 42.0%, and 0.1% and 3.4%, respectively. The tested seaweeds presented considerable amounts of Ca, Mg, K, Mn, and Fe, which reinforce their favorable nutritional profile. Regarding their polysaccharide composition, Gracilaria gracilis and Porphyra dioica were rich in sugars common to agar-producing red algae, and Fucus vesiculosus was composed mainly of uronic acids, mannose, and fucose, characteristic of alginate and fucoidans, whereas rhamnose and uronic acid, characteristic of ulvans, predominated in Ulva rigida. Comparatively, the brown F. vesiculosus clearly stood out, presenting a high polysaccharide content rich in fucoidans, and higher total phenolic content and antioxidant scavenging activity, determined by DPPH and ABTS. The remarkable potential of these marine macroalgae makes them excellent ingredients for a wide range of health, food, and industrial applications.


Subject(s)
Gracilaria , Rhodophyta , Seaweed , Ulva , Antioxidants/pharmacology , Antioxidants/metabolism , Seaweed/chemistry , Rhodophyta/chemistry , Gracilaria/chemistry , Ulva/chemistry , Polysaccharides/metabolism
15.
BMC Microbiol ; 23(1): 106, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072731

ABSTRACT

Various antibiotics are available, including gentamicin, chloramphenicol, ampicillin, amoxicillin, and streptomycin, but they have some restrictions. Many microorganisms are resistant to these medications. A new antimicrobial source must be found or developed to solve this issue. Inhere, extract from seaweeds Ulva lactuca was investigated for its antibacterial activity using a well diffusion assay against Klebsiella pneumoniae, and a promising inhibition zone diameter was recorded to be 14.04 mm. The biochemical structure of the antibacterial compound was determined via GC-MS and FTIR analysis. Also, a micro-dilution assay was used to calculate the minimum concentration that makes inhibition (MIC) to be 1.25 mg/ml from U. extract reliable to prevent the visibility of any bacterial growth, this was followed by examining the antibacterial effect of U. Lactuca methanolic extract alone and the synergetic effect of U. Lactuca methanolic extract in combination with two different antibiotics (gentamicin and chloramphenicol). This was assayed by the agar well diffusion method to achieve promising and strong inhibiting power against K. pneumoniae. It was deduced that the maximum synergism could be achieved by adding 2.5 mg/ml of Ulva methanolic extract to gentamicin (4 µg/ml), and the results were illustrated obviously via transmission electron microscope in which severe morphological deteriorations were experienced by the treated cells. From this study, we can conclude that U. lactucae extract has the power to aid antibiotics in reducing the growth of pathogenic K. pneumoniae.


Subject(s)
Anti-Bacterial Agents , Ulva , Anti-Bacterial Agents/chemistry , Ulva/chemistry , Klebsiella pneumoniae , Methanol , Microbial Sensitivity Tests , Chloramphenicol/pharmacology , Gentamicins/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry
16.
Sci Total Environ ; 868: 161661, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36669660

ABSTRACT

In the present work, the residual biomass of the green seaweed Ulva lactuca was chosen as feedstock to undergo separate hydrolysis and fermentation process to produce bioethanol. The hydrolysis process was optimized for cellulase, biomass, temperature, and time conditions. The maximum yield of fermentable sugars was 13.48 mg/mL. The recovered hydrolysate was subjected to fermentation using Saccharomyces cerevisiae. The bioethanol produced was subjected to gas chromatography coupled mass spectrometry analysis to determine the presence of ethanol. The technical performance and economic feasibility of the bioethanol production from U. lactuca were evaluated using the lab-scale data obtained for optimized conditions. The plant capacity was 10 MT/day of bioethanol production. The plant's capital investment and annual operating cost were 3.18 M$ and 0.86 M$ respectively. The total annual revenue of the plant was 1.41 M$. The minimum selling price of bioethanol was 0.47 $/kg. The ROI, payback period, IRR and NPV of the plant were 16.99 %, 5.89 years, 11.57 % and 291,000 $ respectively. The utilization of residual biomass for biofuels helps to develop an economic and environmentally sustainable plant.


Subject(s)
Seaweed , Ulva , Seaweed/chemistry , Ulva/chemistry , Biomass , Gas Chromatography-Mass Spectrometry , Sugars , Fermentation , Biofuels , Hydrolysis , Saccharomyces cerevisiae
17.
Int J Biol Macromol ; 232: 123465, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36720326

ABSTRACT

DEAE-52 and Sephadex G-100 columns were used to isolate Enteromorpha prolifera polysaccharide (EPP), which contains α-L-Rhap-(1 â†’ 4)-α-L-Arap-(1 â†’ 2)-α-L-Rhap-(1 â†’ 3)-ß-D-Galp-(1 â†’ structural fragment, along with α-L-Rhap-(1 â†’ and →2)-α-L-Rhap-(1 â†’ 3)-ß-D-GlcpA-(1 â†’ side bonds that connect to →3,6)-ß-D-Galp-(1→. The anti-ageing and hypoglycemic activities of EPP were assessed using an ageing diabetic mice model, and the revealed that EPP could improve glucose metabolism-associated parameters and inhibit the expression of ageing associated genes, including p16INK4a, p38 MAPK, NOX-1, VEGF, and AGER, thus preventing liver damage. Moreover, gut microbiota profiling revealed that EPP significantly increased the abundances of o_Lactobacillaceae, c_Bacilli, f_Lactobacillaceae, g_Lactobacillus, and p_Firmicutes, showing that EPP has a probiotic effect on enhancing the beneficial microbiota in ageing diabetic mice. In summary, EPP might serve as a potential bioactive compound to alleviate hyperglycaemia and ageing in diabetic in mice and further clinical studies are required to verify these effects.


Subject(s)
Diabetes Mellitus, Experimental , Gastrointestinal Microbiome , Ulva , Mice , Animals , Diabetes Mellitus, Experimental/drug therapy , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/chemistry , Ulva/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Firmicutes
18.
Int J Biol Macromol ; 225: 952-963, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36402385

ABSTRACT

Microwave-assisted hydrothermal processing was proposed to recover high valuable compounds with antioxidant and gelling features from Ulva spp. green seaweed. The influence of the extraction conditions on the solubles, ulvan fraction and residual solid phase was studied to achieve a global valorization of the seaweed. A particular emphasis was placed on the selective coagulation of ulvan stimulated by a bio-ionic liquid during the extraction process. The achieved outcomes indicated that the selected microwave treatment exhibited a notable impact on the phytochemical properties of the soluble extracts, with the highest values of sulfate and protein content at 160 °C, and the highest antioxidant features at 200 °C. The most prominent molecular weight distributions were also identified for systems hydrothermal treated at 160 °C. The ulvan analyses showed that those extracted after microwave treatment at 160 °C showed the highest yields, molecular weight and the strongest gel features from the rheological point of view. The presence of the chloride chlorine during the extraction process favored the ulvan performance and the enhancement of the corresponding viscoelastic properties.


Subject(s)
Ionic Liquids , Seaweed , Ulva , Ulva/chemistry , Antioxidants/chemistry , Microwaves , Polysaccharides/chemistry , Seaweed/chemistry , Chlorides
19.
Nanoscale ; 14(39): 14508-14519, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36156672

ABSTRACT

Although the rapid advances of wireless technologies and electronic devices largely improve the quality of life, electromagnetic (EM) pollution increases the risk of exposure to EM radiation. Developing high-efficiency absorbers with a rational structure and wideband characteristics is of great significance to eliminate radiation pollution. Herein, Enteromorpha prolifera derived biochar which would provide a suitable surface and multiple polarizations has been prepared as the supporter to anchor nanoparticles. In addition, theoretical simulation results further confirm that radar wave scattering could be largely inhibited after coating with absorbing materials. As a result, the hybrid absorbers achieve remarkable EM absorption properties attributed to the synergistic magnetic-dielectric loss. Elaborate compositional and structural characterization studies indicate that the absorber has a large specific area and numerous polarization centers, which would make full use of waste biomass as light weight and broadband high-performance EM absorption materials.


Subject(s)
Quality of Life , Ulva , Charcoal/chemistry , Electromagnetic Phenomena , Ulva/chemistry
20.
Mar Drugs ; 20(9)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36135775

ABSTRACT

SARS-CoV-2 is the causative agent of the COVID-19 pandemic. This in silico study aimed to elucidate therapeutic efficacies against SARS-CoV-2 of phyco-compounds from the seaweed, Ulva fasciata. Twelve phyco-compounds were isolated and toxicity was analyzed by VEGA QSAR. Five compounds were found to be nonmutagenic, noncarcinogenic and nontoxic. Moreover, antiviral activity was evaluated by PASS. Binding affinities of five of these therapeutic compounds were predicted to possess probable biological activity. Fifteen SARS-CoV-2 target proteins were analyzed by the AutoDock Vina program for molecular docking binding energy analysis and the 6Y84 protein was determined to possess optimal binding affinities. The Desmond program from Schrödinger's suite was used to study high performance molecular dynamic simulation properties for 3,7,11,15-Tetramethyl-2-hexadecen-1-ol-6Y84 for better drug evaluation. The ligand with 6Y84 had stronger binding affinities (-5.9 kcal/mol) over two standard drugs, Chloroquine (-5.6 kcal/mol) and Interferon α-2b (-3.8 kcal/mol). Swiss ADME calculated physicochemical/lipophilicity/water solubility/pharmacokinetic properties for 3,7,11,15-Tetramethyl-2-hexadecen-1-ol, showing that this therapeutic agent may be effective against SARS-CoV-2.


Subject(s)
Antiviral Agents , SARS-CoV-2 , Ulva , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Chloroquine , Fatty Alcohols/chemistry , Fatty Alcohols/pharmacology , Humans , Interferon-alpha , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects , Terpenes/chemistry , Terpenes/pharmacology , Ulva/chemistry , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL
...