Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 257
Filter
1.
J Vasc Res ; 61(3): 109-121, 2024.
Article in English | MEDLINE | ID: mdl-38615660

ABSTRACT

INTRODUCTION: Following our recent finding that Ucp2 knockout promotes ferroptosis, we aimed to examine whether UCP2 alleviates myocardial ischemia/reperfusion injury (MI/RI) by inhibiting ferroptosis. METHODS: The left anterior descending coronary arteries of wild-type and Ucp2-/- C57BL/6 mice were ligated for 30 min and reperfused for 2 h to establish an MI/RI model. The effects of UCP2 on ferroptosis and MI/RI were determined by echocardiography, 2,3,5-triphenylttrazolium chloride staining, hematoxylin-eosin staining, Masson's trichrome staining, Sirius red staining, and analysis of myocardial injury markers and ferroptosis indicators. Ferrostatin-1 (Fer-1) and erastin (Era) were used to investigate whether UCP2 alleviated MI/RI by inhibiting ferroptosis and the molecular mechanism. RESULTS: UCP2 was upregulated in the MI/RI model in WT mice. Deletion of Ucp2 exacerbated ferroptosis, altered the expression levels of multiple ferroptosis-related genes, and significantly exacerbated MI/RI. Knockout of Ucp2 promoted ferroptosis induced by Era and inhibited the antiferroptotic effects of Fer-1. Knockout of Ucp2 activated the p53/TfR1 pathway to exacerbate ferroptosis. CONCLUSION: Our results showed that UCP2 inhibited ferroptosis in MI/RI, which might be related to regulation of the p53/TfR1 pathway.


Subject(s)
Disease Models, Animal , Ferroptosis , Mice, Inbred C57BL , Mice, Knockout , Myocardial Reperfusion Injury , Myocytes, Cardiac , Uncoupling Protein 2 , Animals , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/genetics , Uncoupling Protein 2/metabolism , Uncoupling Protein 2/genetics , Uncoupling Protein 2/deficiency , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Male , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Mice
2.
BMC Surg ; 24(1): 129, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678284

ABSTRACT

BACKGROUND: Mitochondria dysfunction is one of the major causes of insulin resistance, and other countless complications of obesity. PGC-1α, and UCP-2 play key roles in energy expenditure regulation in the mitochondrial thermogenesis. However, the effects of bariatric surgery on the level of PGC-1α and UCP-2 and their relationships are unclear. OBJECTIVE: This study aimed to investigate the effect of bariatric surgery on key pathways in energy, and to assess the potential predictive role of body composition and metabolic parameters in this regard. SETTINGS: Hazrat-e Rasool General Hospital, Center of Excellence of International Federation for Surgery of Obesity. METHODS: This prospective cohort study was carried out on 45 patients with morbid obesity who underwent Roux-en-Y gastric bypass surgery. The patients have evaluated three-time points at baseline, three, and six months after the surgery. Body composition components, the levels of PGC-1α, UCP-2, and metabolic parameters were measured three times during this study. RESULTS: Significant changes in TWL%, EBMIL%, and metabolic lab tests were observed at three- and six months post-surgery (P < 0.001). The PGC-1α and UCP-2 had a significant increase three and then six-month post-operation compared with the baseline (P < 0.001). Moreover, multivariate linear regression analysis identified that the changing trend of PGC-1α was associated with insulin, uric Acid, HOMA-IR, fat mass and trunk fat mass. UCP-2 was associated with TSH, AST, fat mass and FFM. CONCLUSIONS: Bariatric surgery has been shown to have a positive effect on UCP-2 and PGC-1α levels, as well as body composition and metabolic parameters. As a result, it is believed that bariatric surgery could improve thermogenesis and energy expenditure by enhancing mitochondrial biogenesis and function. However, further studies are needed to fully understand the precise mechanisms and possible causal relationship.


Subject(s)
Biomarkers , Energy Metabolism , Obesity, Morbid , Uncoupling Protein 2 , Humans , Female , Prospective Studies , Energy Metabolism/physiology , Male , Adult , Biomarkers/metabolism , Biomarkers/blood , Obesity, Morbid/surgery , Obesity, Morbid/metabolism , Uncoupling Protein 2/metabolism , Middle Aged , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Bariatric Surgery , Gastric Bypass , Body Composition
3.
Arch Biochem Biophys ; 753: 109918, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301949

ABSTRACT

OBJECTIVE: Our previous study found that overexpression of uncoupling protein-2 (UCP2) had a protective effect on lipopolysaccharide (LPS)-induced sepsis cardiomyocytes. The aim of this study was to explore the effect and mechanism of uncoupling protein-2 (UCP2) on myocardial ischemia-reperfusion injury. METHODS: In this study, we established hypoxia-reoxygenation (HR) injury model in rats and isolated cardiomyocytes of newborn rats. We also carried out following methods which include virus transfection technology, cell counting Kit-8 (CCK8), flow cytometry, enzyme linked immunosorbent assay (ELISA), Western blot (WB), quantitative reverse transcription PCR (RT qPCR), transmission electron microscopy, fluorescence colocalization and immunoprecipitation. MAIN RESULTS: The results of this study showed that hypoxia-reoxygenation treatment in cardiomyocytes increased UCP2, myocardial enzyme and myocardial apoptosis and weakened cardiomyocyte viability. We observed increased cardiomyocyte viability and mitochondrial membrane potential, decreased myocardial enzyme and myocardial apoptosis, Inhibition of oxidative stress when UCP2 was overexpressed in cardiomyocytes. It also can Increase ATP and stabilize mitochondrial dynamics. Further studies founded that Sirtuin-3(SIRT3) changed with the expression of UCP2, which was confirmed by fluorescence co-localization and immunoprecipitation. CONCLUSIONS: Our findings revealed that UCP2 and SIRT3 were important targets of anti-myocardial injury by inhibiting cellular oxidative stress and stabilizing mitochondrial dynamics.


Subject(s)
Sirtuin 3 , Animals , Rats , Hypoxia , Mitochondrial Dynamics , Oxidative Stress , Sirtuin 3/genetics , Sirtuin 3/metabolism , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism
4.
FASEB J ; 38(2): e23373, 2024 02.
Article in English | MEDLINE | ID: mdl-38217376

ABSTRACT

Fatigue is a common phenomenon closely related to physical discomfort and numerous diseases, which is severely threatening the life quality and health of people. However, the exact mechanisms underlying fatigue are not fully characterized. Herein, we demonstrate that oxaloacetic acid (OAA), a crucial tricarboxylic acid cycle intermediate, modulates the muscle fatigue. The results showed that serum OAA level was positively correlated with fatigue state of mice. OAA-treated induced muscle fatigue impaired the exercise performance of mice. Mechanistically, OAA increased the c-Jun N-terminal kinase (JNK) phosphorylation and uncoupling protein 2 (UCP2) levels in skeletal muscle, which led to decreased energy substrate and enhanced glycolysis. On the other hand, OAA boosted muscle mitochondrial oxidative phosphorylation uncoupled with energy production. In addition, either UCP2 knockout or JNK inhibition totally reversed the effects of OAA on skeletal muscle. Therein, JNK mediated UCP2 activation with OAA-treated. Our studies reveal a novel role of OAA in skeletal muscle metabolism, which would shed light on the mechanism of muscle fatigue and weakness.


Subject(s)
Mitochondria , Oxaloacetic Acid , Humans , Mice , Animals , Oxaloacetic Acid/metabolism , Oxaloacetic Acid/pharmacology , Mitochondria/metabolism , Oxidative Phosphorylation , Citric Acid Cycle , Muscle, Skeletal/metabolism , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Uncoupling Protein 3/metabolism , Energy Metabolism
5.
Cancer Metastasis Rev ; 43(2): 777-794, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38194152

ABSTRACT

Pancreatic cancer has an exaggerated dependence on mitochondrial metabolism, but methods to specifically target the mitochondria without off target effects in normal tissues that rely on these organelles is a significant challenge. The mitochondrial uncoupling protein 2 (UCP2) has potential as a cancer-specific drug target, and thus, we will review the known biology of UCP2 and discuss its potential role in the pathobiology and future therapy of pancreatic cancer.


Subject(s)
Ion Channels , Pancreatic Neoplasms , Uncoupling Protein 2 , Humans , Uncoupling Protein 2/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Animals , Ion Channels/metabolism , Mitochondrial Proteins/metabolism , Mitochondria/metabolism
6.
J Biochem Mol Toxicol ; 38(1): e23575, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37920924

ABSTRACT

Metastatic breast cancer has the highest mortality rate among women owing to its poor clinical outcomes. Metastatic tumors pose challenges for treatment through conventional surgery or radiotherapy because of their diverse organ localization and resistance to various cytotoxic agents. Chemoresistance is a significant obstacle to effective breast cancer treatment owing to cancer's heterogeneous nature. Abnormalities in intracellular calcium signaling, coupled with altered mitochondrial metabolism, play a significant role in facilitating drug resistance and contribute to therapy resistance. Uncoupling protein-2 (UCP2) is considered as a marker of chemoresistance and is believed to play a major role in promoting metabolic shifts and tumor metastasis. In this context, it is imperative to understand the roles of altered calcium signaling and metabolic switching in the development of chemotherapeutic resistance. This study investigates the roles of UCP2 and intracellular calcium signaling (Ca2+ ) in promoting chemoresistance against cisplatin. Additionally, we explored the effectiveness of combining genipin (GP, a compound that reverses UCP2-mediated chemoresistance) and thapsigargin (TG, a calcium signaling modulator) in treating highly metastatic breast cancers. Our findings indicate that both aberrant Ca2+ signaling and metabolic shifts in cancer cells contribute to developing drug-resistant phenotypes, and the combination treatment of GP and TG significantly enhances drug sensitivity in these cells. Collectively, our study underscores the potential of these drug combinations as an effective approach to overcome drug resistance in chemoresistant cancers.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism , Calcium/metabolism , Drug Resistance, Neoplasm , Reactive Oxygen Species/metabolism , Homeostasis , Cell Line, Tumor
7.
FASEB J ; 37(11): e23265, 2023 11.
Article in English | MEDLINE | ID: mdl-37874273

ABSTRACT

Mitochondrial dysfunction plays an important role in the onset and progression of podocyte injury and proteinuria. However, the process by which the change in the podocyte mitochondria occurs is not well understood. Uncoupling protein 2 (UCP2) is a mitochondrial anion carrier protein, which is located in the mitochondrial inner membrane. Here, we reported that mice with podocyte-specific Ucp2 deficiency developed podocytopathy with proteinuria with aging. Furthermore, those mice exhibited increased proteinuria in experimental models evoked by Adriamycin. Our findings suggest that UCP2 mediates mitochondrial dysfunction by regulating mitochondrial dynamic balance. Ucp2-deleted podocytes exhibited increased mitochondrial fission and deficient in ATP production. Mechanistically, opacity protein 1 (OPA1), a key protein in fusion of mitochondrial inner membrane, was regulated by UCP2. Ucp2 deficiency promoted proteolysis of OPA1 by activation OMA1 which belongs to mitochondrial inner membrane zinc metalloprotease. Those finding demonstrate the role of UCP2 in mitochondrial dynamics in podocytes and provide new insights into pathogenesis associated with podocyte injury and proteinuria.


Subject(s)
Podocytes , Proteolysis , Animals , Mice , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Metalloproteases/genetics , Metalloproteases/metabolism , Mitochondrial Dynamics , Mitochondrial Proteins/metabolism , Podocytes/metabolism , Proteinuria/metabolism , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism
8.
Int J Mol Sci ; 24(9)2023 May 01.
Article in English | MEDLINE | ID: mdl-37175829

ABSTRACT

The uncoupling protein UCP2 is a mitochondrial carrier for which transport activity remains controversial. The physiological contexts in which UCP2 is expressed have led to the assumption that, like UCP1, it uncouples oxidative phosphorylation and thereby reduces the generation of reactive oxygen species. Other reports have involved UCP2 in the Warburg effect, and results showing that UCP2 catalyzes the export of matrix C4 metabolites to facilitate glutamine utilization suggest that the carrier could be involved in the metabolic adaptations required for cell proliferation. We have examined the role of UCP2 in the energy metabolism of the lung adenocarcinoma cell line A549 and show that UCP2 silencing decreased the basal rate of respiration, although this inhibition was not compensated by an increase in glycolysis. Silencing did not lead to either changes in proton leakage, as determined by the rate of respiration in the absence of ATP synthesis, or changes in the rate of formation of reactive oxygen species. The decrease in energy metabolism did not alter the cellular energy charge. The decreased cell proliferation observed in UCP2-silenced cells would explain the reduced cellular ATP demand. We conclude that UCP2 does not operate as an uncoupling protein, whereas our results are consistent with its activity as a C4-metabolite carrier involved in the metabolic adaptations of proliferating cells.


Subject(s)
Energy Metabolism , Ion Channels , Lung Neoplasms , Uncoupling Protein 2 , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Adenosine Triphosphate/metabolism , Cell Line , Ion Channels/genetics , Ion Channels/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Uncoupling Proteins/metabolism , Neoplasms , Reactive Oxygen Species/metabolism , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism
9.
Int J Mol Sci ; 24(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37047436

ABSTRACT

On the one hand, reactive oxygen species (ROS) are involved in the onset and progression of a wide array of diseases. On the other hand, these are a part of signaling pathways related to cell metabolism, growth and survival. While ROS are produced at various cellular sites, in cardiomyocytes the largest amount of ROS is generated by mitochondria. Apart from the electron transport chain and various other proteins, uncoupling protein (UCP) and monoamine oxidases (MAO) have been proposed to modify mitochondrial ROS formation. Here, we review the recent information on UCP and MAO in cardiac injuries induced by ischemia-reperfusion (I/R) as well as protection from I/R and heart failure secondary to I/R injury or pressure overload. The current data in the literature suggest that I/R will preferentially upregulate UCP2 in cardiac tissue but not UCP3. Studies addressing the consequences of such induction are currently inconclusive because the precise function of UCP2 in cardiac tissue is not well understood, and tissue- and species-specific aspects complicate the situation. In general, UCP2 may reduce oxidative stress by mild uncoupling and both UCP2 and UCP3 affect substrate utilization in cardiac tissue, thereby modifying post-ischemic remodeling. MAOs are important for the physiological regulation of substrate concentrations. Upon increased expression and or activity of MAOs, however, the increased production of ROS and reactive aldehydes contribute to cardiac alterations such as hypertrophy, inflammation, irreversible cardiomyocyte injury, and failure.


Subject(s)
Mitochondria , Monoamine Oxidase , Reactive Oxygen Species/metabolism , Mitochondrial Uncoupling Proteins/metabolism , Monoamine Oxidase/metabolism , Uncoupling Protein 2/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Uncoupling Protein 3/metabolism
10.
Cell Calcium ; 112: 102736, 2023 06.
Article in English | MEDLINE | ID: mdl-37031662

ABSTRACT

Mitochondrial uncoupling proteins UCP1 and UCP2 have a structural homology of app. 60%. They execute their mitochondria uncoupling function through different molecular mechanisms. Non-shivering thermogenesis by UCP1 is mediated through a transmembrane dissipation of the proton motive force to create heat during sympathetic stimulation. UCP2, on the other hand, modulates through the interaction with methylated MICU1 the permeability of the cristae junction, which acts as an isolator for the cristae-located mitochondrial membrane potential. In this mini-review, we discuss and compare the recently described molecular mechanism of UCP1 in brown adipose tissue and UCP2 in aged and cancer non-excitable cells that contribute to mitochondrial uncoupling, and the synergistic effects of both UCPs with the mitochondrial Ca2+ uptake machinery.


Subject(s)
Ion Channels , Membrane Proteins , Mitochondrial Uncoupling Proteins/metabolism , Membrane Proteins/metabolism , Ion Channels/metabolism , Mitochondrial Proteins/metabolism , Uncoupling Protein 2/metabolism , Mitochondria/metabolism
11.
Arch Endocrinol Metab ; 67(2): 214-223, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36651711

ABSTRACT

Objective: To evaluate the expression of UCP1, UCP2, and UCP3 mRNA and encoded proteins in epicardial and mediastinal adipose tissues in patients with coronary artery disease (CAD). Subjects and methods: We studied 60 patients with CAD and 106 patients undergoing valve replacement surgery (controls). Expression levels of UCP1, UCP2, and UCP3 mRNA and encoded proteins were measured by quantitative real-time PCR and Western blot analysis, respectively. Results: : We found increased UCP1, UCP2, and UCP3 mRNA levels in the epicardial adipose tissue in the CAD versus the control group, and higher UCP1 and UCP3 mRNA expression in the epicardial compared with the mediastinal tissue in the CAD group. There was also increased expression of UCP1 protein in the epicardial tissue and UCP2 protein in the mediastinum tissue in patients with CAD. Finally, UCP1 expression was associated with levels of fasting plasma glucose, and UCP3 expression was associated with levels of high-density lipoprotein cholesterol and low-density cholesterol in the epicardial tissue. Conclusion: Our study supports the hypothesis that higher mRNA expression by UCP genes in the epicardial adipose tissue could be a protective mechanism against the production of reactive oxygen species and may guard the myocardium against damage. Thus, UCP levels are essential to maintain the adaptive phase of cardiac injury in the presence of metabolic disorders.


Subject(s)
Coronary Artery Disease , Mediastinum , Humans , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Coronary Artery Disease/genetics , Ion Channels/genetics , Ion Channels/metabolism , Adipose Tissue, Brown/chemistry , Adipose Tissue, Brown/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Adipose Tissue/metabolism , Cholesterol , Uncoupling Protein 3/genetics , Uncoupling Protein 3/metabolism , Muscle, Skeletal , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism
12.
Arch Physiol Biochem ; 129(1): 1-9, 2023 Feb.
Article in English | MEDLINE | ID: mdl-32654534

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is associated with lipid accumulation and lipotoxicity. The main aim of this study is to evaluate the synergistic treatment effect of fish oils (FOs) and chicoric acid (CA) in palmitate (PA)-induced NAFLD HepG2 model. HepG2 cells were pre-treated with palmitate (0.75 mM) for 24 h, and then were exposed to CA, FOs and combination of these chemicals for another 24 h. Gene expression and protein levels were determined using qRT-PCR and western blotting or ELISA analysing, respectively. The combination index (CI) values of FOs and CA in HepG2 cells were calculated according to the Chou-Talalay equation using the CompuSyn software. FOs and CA acid together synergistically reduced lipid accumulation as indicated by decreased oil red O staining (vehicle-treated control: 1 ± 0.1; PA-treated control: 4.7 ± 0.4; PA + CA100: 3.9 ± 0.4; PA + CA200: 2.4 ± 0.3; PA + FOs: 2.7 ± 0.1; PA + CA200 + FOs: 1.5 ± 0.1) and triglyceride (vehicle-treatedcontrol:10 ± 1.2; PA-treated control: 25.8 ± 2.7; PA + CA100: 18.9 ± 2.5; PA + CA200: 14.4 ± 1.8; PA + FOs: 15.2 ± 2.4; PA + CA200 + FOs: 11.9 ± 1.5) levels in PA-treated HepG2 cells. Gene expression and Immunoblotting analysis confirmed the combination effect of FOs and CA in up-regulation of AMPK-mediated PPARα/UCP2 and down-regulation of AMPK-mediated SREBP-1/FAS signalling pathways. Collectively, these results suggest that combining FOs with CA can serve as a potential combination therapy for NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/prevention & control , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , Palmitates , Fish Oils/pharmacology , Hep G2 Cells , Lipid Metabolism , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism
13.
Hepatobiliary Pancreat Dis Int ; 22(2): 190-199, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36549966

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a disease of the elderly mostly because its development from preneoplastic lesions depends on the accumulation of gene mutations and epigenetic alterations over time. How aging of non-cancerous tissues of the host affects tumor progression, however, remains largely unknown. METHODS: We took advantage of a model of accelerated aging, uncoupling protein 2-deficient (Ucp2 knockout, Ucp2 KO) mice, to investigate the growth of orthotopically transplanted Ucp2 wild-type (WT) PDAC cells (cell lines Panc02 and 6606PDA) in vivo and to study strain-dependent differences of the PDAC microenvironment. RESULTS: Measurements of tumor weights and quantification of proliferating cells indicated a significant growth advantage of Panc02 and 6606PDA cells in WT mice compared to Ucp2 KO mice. In tumors in the knockout strain, higher levels of interferon-γ mRNA despite similar numbers of tumor-infiltrating T cells were observed. 6606PDA cells triggered a stronger stromal reaction in Ucp2 KO mice than in WT animals. Accordingly, pancreatic stellate cells from Ucp2 KO mice proliferated at a higher rate than cells of the WT strain when they were incubated with conditioned media from PDAC cells. CONCLUSIONS: Ucp2 modulates PDAC microenvironment in a way that favors tumor progression and implicates an altered stromal response as one of the underlying mechanisms.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Mice , Animals , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism , Mice, Inbred C57BL , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Mice, Knockout , Tumor Microenvironment , Pancreatic Neoplasms
14.
Biomolecules ; 14(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38254621

ABSTRACT

Uncoupling protein 3 (UCP3) belongs to the mitochondrial carrier protein superfamily SLC25 and is abundant in brown adipose tissue (BAT), the heart, and muscles. The expression of UCP3 in tissues mainly dependent on fatty acid oxidation suggests its involvement in cellular metabolism and has drawn attention to its possible transport function beyond the transport of protons in the presence of fatty acids. Based on the high homology between UCP2 and UCP3, we hypothesized that UCP3 transports C4 metabolites similar to UCP2. To test this, we measured the transport of substrates against phosphate (32Pi) in proteoliposomes reconstituted with recombinant murine UCP3 (mUCP3). We found that mUCP3 mainly transports aspartate and sulfate but also malate, malonate, oxaloacetate, and succinate. The transport rates calculated from the exchange of 32Pi against extraliposomal aspartate and sulfate were 23.9 ± 5.8 and 17.5 ± 5.1 µmol/min/mg, respectively. Using site-directed mutagenesis, we revealed that mutation of R84 resulted in impaired aspartate/phosphate exchange, demonstrating its critical role in substrate transport. The difference in substrate preference between mUCP2 and mUCP3 may be explained by their different tissue expression patterns and biological functions in these tissues.


Subject(s)
Adipose Tissue, Brown , Aspartic Acid , Uncoupling Protein 3 , Animals , Mice , Phosphates , Sulfates , Uncoupling Protein 3/metabolism , Uncoupling Protein 2/metabolism
15.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36499405

ABSTRACT

Despite numerous therapies, cancer remains one of the leading causes of death worldwide due to the lack of markers for early detection and response to treatment in many patients. Technological advances in tumor screening and renewed interest in energy metabolism have allowed us to identify new cellular players in order to develop personalized treatments. Among the metabolic actors, the mitochondrial transporter uncoupling protein 2 (UCP2), whose expression is increased in many cancers, has been identified as an interesting target in tumor metabolic reprogramming. Over the past decade, a better understanding of its biochemical and physiological functions has established a role for UCP2 in (1) protecting cells from oxidative stress, (2) regulating tumor progression through changes in glycolytic, oxidative and calcium metabolism, and (3) increasing antitumor immunity in the tumor microenvironment to limit cancer development. With these pleiotropic roles, UCP2 can be considered as a potential tumor biomarker that may be interesting to target positively or negatively, depending on the type, metabolic status and stage of tumors, in combination with conventional chemotherapy or immunotherapy to control tumor development and increase response to treatment. This review provides an overview of the latest published science linking mitochondrial UCP2 activity to the tumor context.


Subject(s)
Neoplasms , Oxidative Stress , Humans , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism , Energy Metabolism , Oxidation-Reduction , Neoplasms/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Reactive Oxygen Species/metabolism , Tumor Microenvironment
16.
Cell Rep ; 41(13): 111894, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36577374

ABSTRACT

Paradoxically, glucose, the primary driver of satiety, activates a small population of anorexigenic pro-opiomelanocortin (POMC) neurons. Here, we show that lactate levels in the circulation and in the cerebrospinal fluid are elevated in the fed state and the addition of lactate to glucose activates the majority of POMC neurons while increasing cytosolic NADH generation, mitochondrial respiration, and extracellular pyruvate levels. Inhibition of lactate dehydrogenases diminishes mitochondrial respiration, NADH production, and POMC neuronal activity. However, inhibition of the mitochondrial pyruvate carrier has no effect. POMC-specific downregulation of Ucp2 (Ucp2PomcKO), a molecule regulated by fatty acid metabolism and shown to play a role as transporter in the malate-aspartate shuttle, abolishes lactate- and glucose-sensing of POMC neurons. Ucp2PomcKO mice have impaired glucose metabolism and are prone to obesity on a high-fat diet. Altogether, our data show that lactate through redox signaling and blocking mitochondrial glucose utilization activates POMC neurons to regulate feeding and glucose metabolism.


Subject(s)
NAD , Pro-Opiomelanocortin , Mice , Animals , Pro-Opiomelanocortin/metabolism , NAD/metabolism , Glucose/metabolism , Neurons/metabolism , Lactates/metabolism , Hypothalamus/metabolism , Uncoupling Protein 2/metabolism
17.
Front Immunol ; 13: 960226, 2022.
Article in English | MEDLINE | ID: mdl-36275699

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from early T cell progenitors. Since relapsed T-ALL is associated with a poor prognosis improving initial treatment of patients is essential to avoid resistant selection of T-ALL. During initiation, development, metastasis and even in response to chemotherapy, tumor cells face strong metabolic challenges. In this study, we identify mitochondrial UnCoupling Protein 2 (UCP2) as a tricarboxylic acid (TCA) cycle metabolite transporter controlling glutamine metabolism associated with T-ALL cell proliferation. In T-ALL cell lines, we show that UCP2 expression is controlled by glutamine metabolism and is essential for their proliferation. Our data show that T-ALL cell lines differ in their substrate dependency and their energetic metabolism (glycolysis and oxidative). Thus, while UCP2 silencing decreases cell proliferation in all leukemia cells, it also alters mitochondrial respiration of T-ALL cells relying on glutamine-dependent oxidative metabolism by rewiring their cellular metabolism to glycolysis. In this context, the function of UCP2 in the metabolite export of malate enables appropriate TCA cycle to provide building blocks such as lipids for cell growth and mitochondrial respiration. Therefore, interfering with UCP2 function can be considered as an interesting strategy to decrease metabolic efficiency and proliferation rate of leukemia cells.


Subject(s)
Glutamine , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism , Glutamine/metabolism , Malates , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Cell Proliferation , Tricarboxylic Acids , Lipids
18.
Mol Med ; 28(1): 124, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266633

ABSTRACT

BACKGROUND: Uncoupling protein 2 (UCP2), activated by excessive reactive oxygen species (ROS) in vivo, has the dual effect of reducing ROS to protect against oxidative stress and reducing ATP production to regulate cellular metabolism. Both the UCP2 and ROS are increased in cochleae in age-related hearing loss (ARHL). However, the role of UCP2 in sensory hair cells in ARHL remains unclear. METHODS: Male C57BL/6 J mice were randomly assigned to an 8-week-old group (Group 1), a 16-week-old group (Group 2), a 16-week-old + adeno-associated virus-inner ear (AAV-ie) group (Group 3), and a 16-week-old + AAV-ie-UCP2 group (Group 4). Mice aged 8 weeks were administrated with AAV-ie-GFP or AAV-ie-UCP2 via posterior semicircular canal injection. Eight weeks after this viral intervention, hearing thresholds and wave-I amplitudes were tested by auditory brainstem response (ABR). Subsequently, the cochlear basilar membrane was dissected for investigation. The number of hair cells and inner hair cell (IHC) synapses, the level of ROS, and the expression of AMP-activated protein kinase α (AMPKα), were assessed by immunofluorescence staining. In addition, mitochondrial function was determined, and the expression of AMPKα and UCP2 proteins was further evaluated using western blotting. RESULTS: Mice with early-onset ARHL exhibited enhanced oxidative stress and loss of outer hair cells and IHC synapses, while UCP2 overexpression aggravated hearing loss and cochlear pathophysiological changes in mice. UCP2 overexpression resulted in a notable decrease in the number of IHCs and IHC synapses, caused ATP depletion and excessive ROS generation, increased AMPKα protein levels, and promoted IHC apoptosis, especially in the apical and middle turns of the cochlea. CONCLUSION: Collectively, our data suggest that UCP2 overexpression may cause mitochondrial dysfunction via energy metabolism, which activates mitochondrion-dependent cellular apoptosis and leads to IHC loss, ultimately exacerbating ARHL.


Subject(s)
Hair Cells, Auditory, Inner , Hearing Loss , Male , Mice , Animals , Hair Cells, Auditory, Inner/metabolism , Dependovirus/genetics , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism , Reactive Oxygen Species/metabolism , AMP-Activated Protein Kinases/metabolism , Mice, Inbred C57BL , Hearing Loss/metabolism , Adenosine Triphosphate/metabolism
19.
Genes (Basel) ; 13(9)2022 09 08.
Article in English | MEDLINE | ID: mdl-36140780

ABSTRACT

Currently, it is known that irisin can participate in the processes of thermoregulation and browning of adipose tissue, and, therefore, it is possible that it is involved in the microevolutionary mechanisms of adaptation to a cold. The aim of this study is to investigate the relationship between the uncoupling protein genes (UCP1, UCP2, UCP3) and the irisin levels in the residents of the coldest region of Siberia. The sample consisted of 279 Yakut people (185 females, 94 males, average age 19.8 ± 2.03 years). The females plasma irisin concentration was 8.33 ± 2.74 mcg/mL and the males was 7.76 ± 1.86 mcg/mL. Comparative analysis of irisin levels with the genotypes of six studied SNP-markers in females revealed a significant association of irisin with rs1800849-UCP3. The TT genotype of rs1800849 was associated with elevated levels of irisin (p = 0.01). It was also found that this TT genotype in females was associated with reduced weight and height (p = 0.03). We searched for natural selection signals for the T-allele rs1800849-UCP3; as a result of which, it was found that this allele has a significantly high frequency of distribution in northern (45%, CI: 0.42-0.484) compared with southern Asian populations (28%, CI: 0.244-0.316) (p = 0.01). The results obtained indicate the probable involvement of irisin and the UCP3 gene in thermoregulation, and the spread of its allelic variants is probably related to adaptation to a cold climate.


Subject(s)
Fibronectins/metabolism , Uncoupling Protein 1 , Uncoupling Protein 2 , Uncoupling Protein 3 , Adolescent , Adult , Cold Temperature , Female , Fibronectins/genetics , Humans , Ion Channels , Male , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Uncoupling Proteins , Siberia , Uncoupling Protein 1/metabolism , Uncoupling Protein 2/metabolism , Uncoupling Protein 3/metabolism , Young Adult
20.
Int J Mol Sci ; 23(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36142731

ABSTRACT

As energy metabolism regulation factor, peroxisome proliferator-activated receptor (PPAR) is thought to be a potential target for the treatment of depression. The present study was performed to evaluate the effects of activating PPARß/δ, the most highly expressed subtype in the brain, in depressive in vivo and in vitro models. We observed that PPARß/δ agonist GW0742 significantly alleviated depressive behaviors in mice and promoted the formation of autophagosomes around the damaged mitochondria in hippocampal astrocytes. Our in vitro experiments showed that GW0742 could reduce mitochondrial oxidative stress, and thereby attenuate endoplasmic reticulum (ER) stress-mediated apoptosis pathway via inhibiting IRE1α phosphorylation, subsequently protect against astrocytic apoptosis and loss. Furthermore, we found that PPARß/δ agonist induces astrocytic mitophagy companied with the upregulated UCP2 expressions. Knocking down UCP2 in astrocytes could block the anti-apoptosis and pro-mitophagy effects of GW0742. In conclusion, our findings reveal PPARß/δ activation protects against ER stress-induced astrocytic apoptosis via enhancing UCP2-mediated mitophagy, which contribute to the anti-depressive action. The present study provides a new insight for depression therapy.


Subject(s)
PPAR delta , PPAR-beta , Animals , Astrocytes/metabolism , Endoplasmic Reticulum Stress , Endoribonucleases/metabolism , Mice , Mitophagy , PPAR delta/metabolism , PPAR-beta/metabolism , Phenols , Protein Serine-Threonine Kinases , Sulfhydryl Compounds , Thiazoles , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...