Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.533
Filter
1.
FASEB J ; 38(9): e23654, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38717442

ABSTRACT

Heart failure and cardiac remodeling are both characterized by mitochondrial dysfunction. Healthy mitochondria are required for adequate contractile activity and appropriate regulation of cell survival. In the mammalian heart, enhancement of the mitochondrial unfolded protein response (UPRmt) is cardioprotective under pressure overload conditions. We explored the UPRmt and the underlying regulatory mechanism in terms of hypertension-induced cardiac remodeling and the cardioprotective effect of metformin. Male spontaneously hypertensive rats and angiotensin II-treated neonatal rat cardiomyocytes were used to induce cardiac hypertrophy. The results showed that hypertension induced the formation of aberrant mitochondria, characterized by a reduced mtDNA/nDNA ratio and swelling, as well as lower levels of mitochondrial complexes I to V and inhibition of the expression of one protein subunit of each of complexes I to IV. Such changes eventually enlarged cardiomyocytes and increased cardiac fibrosis. Metformin treatment increased the mtDNA/nDNA ratio and regulated the UPRmt, as indicated by increased expression of activating transcription factor 5, Lon protease 1, and heat shock protein 60, and decreased expression of C/EBP homologous protein. Thus, metformin improved mitochondrial ultrastructure and function in spontaneously hypertensive rats. In vitro analyses revealed that metformin reduced the high levels of angiotensin II-induced mitochondrial reactive oxygen species in such animals and stimulated nuclear translocation of heat shock factor 1 (HSF1). Moreover, HSF1 small-interfering RNA reduced the metformin-mediated improvements in mitochondrial morphology and the UPRmt by suppressing hypertrophic signals and cardiomyocyte apoptosis. These results suggest that HSF1/UPRmt signaling contributes to the beneficial effects of metformin. Metformin-mediated targeting of mitochondrial protein homeostasis and modulation of HSF1 levels have potential therapeutic implications in terms of cardiac remodeling.


Subject(s)
Heat Shock Transcription Factors , Metformin , Myocytes, Cardiac , Rats, Inbred SHR , Unfolded Protein Response , Animals , Metformin/pharmacology , Unfolded Protein Response/drug effects , Male , Rats , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Hypertension/metabolism , Hypertension/drug therapy , Ventricular Remodeling/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects , Angiotensin II/pharmacology , Cardiomegaly/metabolism , Cardiomegaly/drug therapy , Cardiomegaly/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Rats, Inbred WKY
2.
Biotechnol J ; 19(5): e2300715, 2024 May.
Article in English | MEDLINE | ID: mdl-38797727

ABSTRACT

Human erythropoietin (hEPO) is one of the most in-demand biopharmaceuticals, however, its production is challenging. When produced in a plant expression system, hEPO results in extensive plant tissue damage and low expression. It is demonstrated that the modulation of the plant protein synthesis machinery enhances hEPO production. Co-expression of basic leucine zipper transcription factors with hEPO prevents plant tissue damage, boosts expression, and increases hEPO solubility. bZIP28 co-expression up-regulates genes associated with the unfolded protein response, indicating that the plant tissue damage caused by hEPO expression is due to the native protein folding machinery being overwhelmed and that this can be overcome by co-expressing bZIP28.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Erythropoietin , Nicotiana , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Erythropoietin/genetics , Erythropoietin/metabolism , Humans , Nicotiana/genetics , Nicotiana/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Gene Expression Regulation, Plant , Unfolded Protein Response/genetics
3.
Biomolecules ; 14(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786005

ABSTRACT

Primary mitochondrial diseases result from mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) genes, encoding proteins crucial for mitochondrial structure or function. Given that few disease-specific therapies are available for mitochondrial diseases, novel treatments to reverse mitochondrial dysfunction are necessary. In this work, we explored new therapeutic options in mitochondrial diseases using fibroblasts and induced neurons derived from patients with mutations in the GFM1 gene. This gene encodes the essential mitochondrial translation elongation factor G1 involved in mitochondrial protein synthesis. Due to the severe mitochondrial defect, mutant GFM1 fibroblasts cannot survive in galactose medium, making them an ideal screening model to test the effectiveness of pharmacological compounds. We found that the combination of polydatin and nicotinamide enabled the survival of mutant GFM1 fibroblasts in stress medium. We also demonstrated that polydatin and nicotinamide upregulated the mitochondrial Unfolded Protein Response (mtUPR), especially the SIRT3 pathway. Activation of mtUPR partially restored mitochondrial protein synthesis and expression, as well as improved cellular bioenergetics. Furthermore, we confirmed the positive effect of the treatment in GFM1 mutant induced neurons obtained by direct reprogramming from patient fibroblasts. Overall, we provide compelling evidence that mtUPR activation is a promising therapeutic strategy for GFM1 mutations.


Subject(s)
Fibroblasts , Glucosides , Mitochondria , Mitochondrial Diseases , Niacinamide , Stilbenes , Unfolded Protein Response , Humans , Unfolded Protein Response/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Stilbenes/pharmacology , Glucosides/pharmacology , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/genetics , Niacinamide/pharmacology , Mutation , Phenotype , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Neurons/metabolism , Neurons/drug effects
4.
Int Rev Cell Mol Biol ; 386: 81-131, 2024.
Article in English | MEDLINE | ID: mdl-38782502

ABSTRACT

Autophagy and Unfolded Protein Response (UPR) can be regarded as the safe keepers of cells exposed to intense stress. Autophagy maintains cellular homeostasis, ensuring the removal of foreign particles and misfolded macromolecules from the cytoplasm and facilitating the return of the building blocks into the system. On the other hand, UPR serves as a shock response to prolonged stress, especially Endoplasmic Reticulum Stress (ERS), which also includes the accumulation of misfolded proteins in the ER. Since one of the many effects of viral infection on the host cell machinery is the hijacking of the host translational system, which leaves in its wake a plethora of misfolded proteins in the ER, it is perhaps not surprising that UPR and autophagy are common occurrences in infected cells, tissues, and patient samples. In this book chapter, we try to emphasize how UPR, and autophagy are significant in infections caused by six major oncolytic viruses-Epstein-Barr (EBV), Human Papilloma Virus (HPV), Human Immunodeficiency Virus (HIV), Human Herpesvirus-8 (HHV-8), Human T-cell Lymphotropic Virus (HTLV-1), and Hepatitis B Virus (HBV). Here, we document how whole-virus infection or overexpression of individual viral proteins in vitro and in vivo models can regulate the different branches of UPR and the various stages of macro autophagy. As is true with other viral infections, the relationship is complicated because the same virus (or the viral protein) exerts different effects on UPR and Autophagy. The nature of this response is determined by the cell types, or in some cases, the presence of diverse extracellular stimuli. The vice versa is equally valid, i.e., UPR and autophagy exhibit both anti-tumor and pro-tumor properties based on the cell type and other factors like concentrations of different metabolites. Thus, we have tried to coherently summarize the existing knowledge, the crux of which can hopefully be harnessed to design vaccines and therapies targeted at viral carcinogenesis.


Subject(s)
Autophagy , Unfolded Protein Response , Humans , Carcinogenesis/pathology , Carcinogenesis/metabolism , Animals , Endoplasmic Reticulum Stress
5.
Drug Des Devel Ther ; 18: 1627-1650, 2024.
Article in English | MEDLINE | ID: mdl-38774483

ABSTRACT

With ever-increasing intensive studies of idiopathic pulmonary fibrosis (IPF), significant progresses have been made. Endoplasmic reticulum stress (ERS)/unfolded protein reaction (UPR) is associated with the development and progression of IPF, and targeting ERS/UPR may be beneficial in the treatment of IPF. Natural product is a tremendous source of new drug discovery, and accumulating studies have reported that many natural products show potential therapeutic effects for IPF via modulating one or more branches of the ERS signaling pathway. Therefore, this review focuses on critical roles of ERS in IPF development, and summarizes herbal preparations and bioactive compounds which protect against IPF through regulating ERS.


Subject(s)
Biological Products , Endoplasmic Reticulum Stress , Idiopathic Pulmonary Fibrosis , Endoplasmic Reticulum Stress/drug effects , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Biological Products/pharmacology , Biological Products/chemistry , Animals , Unfolded Protein Response/drug effects , Signal Transduction/drug effects
6.
Sci Rep ; 14(1): 11718, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778209

ABSTRACT

Protein misfolding in the endoplasmic reticulum (ER) of podocytes contributes to the pathogenesis of glomerular diseases. Protein misfolding activates the unfolded protein response (UPR), a compensatory signaling network. We address the role of the UPR and the UPR transducer, inositol-requiring enzyme 1α (IRE1α), in streptozotocin-induced diabetic nephropathy in mice. Diabetes caused progressive albuminuria in control mice that was exacerbated in podocyte-specific IRE1α knockout (KO) mice. Compared to diabetic controls, diabetic IRE1α KO mice showed reductions in podocyte number and synaptopodin. Glomerular ultrastructure was altered only in diabetic IRE1α KO mice; the major changes included widening of podocyte foot processes and glomerular basement membrane. Activation of the UPR and autophagy was evident in diabetic control, but not diabetic IRE1α KO mice. Analysis of human glomerular gene expression in the JuCKD-Glom database demonstrated induction of genes associated with the ER, UPR and autophagy in diabetic nephropathy. Thus, mice with podocyte-specific deletion of IRE1α demonstrate more severe diabetic nephropathy and attenuation of the glomerular UPR and autophagy, implying a protective effect of IRE1α. These results are consistent with data in human diabetic nephropathy and highlight the potential for therapeutically targeting these pathways.


Subject(s)
Autophagy , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Endoribonucleases , Mice, Knockout , Podocytes , Protein Serine-Threonine Kinases , Unfolded Protein Response , Animals , Podocytes/metabolism , Podocytes/pathology , Endoribonucleases/metabolism , Endoribonucleases/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mice , Autophagy/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Humans , Male , Endoplasmic Reticulum Stress , Albuminuria/genetics , Albuminuria/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Gene Deletion , Endoplasmic Reticulum/metabolism
7.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38695876

ABSTRACT

Platinum-based chemotherapy drugs can lead to the development of anorexia, a detrimental effect on the overall health of cancer patients. However, managing chemotherapy-induced anorexia and subsequent weight loss remains challenging due to limited effective therapeutic strategies. Growth differentiation factor 15 (GDF15) has recently gained significant attention in the context of chemotherapy-induced anorexia. Here, we report that hepatic GDF15 plays a crucial role in regulating body weight in response to chemo drugs cisplatin and doxorubicin. Cisplatin and doxorubicin treatments induce hepatic Gdf15 expression and elevate circulating GDF15 levels, leading to hunger suppression and subsequent weight loss. Mechanistically, selective activation by chemotherapy of hepatic IRE1α-XBP1 pathway of the unfolded protein response (UPR) upregulates Gdf15 expression. Genetic and pharmacological inactivation of IRE1α is sufficient to ameliorate chemotherapy-induced anorexia and body weight loss. These results identify hepatic IRE1α as a molecular driver of GDF15-mediated anorexia and suggest that blocking IRE1α RNase activity offers a therapeutic strategy to alleviate the adverse anorexia effects in chemotherapy.


Subject(s)
Anorexia , Doxorubicin , Endoribonucleases , Growth Differentiation Factor 15 , Liver , Protein Serine-Threonine Kinases , Weight Loss , X-Box Binding Protein 1 , Animals , Humans , Mice , Anorexia/chemically induced , Anorexia/metabolism , Antineoplastic Agents/adverse effects , Cisplatin/adverse effects , Doxorubicin/adverse effects , Endoribonucleases/metabolism , Endoribonucleases/genetics , Growth Differentiation Factor 15/adverse effects , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Liver/metabolism , Liver/drug effects , Liver/pathology , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , Unfolded Protein Response/drug effects , Weight Loss/drug effects , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics
8.
Nat Commun ; 15(1): 4114, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750057

ABSTRACT

Cellular sensitivity to ferroptosis is primarily regulated by mechanisms mediating lipid hydroperoxide detoxification. We show that inositol-requiring enzyme 1 (IRE1α), an endoplasmic reticulum (ER) resident protein critical for the unfolded protein response (UPR), also determines cellular sensitivity to ferroptosis. Cancer and normal cells depleted of IRE1α gain resistance to ferroptosis, while enhanced IRE1α expression promotes sensitivity to ferroptosis. Mechanistically, IRE1α's endoribonuclease activity cleaves and down-regulates the mRNA of key glutathione biosynthesis regulators glutamate-cysteine ligase catalytic subunit (GCLC) and solute carrier family 7 member 11 (SLC7A11). This activity of IRE1α is independent of its role in regulating the UPR and is evolutionarily conserved. Genetic deficiency and pharmacological inhibition of IRE1α have similar effects in inhibiting ferroptosis and reducing renal ischemia-reperfusion injury in mice. Our findings reveal a previously unidentified role of IRE1α to regulate ferroptosis and suggests inhibition of IRE1α as a promising therapeutic strategy to mitigate ferroptosis-associated pathological conditions.


Subject(s)
Amino Acid Transport System y+ , Endoribonucleases , Ferroptosis , Glutathione , Protein Serine-Threonine Kinases , Ferroptosis/genetics , Endoribonucleases/metabolism , Endoribonucleases/genetics , Animals , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mice , Glutathione/metabolism , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Glutamate-Cysteine Ligase/metabolism , Glutamate-Cysteine Ligase/genetics , Unfolded Protein Response , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Cell Line, Tumor , Mice, Inbred C57BL , Male , Mice, Knockout
9.
J Mol Neurosci ; 74(2): 53, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750341

ABSTRACT

Previous studies have demonstrated a brain volume decrease linked to long-term starvation in patients with anorexia nervosa (AN). Food intake is critically diminished in this disorder, leading to one of the highest mortality rates within the psychiatric disease spectrum. As reported in animal models, astrocytes seem to be the most affected cell type in AN. In a recently established primary cell culture model, an elevated unfolded protein response (UPR) was observed in long-term glucose semi-starved astrocytes. A well-functioning protein machinery is essential for every cell, and prolonged UPR will lead to cell death. As a nucleic acid stress-sensing pathway with the activator located in the endoplasmic reticulum, the regulation of the cGAS-STING pathway (cyclic GMP-AMP synthase/stimulator of interferon genes) was additionally investigated in the starvation context. In the current study, a glucose semi-starvation protocol of 15 days, during which cells were supplied with 2 mM glucose in the medium, was prolonged with an additional 6-day long recovery period. Our findings showed that increased UPR mRNA expression was reversible after re-establishing the standard glucose concentration of 25 mM. Furthermore, we were able to verify the presence of cGAS and STING in astrocytes with a characteristic presence of cGAS in the astrocyte nucleus during starvation. A correlation between STING and the glial fibrillary acidic protein (GFAP) could be established, hinting at a conditional presence of STING with a specific astrocyte phenotype.


Subject(s)
Astrocytes , Endoplasmic Reticulum Stress , Glucose , Membrane Proteins , Nucleotidyltransferases , Unfolded Protein Response , Astrocytes/metabolism , Glucose/metabolism , Animals , Cells, Cultured , Membrane Proteins/metabolism , Membrane Proteins/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics
10.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731938

ABSTRACT

Inherited retinal degeneration (RD) constitutes a heterogeneous group of genetic retinal degenerative disorders. The molecular mechanisms underlying RD encompass a diverse spectrum of cellular signaling, with the unfolded protein response (UPR) identified as a common signaling pathway chronically activated in degenerating retinas. TRIB3 has been recognized as a key mediator of the PERK UPR arm, influencing various metabolic pathways, such as insulin signaling, lipid metabolism, and glucose homeostasis, by acting as an AKT pseudokinase that prevents the activation of the AKT → mTOR axis. This study aimed to develop a gene-independent approach targeting the UPR TRIB3 mediator previously tested by our group using a genetic approach in mice with RD. The goal was to validate a therapeutic approach targeting TRIB3 interactomes through the pharmacological targeting of EGFR-TRIB3 and delivering cell-penetrating peptides targeting TRIB3 → AKT. The study employed rd10 and P23H RHO mice, with afatinib treatment conducted in p15 rd10 mice through daily intraperitoneal injections. P15 P23H RHO mice received intraocular injections of cell-penetrating peptides twice at a 2-week interval. Our study revealed that both strategies successfully targeted TRIB3 interactomes, leading to an improvement in scotopic A- and B-wave ERG recordings. Additionally, the afatinib-treated mice manifested enhanced photopic ERG amplitudes accompanied by a delay in photoreceptor cell loss. The treated rd10 retinas also showed increased PDE6ß and RHO staining, along with an elevation in total PDE activity in the retinas. Consequently, our study demonstrated the feasibility of a gene-independent strategy to target common signaling in degenerating retinas by employing a TRIB3-based therapeutic approach that delays retinal function and photoreceptor cell loss in two RD models.


Subject(s)
Retinal Degeneration , Animals , Mice , Retinal Degeneration/drug therapy , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Disease Models, Animal , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Signal Transduction/drug effects , Unfolded Protein Response/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Mice, Inbred C57BL , Retina/metabolism , Retina/drug effects , Retina/pathology
11.
Cells ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727305

ABSTRACT

BACKGROUND: SARS-Co-V2 infection can induce ER stress-associated activation of unfolded protein response (UPR) in host cells, which may contribute to the pathogenesis of COVID-19. To understand the complex interplay between SARS-Co-V2 infection and UPR signaling, we examined the effects of acute pre-existing ER stress on SARS-Co-V2 infectivity. METHODS: Huh-7 cells were treated with Tunicamycin (TUN) and Thapsigargin (THA) prior to SARS-CoV-2pp transduction (48 h p.i.) to induce ER stress. Pseudo-typed particles (SARS-CoV-2pp) entry into host cells was measured by Bright GloTM luciferase assay. Cell viability was assessed by cell titer Glo® luminescent assay. The mRNA and protein expression was evaluated by RT-qPCR and Western Blot. RESULTS: TUN (5 µg/mL) and THA (1 µM) efficiently inhibited the entry of SARS-CoV-2pp into host cells without any cytotoxic effect. TUN and THA's attenuation of virus entry was associated with differential modulation of ACE2 expression. Both TUN and THA significantly reduced the expression of stress-inducible ER chaperone GRP78/BiP in transduced cells. In contrast, the IRE1-XBP1s and PERK-eIF2α-ATF4-CHOP signaling pathways were downregulated with THA treatment, but not TUN in transduced cells. Insulin-mediated glucose uptake and phosphorylation of Ser307 IRS-1 and downstream p-AKT were enhanced with THA in transduced cells. Furthermore, TUN and THA differentially affected lipid metabolism and apoptotic signaling pathways. CONCLUSIONS: These findings suggest that short-term pre-existing ER stress prior to virus infection induces a specific UPR response in host cells capable of counteracting stress-inducible elements signaling, thereby depriving SARS-Co-V2 of essential components for entry and replication. Pharmacological manipulation of ER stress in host cells might provide new therapeutic strategies to alleviate SARS-CoV-2 infection.


Subject(s)
Apoptosis , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Proto-Oncogene Proteins c-akt , SARS-CoV-2 , Signal Transduction , Thapsigargin , Tunicamycin , Unfolded Protein Response , Humans , Thapsigargin/pharmacology , Unfolded Protein Response/drug effects , Tunicamycin/pharmacology , Apoptosis/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Endoplasmic Reticulum Stress/drug effects , COVID-19/virology , COVID-19/metabolism , Virus Internalization/drug effects
12.
Pol J Pathol ; 75(1): 40-53, 2024.
Article in English | MEDLINE | ID: mdl-38741428

ABSTRACT

C1q/TNF-related protein-9 (CTRP9) has been reported to play roles in several types of retinal diseases. However, the role and the potential mechanism of CTRP9 in glaucoma are still incompletely understood. The expression of CTRP9 in OGD/R-induced retinal ganglion cells (RGCs) was detected by quantitative real-time polymerase chain reaction and western blot assay. Cell proliferation was identified by cell counting Kit-8 assay. Flow cytometry, enzyme-linked immunosorbent assay and western blot assay were performed to assess cell apoptosis. Unfolded protein response (UPR), endoplasmic reticulum (ER) stress and the AMPK pathway were evaluated by western blot assay. The data showed that the expression of CTRP9 was significantly downregulated in OGD/R-induced 661W cells. OGD/R treatment reduced cell viability, promoted cell apoptosis and activated the UPR and ER stress. The overexpression of CTRP9 reversed the effects of OGD/R on 661W cell viability, apoptosis, the UPR and ER stress, as well as the AMPK pathway. However, Compound C, an inhibitor of AMPK signaling, reversed the protection of CTRP9 overexpression against injury from OGD/R in 661W cells. In summary, the results revealed that CTRP9 abated the apoptosis and UPR of OGD/R-induced RGCs by regulating the AMPK pathway, which may provide a promising target for the treatment of glaucoma.


Subject(s)
AMP-Activated Protein Kinases , Apoptosis , Endoplasmic Reticulum Stress , Retinal Ganglion Cells , Signal Transduction , Unfolded Protein Response , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Animals , AMP-Activated Protein Kinases/metabolism , Mice , Cell Line , Adiponectin/metabolism , Cell Survival , Glucose/metabolism , Glaucoma/metabolism , Glaucoma/pathology , Glycoproteins
13.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732072

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory disease. Despite new methods of diagnostics and treatment as well as extensive biological and immunosuppressive treatment, the etiology of RA is not fully understood. Moreover, the problem of diagnosis and treatment of RA patients is still current and affects a large group of patients. It is suggested that endoplasmic reticulum (ER)-related features may impair adaptation to chronic stress, inferring the risk of rheumatoid arthritis. The main goal in this study was evaluation of changes in mRNA translation to determine chronic ER stress conditions in rheumatoid arthritis patients. The study group consist of 86 individuals including a total of 56 rheumatoid arthritis patients and 30 healthy controls. The expression level of mRNA form blood samples of RA patients as well as controls of the unfolded protein response (UPR)-associated genes (p-eIF2, BCL-2, PERK, ATF4, and BAX) were investigated using real-time qPCR. GAPDH expression was used as a standard control. Considering the median, the expression levels of PERK, BCL-2, p-eIF2, ATF4, and BAX were found to be significantly increased in the blood of RA patients compared with the control group. The p-value for the PERK gene was 0.0000000036, the p-value for the BCL-2 gene was 0.000000014, the p-value for the p-eIF2 gene was 0.006948, the p-value for the ATF4 gene was 0.0000056, and the p-value for the BAX gene was 0.00019, respectively. Thus, it can be concluded that the targeting of the components of the PERK-dependent UPR signaling pathway via small-molecule PERK inhibitors may contribute to the development of novel, innovative treatment strategies against rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid , Endoplasmic Reticulum Stress , Gene Expression Profiling , Unfolded Protein Response , eIF-2 Kinase , Humans , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/blood , Unfolded Protein Response/genetics , Female , Male , Middle Aged , Endoplasmic Reticulum Stress/genetics , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Adult , Aged , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Case-Control Studies , RNA, Messenger/genetics , RNA, Messenger/metabolism , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/genetics
14.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732214

ABSTRACT

Pain is a complex and multifaceted experience. Recent research has increasingly focused on the role of endoplasmic reticulum (ER) stress in the induction and modulation of pain. The ER is an essential organelle for cells and plays a key role in protein folding and calcium dynamics. Various pathological conditions, such as ischemia, hypoxia, toxic substances, and increased protein production, may disturb protein folding, causing an increase in misfolding proteins in the ER. Such an overload of the folding process leads to ER stress and causes the unfolded protein response (UPR), which increases folding capacity in the ER. Uncompensated ER stress impairs intracellular signaling and cell function, resulting in various diseases, such as diabetes and degenerative neurological diseases. ER stress may be a critical universal mechanism underlying human diseases. Pain sensations involve the central as well as peripheral nervous systems. Several preclinical studies indicate that ER stress in the nervous system is enhanced in various painful states, especially in neuropathic pain conditions. The purpose of this narrative review is to uncover the intricate relationship between ER stress and pain, exploring molecular pathways, implications for various pain conditions, and potential therapeutic strategies.


Subject(s)
Endoplasmic Reticulum Stress , Pain , Unfolded Protein Response , Humans , Animals , Pain/metabolism , Pain/physiopathology , Endoplasmic Reticulum/metabolism , Signal Transduction , Neuralgia/metabolism , Neuralgia/physiopathology , Protein Folding
15.
Chem Biol Interact ; 395: 111036, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38705443

ABSTRACT

Gelsemium elegans Benth. (G. elegans) is a traditional medicinal herb that has anti-inflammatory, analgesic, sedative, and detumescence effects. However, it can also cause intestinal side effects such as abdominal pain and diarrhea. The toxicological mechanisms of gelsenicine are still unclear. The objective of this study was to assess enterotoxicity induced by gelsenicine in the nematodes Caenorhabditis elegans (C. elegans). The nematodes were treated with gelsenicine, and subsequently their growth, development, and locomotion behavior were evaluated. The targets of gelsenicine were predicted using PharmMapper. mRNA-seq was performed to verify the predicted targets. Intestinal permeability, ROS generation, and lipofuscin accumulation were measured. Additionally, the fluorescence intensities of GFP-labeled proteins involved in oxidative stress and unfolded protein response in endoplasmic reticulum (UPRER) were quantified. As a result, the treatment of gelsenicine resulted in the inhibition of nematode lifespan, as well as reductions in body length, width, and locomotion behavior. A total of 221 targets were predicted by PharmMapper, and 731 differentially expressed genes were screened out by mRNA-seq. GO and KEGG enrichment analysis revealed involvement in redox process and transmembrane transport. The permeability assay showed leakage of blue dye from the intestinal lumen into the body cavity. Abnormal mRNAs expression of gem-4, hmp-1, fil-2, and pho-1, which regulated intestinal development, absorption and catabolism, transmembrane transport, and apical junctions, was observed. Intestinal lipofuscin and ROS were increased, while sod-2 and isp-1 expressions were decreased. Multiple proteins in SKN-1/DAF-16 pathway were found to bind stably with gelsenicine in a predictive model. There was an up-regulation in the expression of SKN-1:GFP, while the nuclear translocation of DAF-16:GFP exhibited abnormality. The UPRER biomarker HSP-4:GFP was down-regulated. In conclusion, the treatment of gelsenicine resulted in the increase of nematode intestinal permeability. The toxicological mechanisms underlying this effect involved the disruption of intestinal barrier integrity, an imbalance between oxidative and antioxidant processes mediated by the SKN-1/DAF-16 pathway, and abnormal unfolded protein reaction.


Subject(s)
Caenorhabditis elegans , Reactive Oxygen Species , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Reactive Oxygen Species/metabolism , Quinoxalines/pharmacology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Oxidative Stress/drug effects , Intestines/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Gelsemium/chemistry , Unfolded Protein Response/drug effects , Permeability/drug effects , Lipofuscin/metabolism , Locomotion/drug effects , Indole Alkaloids
16.
J Histochem Cytochem ; 72(5): 289-307, 2024 May.
Article in English | MEDLINE | ID: mdl-38725414

ABSTRACT

Several types of cytotoxic insults disrupt endoplasmic reticulum (ER) homeostasis, cause ER stress, and activate the unfolded protein response (UPR). The role of ER stress and UPR activation in hypersensitivity pneumonitis (HP) has not been described. HP is an immune-mediated interstitial lung disease that develops following repeated inhalation of various antigens in susceptible and sensitized individuals. The aim of this study was to investigate the lung expression and localization of the key effectors of the UPR, BiP/GRP78, CHOP, and sXBP1 in HP patients compared with control subjects. Furthermore, we developed a mouse model of HP to determine whether ER stress and UPR pathway are induced during this pathogenesis. In human control lungs, we observed weak positive staining for BiP in some epithelial cells and macrophages, while sXBP1 and CHOP were negative. Conversely, strong BiP, sXBP1- and CHOP-positive alveolar and bronchial epithelial, and inflammatory cells were identified in HP lungs. We also found apoptosis and autophagy markers colocalization with UPR proteins in HP lungs. Similar results were obtained in lungs from an HP mouse model. Our findings suggest that the UPR pathway is associated with the pathogenesis of HP.


Subject(s)
Alveolitis, Extrinsic Allergic , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Epithelial Cells , Heat-Shock Proteins , Transcription Factor CHOP , Unfolded Protein Response , X-Box Binding Protein 1 , Animals , Alveolitis, Extrinsic Allergic/pathology , Alveolitis, Extrinsic Allergic/immunology , Alveolitis, Extrinsic Allergic/metabolism , Humans , Mice , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Heat-Shock Proteins/metabolism , Transcription Factor CHOP/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Male , Lung/pathology , Lung/immunology , Lung/metabolism , DNA-Binding Proteins/metabolism , Regulatory Factor X Transcription Factors/metabolism , Transcription Factors/metabolism , Disease Models, Animal , Middle Aged , Mice, Inbred C57BL , Adult , Inflammation/pathology , Inflammation/metabolism , Inflammation/immunology
17.
Mol Cell Biol ; 44(5): 165-177, 2024.
Article in English | MEDLINE | ID: mdl-38758542

ABSTRACT

Systemic amyloid A (AA) amyloidosis, which is considered the second most common form of systemic amyloidosis usually takes place several years prior to the occurrence of chronic inflammation, generally involving the kidney. Activated HSF1, which alleviated unfolded protein response (UPR) or enhanced HSR, is the potential therapeutic target of many diseases. However, the effect of HSF1 on AA amyloidosis remains unclear. This study focused on evaluating effect of HSF1 on AA amyloidosis based on HSF1 knockout mice. As a result, aggravated amyloid deposits and renal dysfunction have been found in HSF1 knockout mice. In progressive AA amyloidosis, HSF1 deficiency enhances serum amyloid A production might to lead to severe AA amyloid deposition in mice, which may be related to deactivated unfolded protein response as well as enhanced inflammation. Thus, HSF1 plays a significant role on UPR related pathway impacting AA amyloid deposition, which can mitigate amyloidogenic proteins from aggregation pathologically and is the possible way for intervening with the pathology of systemic amyloid disorder. In conclusion, HSF1 could not only serve as a new target for AA amyloidosis treatment in the future, but HSF1 knockout mice also can be considered as a valuable novel animal model for renal AA amyloidosis.


Subject(s)
Amyloidosis , Heat Shock Transcription Factors , Kidney , Mice, Knockout , Unfolded Protein Response , Animals , Amyloidosis/metabolism , Amyloidosis/genetics , Amyloidosis/pathology , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Mice , Kidney/pathology , Kidney/metabolism , Serum Amyloid A Protein/metabolism , Serum Amyloid A Protein/genetics , Disease Models, Animal , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/genetics , Kidney Diseases/etiology , Mice, Inbred C57BL
18.
Commun Biol ; 7(1): 618, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783087

ABSTRACT

Endothelial cells (ECs) are highly glycolytic, but whether they generate glycolytic intermediates via gluconeogenesis (GNG) in glucose-deprived conditions remains unknown. Here, we report that glucose-deprived ECs upregulate the GNG enzyme PCK2 and rely on a PCK2-dependent truncated GNG, whereby lactate and glutamine are used for the synthesis of lower glycolytic intermediates that enter the serine and glycerophospholipid biosynthesis pathways, which can play key roles in redox homeostasis and phospholipid synthesis, respectively. Unexpectedly, however, even in normal glucose conditions, and independent of its enzymatic activity, PCK2 silencing perturbs proteostasis, beyond its traditional GNG role. Indeed, PCK2-silenced ECs have an impaired unfolded protein response, leading to accumulation of misfolded proteins, which due to defective proteasomes and impaired autophagy, results in the accumulation of protein aggregates in lysosomes and EC demise. Ultimately, loss of PCK2 in ECs impaired vessel sprouting. This study identifies a role for PCK2 in proteostasis beyond GNG.


Subject(s)
Endothelial Cells , Gluconeogenesis , Phosphoenolpyruvate Carboxykinase (GTP) , Proteostasis , Gluconeogenesis/genetics , Humans , Endothelial Cells/metabolism , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Phosphoenolpyruvate Carboxykinase (GTP)/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Glucose/metabolism , Autophagy , Unfolded Protein Response , Phosphoenolpyruvate Carboxykinase (ATP)
19.
Genes (Basel) ; 15(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38790197

ABSTRACT

Currently, more than 55 million people around the world suffer from dementia, and Alzheimer's Disease and Related Dementias (ADRD) accounts for nearly 60-70% of all those cases. The spread of Alzheimer's Disease (AD) pathology and progressive neurodegeneration in the hippocampus and cerebral cortex is strongly correlated with cognitive decline in AD patients; however, the molecular underpinning of ADRD's causality is still unclear. Studies of postmortem AD brains and animal models of AD suggest that elevated endoplasmic reticulum (ER) stress may have a role in ADRD pathology through altered neurocellular homeostasis in brain regions associated with learning and memory. To study the ER stress-associated neurocellular response and its effects on neurocellular homeostasis and neurogenesis, we modeled an ER stress challenge using thapsigargin (TG), a specific inhibitor of sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), in the induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) of two individuals from our Mexican American Family Study (MAFS). High-content screening and transcriptomic analysis of the control and ER stress-challenged NSCs showed that the NSCs' ER stress response resulted in a significant decline in NSC self-renewal and an increase in apoptosis and cellular oxidative stress. A total of 2300 genes were significantly (moderated t statistics FDR-corrected p-value ≤ 0.05 and fold change absolute ≥ 2.0) differentially expressed (DE). The pathway enrichment and gene network analysis of DE genes suggests that all three unfolded protein response (UPR) pathways, protein kinase RNA-like ER kinase (PERK), activating transcription factor-6 (ATF-6), and inositol-requiring enzyme-1 (IRE1), were significantly activated and cooperatively regulated the NSCs' transcriptional response to ER stress. Our results show that IRE1/X-box binding protein 1 (XBP1) mediated transcriptional regulation of the E2F transcription factor 1 (E2F1) gene, and its downstream targets have a dominant role in inducing G1/S-phase cell cycle arrest in ER stress-challenged NSCs. The ER stress-challenged NSCs also showed the activation of C/EBP homologous protein (CHOP)-mediated apoptosis and the dysregulation of synaptic plasticity and neurotransmitter homeostasis-associated genes. Overall, our results suggest that the ER stress-associated attenuation of NSC self-renewal, increased apoptosis, and dysregulated synaptic plasticity and neurotransmitter homeostasis plausibly play a role in the causation of ADRD.


Subject(s)
Alzheimer Disease , Endoplasmic Reticulum Stress , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Induced Pluripotent Stem Cells/metabolism , Thapsigargin/pharmacology , Dementia/genetics , Dementia/metabolism , Dementia/pathology , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Male , Activating Transcription Factor 6/metabolism , Activating Transcription Factor 6/genetics , Neurogenesis , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Female , Unfolded Protein Response , Transcription Factor CHOP
20.
Aging (Albany NY) ; 16(9): 7818-7844, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38700505

ABSTRACT

BACKGROUND: Stomach cancer is a leading cause of cancer-related deaths globally due to its high grade and poor response to treatment. Understanding the molecular network driving the rapid progression of stomach cancer is crucial for improving patient outcomes. METHODS: This study aimed to investigate the role of unfolded protein response (UPR) related genes in stomach cancer and their potential as prognostic biomarkers. RNA expression data and clinical follow-up information were obtained from the TCGA and GEO databases. An unsupervised clustering algorithm was used to identify UPR genomic subtypes in stomach cancer. Functional enrichment analysis, immune landscape analysis, and chemotherapy benefit prediction were conducted for each subtype. A prognostic model based on UPR-related genes was developed and validated using LASSO-Cox regression, and a multivariate nomogram was created. Key gene expression analyses in pan-cancer and in vitro experiments were performed to further investigate the role of the identified genes in cancer progression. RESULTS: A total of 375 stomach cancer patients were included in this study. Analysis of 113 UPR-related genes revealed their close functional correlation and significant enrichment in protein modification, transport, and RNA degradation pathways. Unsupervised clustering identified two molecular subtypes with significant differences in prognosis and gene expression profiles. Immune landscape analysis showed that UPR may influence the composition of the tumor immune microenvironment. Chemotherapy sensitivity analysis indicated that patients in the C2 molecular subtype were more responsive to chemotherapy compared to those in the C1 molecular subtype. A prognostic signature consisting of seven UPR-related genes was constructed and validated, and an independent prognostic nomogram was developed. The gene IGFBP1, which had the highest weight coefficient in the prognostic signature, was found to promote the malignant phenotype of stomach cancer cells, suggesting its potential as a therapeutic target. CONCLUSIONS: The study developed a UPR-related gene classifier and risk signature for predicting survival in stomach cancer, identifying IGFBP1 as a key factor promoting the disease's malignancy and a potential therapeutic target. IGFBP1's role in enhancing cancer cell adaptation to endoplasmic reticulum stress suggests its importance in stomach cancer prognosis and treatment.


Subject(s)
Biomarkers, Tumor , Stomach Neoplasms , Tumor Microenvironment , Unfolded Protein Response , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology , Humans , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Unfolded Protein Response/genetics , Unfolded Protein Response/immunology , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Female , Male , Nomograms , Transcriptome , Gene Expression Profiling , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...