Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Exp Med Biol ; 1441: 869-874, 2024.
Article in English | MEDLINE | ID: mdl-38884755

ABSTRACT

Although the terms "single ventricle" and "univentricular heart" are frequently used to describe a variety of complex congenital heart defects, in fact, nearly all hearts have two ventricles, although one of the two may be too small to be functional. A better term for these hearts would therefore be "functional single ventricle."


Subject(s)
Tricuspid Atresia , Univentricular Heart , Humans , Heart Ventricles/physiopathology , Heart Ventricles/abnormalities , Tricuspid Atresia/surgery , Tricuspid Atresia/physiopathology , Tricuspid Atresia/diagnostic imaging , Univentricular Heart/surgery , Univentricular Heart/physiopathology , Univentricular Heart/diagnostic imaging , Univentricular Heart/therapy , Univentricular Heart/genetics
2.
Adv Exp Med Biol ; 1441: 875-884, 2024.
Article in English | MEDLINE | ID: mdl-38884756

ABSTRACT

Tricuspid atresia (TA) is a rare congenital heart condition that presents with a complete absence of the right atrioventricular valve. Because of the rarity of familial and/or isolated cases of TA, little is known about the potential genetic abnormalities contributing to this condition. Potential responsible chromosomal abnormalities were identified in exploratory studies and include deletions in 22q11, 4q31, 8p23, and 3p as well as trisomies 13 and 18. In parallel, potential culprit genes include the ZFPM2, HEY2, NFATC1, NKX2-5, MYH6, and KLF13 genes. The aim of this chapter is to expose the genetic components that are potentially involved in the pathogenesis of TA in humans. The large variability in phenotypes and genotypes among cases of TA suggests a genetic network that involves many components yet to be unraveled.


Subject(s)
Tricuspid Atresia , Humans , Chromosome Aberrations , Phenotype , Tricuspid Atresia/genetics , Univentricular Heart/genetics
3.
Adv Exp Med Biol ; 1441: 885-900, 2024.
Article in English | MEDLINE | ID: mdl-38884757

ABSTRACT

The process of valve formation is a complex process that involves intricate interplay between various pathways at precise times. Although we have not completely elucidated the molecular pathways that lead to normal valve formation, we have identified a few major players in this process. We are now able to implicate TGF-ß, BMP, and NOTCH as suspects in tricuspid atresia (TA), as well as their downstream targets: NKX2-5, TBX5, NFATC1, GATA4, and SOX9. We know that the TGF-ß and the BMP pathways converge on the SMAD4 molecule, and we believe that this molecule plays a very important role to tie both pathways to TA. Similarly, we look at the NOTCH pathway and identify the HEY2 as a potential link between this pathway and TA. Another transcription factor that has been implicated in TA is NFATC1. While several mouse models exist that include part of the TA abnormality as their phenotype, no true mouse model can be said to represent TA. Bridging this gap will surely shed light on this complex molecular pathway and allow for better understanding of the disease process.


Subject(s)
Disease Models, Animal , Signal Transduction , Tricuspid Atresia , Animals , Tricuspid Atresia/genetics , Tricuspid Atresia/metabolism , Tricuspid Atresia/pathology , Humans , Mice , Univentricular Heart/genetics , Univentricular Heart/metabolism , Univentricular Heart/physiopathology , Univentricular Heart/pathology , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Receptors, Notch/metabolism , Receptors, Notch/genetics
4.
Am J Physiol Heart Circ Physiol ; 318(4): H787-H800, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32056460

ABSTRACT

Despite advances in both medical and surgical therapies, individuals with single ventricle heart disease (SV) remain at high risk for the development of heart failure (HF). However, the molecular mechanisms underlying remodeling and eventual HF in patients with SV are poorly characterized. Cardiolipin (CL), an inner mitochondrial membrane phospholipid, is critical for proper mitochondrial function, and abnormalities in CL content and composition are known in various cardiovascular disease etiologies. The purpose of this study was to investigate myocardial CL content and composition in failing and nonfailing single right ventricle (RV) samples compared with normal control RV samples, to assess mRNA expression of CL biosynthetic and remodeling enzymes, and to quantitate relative mitochondrial copy number. A cross-sectional analysis of RV myocardial tissue from 22 failing SV (SVHF), 9 nonfailing SV (SVNF), and 10 biventricular control samples (BVNF) was performed. Expression of enzymes involved in CL biosynthesis and remodeling were analyzed using RT-qPCR and relative mitochondrial DNA copy number determined by qPCR. Normal phase high-pressure liquid chromatography coupled to electrospray ionization mass spectrometry was used to quantitate total and specific CL species. While mitochondrial copy number was not significantly different between groups, total CL content was significantly lower in SVHF myocardium compared with BVNF controls. Despite having lower total CL content however, the relative percentage of the major tetralinoleoyl CL species is preserved in SVHF samples relative to BVNF controls. Correspondingly, expression of enzymes involved in CL biosynthesis and remodeling were upregulated in SVHF samples when compared with both SVNF samples and BVNF controls.NEW & NOTEWORTHY The mechanisms underlying heart failure in the single ventricle (SV) congenital heart disease population are largely unknown. In this study we identify alterations in cardiac cardiolipin metabolism, composition, and content in children with SV heart disease. These findings suggest that cardiolipin could be a novel therapeutic target in this unique population of patients.


Subject(s)
Cardiolipins/biosynthesis , Univentricular Heart/metabolism , Cardiolipins/genetics , Child , Child, Preschool , DNA, Mitochondrial/genetics , Female , Heart Ventricles/abnormalities , Heart Ventricles/metabolism , Heart Ventricles/pathology , Humans , Male , Mitochondria, Heart/enzymology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Univentricular Heart/genetics , Ventricular Remodeling
5.
Am J Physiol Heart Circ Physiol ; 318(4): H947-H965, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32108525

ABSTRACT

Because of remarkable surgical and medical advances over the past several decades, there are growing numbers of infants and children living with single ventricle congenital heart disease (SV), where there is only one functional cardiac pumping chamber. Nevertheless, cardiac dysfunction (and ultimately heart failure) is a common complication in the SV population, and pharmacological heart failure therapies have largely been ineffective in mitigating the need for heart transplantation. Given that there are several inherent risk factors for ventricular dysfunction in the setting of SV in addition to probable differences in molecular adaptations to heart failure between children and adults, it is perhaps not surprising that extrapolated adult heart failure medications have had limited benefit in children with SV heart failure. Further investigations into the molecular mechanisms involved in pediatric SV heart failure may assist with risk stratification as well as development of targeted, efficacious therapies specific to this patient population. In this review, we present a brief overview of SV anatomy and physiology, with a focus on patients with a single morphological right ventricle requiring staged surgical palliation. Additionally, we discuss outcomes in the current era, risk factors associated with the progression to heart failure, present state of knowledge regarding molecular alterations in end-stage SV heart failure, and current therapeutic interventions. Potential avenues for improving SV outcomes, including identification of biomarkers of heart failure progression, implications of personalized medicine and stem cell-derived therapies, and applications of novel models of SV disease, are proposed as future directions.


Subject(s)
Heart Failure/physiopathology , Univentricular Heart/physiopathology , Blalock-Taussig Procedure/adverse effects , Blalock-Taussig Procedure/methods , Heart Bypass, Right/adverse effects , Heart Bypass, Right/methods , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/surgery , Heart Ventricles/abnormalities , Humans , Patient-Specific Modeling , Univentricular Heart/genetics , Univentricular Heart/metabolism , Univentricular Heart/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...