Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43.502
Filter
2.
World J Microbiol Biotechnol ; 40(7): 229, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825655

ABSTRACT

Biocementation, driven by ureolytic bacteria and their biochemical activities, has evolved as a powerful technology for soil stabilization, crack repair, and bioremediation. Ureolytic bacteria play a crucial role in calcium carbonate precipitation through their enzymatic activity, hydrolyzing urea to produce carbonate ions and elevate pH, thus creating favorable conditions for the precipitation of calcium carbonate. While extensive research has explored the ability of ureolytic bacteria isolated from natural environments or culture conditions, bacterial synergy is often unexplored or under-reported. In this study, we isolated bacterial strains from the local eutrophic river canal and evaluated their suitability for precipitating calcium carbonate polymorphs. We identified two distinct bacterial isolates with superior urea degradation ability (conductivity method) using partial 16 S rRNA gene sequencing. Molecular identification revealed that they belong to the Comamonas and Bacillus genera. Urea degradation analysis was performed under diverse pH (6,7 and 8) and temperature (15 °C,20 °C,25 °C and 30 °C) ranges, indicating that their ideal pH is 7 and temperature is 30 °C since 95% of the urea was degraded within 96 h. In addition, we investigated these strains individually and in combination, assessing their microbially induced carbonate precipitation (MICP) in silicate fine sand under low (14 ± 0.6 °C) and ideal temperature 30 °C conditions, aiming to optimize bio-mediated soil enhancement. Results indicated that 30 °C was the ideal temperature, and combining bacteria resulted in significant (p ≤ 0.001) superior carbonate precipitation (14-16%) and permeability (> 10- 6 m/s) in comparison to the average range of individual strains. These findings provide valuable insights into the potential of combining ureolytic bacteria for future MICP research on field applications including soil erosion mitigation, soil stabilization, ground improvement, and heavy metal remediation.


Subject(s)
Bacillus , Biodegradation, Environmental , Calcium Carbonate , RNA, Ribosomal, 16S , Sand , Soil Microbiology , Urea , Urea/metabolism , Bacillus/genetics , Bacillus/metabolism , Bacillus/enzymology , Hydrogen-Ion Concentration , RNA, Ribosomal, 16S/genetics , Sand/microbiology , Calcium Carbonate/metabolism , Calcium Carbonate/chemistry , Temperature , Phylogeny , Chemical Precipitation
4.
Am J Dent ; 37(2): 78-84, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38704850

ABSTRACT

PURPOSE: To evaluate how fluoride- or chitosan-based toothpaste used during at-home bleaching affects enamel roughness, tooth color, and staining susceptibility. METHODS: Bovine enamel blocks were submitted to a 14-day cycling regime considering a factorial design (bleaching agent x toothpaste, 2 x 3), with n=10: (1) bleaching with 16% carbamide peroxide (CP) or 6% hydrogen peroxide (HP), and (2) daily exposure of a fluoride (1,450 ppm F-NaF) toothpaste (FT), chitosan-based toothpaste (CBT), or distilled water (control). Then, 24 hours after the last day of bleaching procedure the samples were exposed to a coffee solution. Color (ΔEab, ΔE00, L*, a*, b*) and roughness (Ra, µm) analyses were performed to compare the samples initially (baseline), after bleaching, and after coffee staining. The results were evaluated by linear models for repeated measures (L*, a*, b*, and Ra), 2-way ANOVA (ΔEab, ΔE00) and Tukey's test (α= 0.05). RESULTS: After the at-home bleaching procedure (toothpaste vs. time, P< 0.0001), the toothpaste groups presented a statistically lower Ra than the control (CBT 0.05). After coffee exposure, CBT presented lower ΔEab and ΔE00 values in the HP groups (toothpaste, P< 0.0001), and lower b* and a* values in the CP groups (toothpaste vs. time, P= 0.004). CLINICAL SIGNIFICANCE: Fluoride or chitosan delivered by toothpaste can reduce surface alterations of the enamel during at-home bleaching, without affecting bleaching efficacy.


Subject(s)
Carbamide Peroxide , Chitosan , Dental Enamel , Hydrogen Peroxide , Tooth Bleaching Agents , Tooth Bleaching , Tooth Discoloration , Toothpastes , Chitosan/pharmacology , Toothpastes/pharmacology , Animals , Cattle , Tooth Bleaching/methods , Dental Enamel/drug effects , Tooth Bleaching Agents/pharmacology , Hydrogen Peroxide/pharmacology , Carbamide Peroxide/pharmacology , Surface Properties , Fluorides/pharmacology , Color , Urea/analogs & derivatives , Urea/pharmacology , Coffee , Peroxides/pharmacology
5.
Water Res ; 256: 121638, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38691899

ABSTRACT

In this study, we investigated the recovery of nitrogen (N) and phosphorus (P) from fresh source-separated urine with a novel electrochemical cell equipped with a magnesium (Mg) anode and carbon-based gas-diffusion cathode. Recovery of P, which exists primarily as phosphate (PO43-) in urine, was achieved through pH-driven precipitation. Maximizing N recovery requires simultaneous approaches to address urea and ammonia (NH3). NH3 recovery was possible through precipitation in struvite with soluble Mg supplied by the anode. Urea was stabilized with electrochemically synthesized hydrogen peroxide (H2O2) from the cathode. H2O2 concentrations and resulting urine pH were directly proportional to the applied current density. Concomitant NH3 and PO43- precipitation as struvite and urea stabilization via H2O2 electrosynthesis was possible at lower current densities, resulting in urine pH under 9.2. Higher current densities resulted in urine pH over 9.2, yielding higher H2O2 concentrations and more consistent stabilization of urea at the expense of NH3 recovery as struvite; PO43- precipitation still occurred but in the form of calcium phosphate and magnesium phosphate solids.


Subject(s)
Electrodes , Hydrogen Peroxide , Magnesium , Phosphorus , Urea , Urea/chemistry , Phosphorus/chemistry , Magnesium/chemistry , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Urine/chemistry , Phosphates/chemistry , Struvite/chemistry , Ammonia/chemistry , Magnesium Compounds/chemistry , Nitrogen/chemistry , Humans
6.
Water Res ; 257: 121751, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38744062

ABSTRACT

The human urine metabolome is complex, containing a wide range of organic metabolites that affect treatment of urine collected in resource-oriented sanitation systems. In this study, an advanced oxidation process involving heat-activated peroxydisulphate was used to selectively oxidise organic metabolites in urine over urea and chloride. Initial experiments evaluated optimal conditions (peroxydisulphate dose, temperature, time, pH) for activation of peroxydisulphate in unconcentrated, non-hydrolysed synthetic urine and real urine acidified to pH 3.0. Subsequent experiments determined the fate of 268 endogenous organic metabolites (OMs) and removal of COD from unconcentrated and concentrated real urine (80-90% mass reduced by evaporation). The results revealed >90% activation of 60 mM peroxydisulphate in real unconcentrated urine heated to 90 °C for 1 h, resulting in 43% ΣOMs degradation, 22% COD removal and 56% total organic carbon removal, while >94% of total nitrogen and >97% of urea in real unconcentrated urine were recovered. The mechanism of urea degradation was identified to be chemical hydrolysis to ammonia, with the rate constant for this reaction determined to be 1.9 × 10-6 s-1 at pH 3.0 and 90 °C. Treating concentrated real urine resulted in similar removal of COD, ΣOMs degradation and total nitrogen loss as observed for unconcentrated urine, but with significantly higher chloride oxidation and chemical hydrolysis of urea. Targeted metabolomic analysis revealed that peroxydisulphate treatment degraded 157 organic metabolites in urine, of which 67 metabolites were degraded by >80%. The rate constant for the reaction of sulphate radicals with oxidisable endogenous organic metabolites in urine was estimated to exceed 108 M-1 s-1. These metabolites were preferentially oxidised over chloride and urea in acidified, non-hydrolysed urine treated with peroxydisulphate. Overall, the findings support the development of emerging urine recycling technologies, including alkaline/acid dehydration and reverse osmosis, where the presence of endogenous organic urine metabolites significantly influences treatment parameters such as energy demand and product purity.


Subject(s)
Oxidation-Reduction , Urine , Humans , Urine/chemistry , Sulfates/metabolism , Sulfates/chemistry , Sulfates/urine , Hydrogen-Ion Concentration , Urea/metabolism , Urea/urine
7.
J Am Chem Soc ; 146(19): 12919-12924, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691627

ABSTRACT

RNA is a key biochemical marker, yet its chemical instability and complex secondary structure hamper its integration into DNA nanotechnology-based sensing platforms. Relying on the denaturation of the native RNA structure using urea, we show that restructured DNA/RNA hybrids can readily be prepared at room temperature. Using solid-state nanopore sensing, we demonstrate that the structures of our DNA/RNA hybrids conform to the design at the single-molecule level. Employing this chemical annealing procedure, we mitigate RNA self-cleavage, enabling the direct detection of restructured RNA molecules for biosensing applications.


Subject(s)
DNA , Nanopores , RNA , RNA/chemistry , RNA/analysis , DNA/chemistry , Biosensing Techniques/methods , Nucleic Acid Conformation , Nucleic Acid Hybridization , Nanotechnology/methods , Urea/chemistry
8.
Plant Physiol Biochem ; 211: 108666, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723490

ABSTRACT

Nitrogen (N) is the nutrient most applied in agriculture as fertilizer (as nitrate, Nit; ammonium, A; and/or urea, U, forms) and its availability strongly constrains the crop growth and yield. To investigate the early response (24 h) of N-deficient tomato plants to these three N forms, a physiological and molecular study was performed. In comparison to N-deficient plants, significant changes in the transcriptional, metabolomic and ionomic profiles were observed. As a probable consequence of N mobility in plants, a wide metabolic modulation occurred in old leaves rather than in young leaves. The metabolic profile of U and A-treated plants was more similar than Nit-treated plant profile, which in turn presented the lowest metabolic modulation with respect to N-deficient condition. Urea and A forms induced some changes at the biosynthesis of secondary metabolites, amino acids and phytohormones. Interestingly, a specific up-regulation by U and down-regulation by A of carbon synthesis occurred in roots. Along with the gene expression, data suggest that the specific N form influences the activation of metabolic pathways for its assimilation (cytosolic GS/AS and/or plastidial GS/GOGAT cycle). Urea induced an up-concentration of Cu and Mn in leaves and Zn in whole plant. This study highlights a metabolic reprogramming depending on the N form applied, and it also provide evidence of a direct relationship between urea nutrition and Zn concentration. The understanding of the metabolic pathways activated by the different N forms represents a milestone in improving the efficiency of urea fertilization in crops.


Subject(s)
Ammonium Compounds , Nitrates , Solanum lycopersicum , Urea , Urea/metabolism , Solanum lycopersicum/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Nitrates/metabolism , Ammonium Compounds/metabolism , Plant Leaves/metabolism , Metabolomics , Gene Expression Regulation, Plant/drug effects , Metabolome , Fertilizers , Nitrogen/metabolism
9.
PLoS One ; 19(5): e0303348, 2024.
Article in English | MEDLINE | ID: mdl-38787867

ABSTRACT

AIMS: We assessed eligibility for omecamtiv mecarbil (OM) in a real-world cohort with heart failure with reduced ejection fraction (HFrEF) according to the selection criteria of the GALACTIC-HF trial (trial scenario) and selected trial´s criteria more likely to impact real-world use (pragmatic scenario). METHODS AND RESULTS: We included 31,015 patients with HFrEF lasting ≥3 months and registered in the Swedish HF registry between 2000-2021. Trial eligibility was calculated by applying all the GALACTIC-HF selection criteria. The pragmatic scenario considered only the New York Heart Association class, history of worsening HF, N-terminal pro-B-type natriuretic peptides (NT-proBNP), blood pressure and renal failure criteria defined as in the trial. Eligibility for OM in chronic HFrEF was 21% and 36% in the trial and pragmatic scenarios, respectively. Eligibility was higher in those with EF<30% (trial: 27%, pragmatic: 44%), in-patients (trial:30%, pragmatic:57%), severe HF (trial: 35%, pragmatic: 60%), NYHA class III-IV (trial: 26%, pragmatic: 45%), and NT-proBNP≥5,000pg/mL (trial: 30%, pragmatic: 51%). The criteria that most limited eligibility were history of a recent worsening HF event (60% eligible in chronic HFrEF), elevated NT-proBNP (82% eligible), and deviating blood pressure (82% eligible). Overall, eligible patients were characterized by more severe HF and higher CV event-rates in both scenarios, and higher comorbidity burden in the pragmatic scenario. CONCLUSION: Approximately 21% of real-world chronic HFrEF patients would be eligible for OM according to the GALACTIC-HF selection criteria, and 36% according to the criteria more likely to affect OM use in clinical practice. Criteria in both scenarios identified a patient-group with severe HF and high CV event-rates.


Subject(s)
Heart Failure , Registries , Stroke Volume , Humans , Heart Failure/drug therapy , Heart Failure/physiopathology , Heart Failure/epidemiology , Sweden/epidemiology , Male , Female , Aged , Middle Aged , Stroke Volume/drug effects , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Urea/analogs & derivatives , Urea/blood , Urea/therapeutic use , Eligibility Determination , Patient Selection , Aged, 80 and over
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124357, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38692110

ABSTRACT

This study described the preparation of an azide covalent organic framework-embedded molecularly imprinted polymers (COFs(azide)@MIPs) platform for urea adsorption and indirect ethyl carbamate (EC) removal from Chinese yellow rice wine (Huangjiu). By modifying the pore surface of COFs using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, COFs(azide) with a high fluorescence quantum yield and particular recognition ability were inventively produced. In order to selectively trap urea, the COFs(azide) were encased in an imprinted shell layer via imprinting technology. With a detection limit (LOD) of 0.016 µg L-1 (R2 = 0.9874), the COFs(azides)@MIPs demonstrated a good linear relationship with urea in the linear range of 0-5 µg L-1. Using real Huangjiu samples, the spiking recovery trials showed the viability of this sensing platform with recoveries ranging from 88.44 % to 109.26 % and an RSD of less than 3.40 %. The Huangjiu processing model system achieved 38.93 % EC reduction by COFs(azides)@MIPs. This research will open up new avenues for the treatment of health problems associated with fermented alcoholic beverages, particularly Huangjiu, while also capturing and removing hazards coming from food.


Subject(s)
Molecularly Imprinted Polymers , Urea , Urethane , Wine , Urethane/analysis , Urethane/chemistry , Molecularly Imprinted Polymers/chemistry , Urea/analysis , Urea/chemistry , Wine/analysis , Spectrometry, Fluorescence/methods , Azides/chemistry , Limit of Detection , Adsorption , Metal-Organic Frameworks/chemistry , Molecular Imprinting/methods
11.
Braz J Biol ; 84: e279269, 2024.
Article in English | MEDLINE | ID: mdl-38808785

ABSTRACT

Among the factors that increase the efficiency of mineral fertilizers, due consideration has lately been given to the development and study of fertilizers with various granule coatings. This study is focused on the test of urea and NPK fertilizers, with granules coated with 50 and 100 µm monocalcium phosphate. Two-year greenhouse trials with spring wheat were carried out on soddy-podzolic light loamy soil. Coated fertilizers have proven to be more effective than traditional ones. For instance, using coated urea improved the yield 10-11% compared to conventional fertilizer. At the same time, the weight of one plant increased by 9-11% and the weight of the ear by 10%, the number of grains in the ear was by 4-7% bigger. Similar results were obtained with NPK fertilizer. Providing a thicker coating from 50 to 100 µm significantly increased the efficiency of both urea and NPK fertilizers.


Subject(s)
Fertilizers , Nitrogen , Triticum , Urea , Fertilizers/analysis , Triticum/growth & development , Urea/pharmacology , Seasons , Biomass
12.
World J Gastroenterol ; 30(17): 2302-2307, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38813047

ABSTRACT

In this editorial, we discuss the article in the World Journal of Gastroenterology. The article conducts a meta-analysis of the diagnostic accuracy of the urea breath test (UBT), a non-invasive method for detecting Helicobacter pylori (H. pylori) infection in humans. It is based on radionuclide-labeled urea. Various methods, both invasive and non-invasive, are available for diagnosing H. pylori infection, including endoscopy with biopsy, serology for immunoglobulin titers, stool antigen analysis, and UBT. Several guidelines recommend UBTs as the primary choice for diagnosing H. pylori infection and for reexamining after eradication therapy. It is used to be the first choice non-invasive test due to their high accuracy, specificity, rapid results, and simplicity. Moreover, its performance remains unaffected by the distribution of H. pylori in the stomach, allowing a high flow of patients to be tested. Despite its widespread use, the performance characteristics of UBT have been inconsistently described and remain incompletely defined. There are two UBTs available with Food and Drug Administration approval: The 13C and 14C tests. Both tests are affordable and can provide real-time results. Physicians may prefer the 13C test because it is non-radioactive, compared to 14C which uses a radioactive isotope, especially in young children and pregnant women. Although there was heterogeneity among the studies regarding the diagnostic accuracy of both UBTs, 13C-UBT consistently outperforms the 14C-UBT. This makes the 13C-UBT the preferred diagnostic approach. Furthermore, the provided findings of the meta-analysis emphasize the significance of precise considerations when choosing urea dosage, assessment timing, and measurement techniques for both the 13C-UBT and 14C-UBT, to enhance diagnostic precision.


Subject(s)
Breath Tests , Dyspepsia , Helicobacter Infections , Helicobacter pylori , Urea , Adult , Humans , Breath Tests/methods , Carbon Isotopes/analysis , Carbon Radioisotopes , Dyspepsia/microbiology , Dyspepsia/diagnosis , Helicobacter Infections/diagnosis , Helicobacter Infections/microbiology , Helicobacter pylori/isolation & purification , Helicobacter pylori/immunology , Sensitivity and Specificity , Urea/analysis , Urea/metabolism , Meta-Analysis as Topic
13.
Bioorg Chem ; 147: 107403, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691909

ABSTRACT

A novel series of pyrazole derivatives with urea/thiourea scaffolds 16a-l as hybrid sorafenib/erlotinib/celecoxib analogs was designed, synthesized and tested for its VEGFR-2, EGFRWT, EGFRT790M tyrosine kinases and COX-2, pro-inflammatory cytokines TNF-α and IL-6 inhibitory activities. All the tested compounds showed excellent COX-2 selectivity index in range of 18.04-47.87 compared to celecoxib (S.I. = 26.17) and TNF-α and IL-6 inhibitory activities (IC50 = 5.0-7.50, 6.23-8.93 respectively, compared to celecoxib IC50 = 8.40 and 8.50, respectively). Screening was carried out against 60 human cancer cell lines by National Cancer Institute (NCI), compounds 16a, 16c, 16d and 16 g were the most potent inhibitors with GI% ranges of 100 %, 99.63-87.02 %, 98.98-43.10 % and 98.68-23.62 % respectively, and with GI50 values of 1.76-15.50 µM, 1.60-5.38 µM, 1.68-7.39 µM and 1.81-11.0 µM respectively, in addition, of showing good safety profile against normal cell line (F180). Moreover, compounds 16a, 16c, 16d and 16 g had cell cycle arrest at G2/M phase with induced necrotic percentage compared to sorafenib of 2.06 %, 2.47 %, 1.57 %, 0.88 % and 1.83 % respectively. Amusingly, compounds 16a, 16c, 16d and 16 g inhibited VEGFR-2 with IC50 of 25 nM, 52 nM, 324 nM and 110 nM respectively, compared to sorafenib (IC50 = 85 nM), and had excellent EGFRWT and EGFRT790M kinase inhibitory activities (IC50 = 94 nM, 128 nM, 160 nM, 297 nM), (10 nM, 25 nM, 36 nM and 48 nM) respectively, compared to both erlotinib and osimertinib (IC50 = 114 nM, 56 nM) and (70 nM, 37 nM) respectively and showed (EGFRwt/EGFRT790M S.I.) of (range: 4.44-9.40) compared to erlotinib (2.03) and osmertinib (1.89).


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , ErbB Receptors , Protein Kinase Inhibitors , Pyrazoles , Thiourea , Urea , Vascular Endothelial Growth Factor Receptor-2 , Humans , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Thiourea/pharmacology , Thiourea/chemistry , Thiourea/chemical synthesis , Molecular Structure , Urea/pharmacology , Urea/chemistry , Urea/analogs & derivatives , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cell Line, Tumor , Cyclooxygenase 2/metabolism , Drug Discovery , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis
14.
Plant Sci ; 344: 112108, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705480

ABSTRACT

Ureides, the degraded products of purine catabolism in Arabidopsis, have been shown to act as antioxidant and nitrogen sources. Herein we elucidate purine degraded metabolites as a carbon source using the Arabidopsis Atxdh1, Ataln, and Ataah knockout (KO) mutants vis-à-vis wild-type (WT) plants. Plants were grown under short-day conditions on agar plates containing half-strength MS medium with or without 1% sucrose. Notably, the absence of sucrose led to diminished biomass accumulation in both shoot and root tissues of the Atxdh1, Ataln, and Ataah mutants, while no such effect was observed in WT plants. Moreover, the application of sucrose resulted in a reduction of purine degradation metabolite levels, specifically xanthine and allantoin, predominantly within the roots of WT plants. Remarkably, an increase in proteins associated with the purine degradation pathway was observed in WT plants in the presence of sucrose. Lower glyoxylate levels in the roots but not in the shoot of the Atxdh1 mutant in comparison to WT, were observed under sucrose limitation, and improved by sucrose application in root, indicating that purine degradation provided glyoxylate in the root. Furthermore, the deficit of purine-degraded metabolites in the roots of mutants subjected to carbon starvation was partially mitigated through allantoin application. Collectively, these findings signify that under conditions of sucrose limitation and short-day growth, purines are primarily remobilized within the root system to augment the availability of ureides, serving as an additional carbon (as well as nitrogen) source to support plant growth.


Subject(s)
Arabidopsis , Carbon , Plant Roots , Sucrose , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Carbon/metabolism , Sucrose/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Allantoin/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Purines/metabolism , Urea/metabolism , Plant Shoots/metabolism , Plant Shoots/growth & development , Glyoxylates/metabolism
15.
Clin Nucl Med ; 49(7): e338-e339, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38739487

ABSTRACT

ABSTRACT: Peripheral T-cell lymphomas are a heterogenous group of lymphomas with a high rate of extranodal disease. We present a case of increased 18 F-DCFPyL uptake in peripheral T-cell lymphoma of subcutaneous tissue and bone. Familiarity with the increased 18 F-DCFPyL uptake and extranodal presentation of peripheral T-cell lymphomas can avoid misinterpretation for metastatic disease.


Subject(s)
Antigens, Surface , Glutamate Carboxypeptidase II , Lymphoma, T-Cell, Peripheral , Lysine , Humans , Lymphoma, T-Cell, Peripheral/diagnostic imaging , Lymphoma, T-Cell, Peripheral/drug therapy , Glutamate Carboxypeptidase II/metabolism , Male , Lysine/analogs & derivatives , Lysine/metabolism , Antigens, Surface/metabolism , Urea/analogs & derivatives , Urea/pharmacology , Positron Emission Tomography Computed Tomography , Biological Transport , Middle Aged
16.
Int J Biol Macromol ; 270(Pt 2): 132332, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768914

ABSTRACT

Two of the deadliest infectious diseases, COVID-19 and tuberculosis (TB), have combined to establish a worldwide pandemic, wreaking havoc on economies and claiming countless lives. The optimised, multitargeted medications may diminish resistance and counter them together. Based on computational expression studies, 183 genes were co-expressed in COVID-19 and TB blood samples. We used the multisampling screening algorithms on the top ten co-expressed genes (CD40, SHP2, Lysozyme, GATA3, cCBL, SIVmac239 Nef, CD69, S-adenosylhomocysteinase, Chemokine Receptor-7, and Membrane Protein). Imidurea is a multitargeted inhibitor for COVID-19 and TB, as confirmed by extensive screening and post-filtering utilising MM\GBSA algorithms. Imidurea has shown docking and MM\GBSA scores of -8.21 to -4.75 Kcal/mol and -64.16 to -29.38 Kcal/mol, respectively. The DFT, pharmacokinetics, and interaction patterns suggest that Imidurea may be a drug candidate, and all ten complexes were tested for stability and bond strength using 100 ns for all MD atoms. The modelling findings showed the complex's repurposing potential, with a cumulative deviation and fluctuation of <2 Å and significant intermolecular interaction, which validated the possibilities. Finally, an inhibition test was performed to confirm our in-silico findings on SARS-CoV-2 Delta variant infection, which was suppressed by adding imidurea to Vero E6 cells after infection.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Molecular Docking Simulation , Mycobacterium tuberculosis , SARS-CoV-2 , SARS-CoV-2/drug effects , Humans , COVID-19/virology , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/drug effects , Molecular Dynamics Simulation , Muramidase/chemistry , Muramidase/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Urea/pharmacology , Urea/chemistry , Antigens, Differentiation, T-Lymphocyte/metabolism
17.
Sci Rep ; 14(1): 12588, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38822113

ABSTRACT

The COVID-19 has had a significant influence on people's lives across the world. The viral genome has undergone numerous unanticipated changes that have given rise to new varieties, raising alarm on a global scale. Bioactive phytochemicals derived from nature and synthetic sources possess lot of potential as pathogenic virus inhibitors. The goal of the recent study is to report new inhibitors of Schiff bases of 1,3-dipheny urea derivatives against SARS COV-2 spike protein through in-vitro and in-silico approach. Total 14 compounds were evaluated, surprisingly, all the compounds showed strong inhibition with inhibitory values between 79.60% and 96.00% inhibition. Here, compounds 3a (96.00%), 3d (89.60%), 3e (84.30%), 3f (86.20%), 3g (88.30%), 3h (86.80%), 3k (82.10%), 3l (90.10%), 3m (93.49%), 3n (85.64%), and 3o (81.79%) exhibited high inhibitory potential against SARS COV-2 spike protein. While 3c also showed significant inhibitory potential with 79.60% inhibition. The molecular docking of these compounds revealed excellent fitting of molecules in the spike protein receptor binding domain (RBD) with good interactions with the key residues of RBD and docking scores ranging from - 4.73 to - 5.60 kcal/mol. Furthermore, molecular dynamics simulation for 150 ns indicated a strong stability of a complex 3a:6MOJ. These findings obtained from the in-vitro and in-silico study reflect higher potency of the Schiff bases of 1,3-diphenyl urea derivatives. Furthermore, also highlight their medicinal importance for the treatment of SARS COV-2 infection. Therefore, these small molecules could be a possible drug candidate.


Subject(s)
Antiviral Agents , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2 , Schiff Bases , Spike Glycoprotein, Coronavirus , Urea , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Schiff Bases/chemistry , Schiff Bases/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Urea/pharmacology , Urea/analogs & derivatives , Urea/chemistry , Humans , COVID-19 Drug Treatment , COVID-19/virology
18.
Sci Rep ; 14(1): 12168, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806510

ABSTRACT

The bioartificial liver (BAL) system can potentially rescue acute liver failure (ALF) patients by providing partial liver function until a suitable donor liver can be found or the native liver has self-regenerated. In this study, we established a suitable cryopreservation process for the development of an off-the-shelf BAL system. The viability of hepatocyte spheroids cryopreserved in liquid nitrogen was comparable to that of fresh primary hepatocyte spheroids. When hepatocyte spheroids were subjected to cryopreservation in a deep freezer, no statistically significant differences were observed in ammonia removal rate or urea secretion rate based on the cryopreservation period. However, the functional activity of the liver post-cryopreservation in a deep freezer was significantly lower than that observed following liquid nitrogen cryopreservation. Moreover, cryopreserving spheroid hydrogel beads in a deep freezer resulted in a significant decrease (approximately 30%) in both ammonia removal and urea secretion rates compared to the group cryopreserved in liquid nitrogen. The viabilities of spheroid hydrogel beads filled into the bioreactor of a BAL system were similar across all four groups. However, upon operating the BAL system for 24 h, the liver function activity was significantly higher in the group comprising hydrogel beads generated after thawing hepatocyte spheroids cryopreserved in liquid nitrogen. Consequently, the manufacturing of beads after the cryopreservation of hepatocyte spheroids is deemed the most suitable method, considering efficiency, economic feasibility, and liver function activity, for producing a BAL system.


Subject(s)
Cryopreservation , Hepatocytes , Liver, Artificial , Spheroids, Cellular , Hepatocytes/metabolism , Hepatocytes/cytology , Cryopreservation/methods , Spheroids, Cellular/metabolism , Spheroids, Cellular/cytology , Animals , Cell Survival , Male , Temperature , Rats , Urea/metabolism , Humans , Ammonia/metabolism , Liver Failure, Acute/therapy , Liver Failure, Acute/metabolism , Liver/metabolism , Liver/cytology
19.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791418

ABSTRACT

In a screen of over 200 novel pyrazole compounds, ethyl 1-(2-hydroxypentyl)-5-(3-(3-(trifluoromethyl) phenyl)ureido)-1H-pyrazole-4-carboxylate (named GeGe-3) has emerged as a potential anticancer compound. GeGe-3 displays potent anti-angiogenic properties through the presumptive targeting of the protein kinase DMPK1 and the Ca2+-binding protein calreticulin. We further explored the anticancer potential of GeGe-3 on a range of established cancer cell lines, including PC3 (prostate adenocarcinoma), SKMEL-28 (cutaneous melanoma), SKOV-3 (ovarian adenocarcinoma), Hep-G2 (hepatocellular carcinoma), MDA-MB231, SKBR3, MCF7 (breast adenocarcinoma), A549 (lung carcinoma), and HeLa (cervix epithelioid carcinoma). At concentrations in the range of 10 µM, GeGe-3 significantly restricted cell proliferation and metabolism. GeGe-3 also reduced PC3 cell migration in a standard wound closure and trans-well assay. Together, these results confirm the anticancer potential of GeGe-3 and underline the need for more detailed pre-clinical investigations into its molecular targets and mechanisms of action.


Subject(s)
Antineoplastic Agents , Cell Movement , Cell Proliferation , Pyrazoles , Humans , Pyrazoles/pharmacology , Pyrazoles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Movement/drug effects , Cell Line, Tumor , Urea/pharmacology , Urea/chemistry , Urea/analogs & derivatives
20.
Appl Microbiol Biotechnol ; 108(1): 342, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789552

ABSTRACT

Chemoautotrophic canonical ammonia oxidizers (ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB)) and complete ammonia oxidizers (comammox Nitrospira) are accountable for ammonia oxidation, which is a fundamental process of nitrification in terrestrial ecosystems. However, the relationship between autotrophic nitrification and the active nitrifying populations during 15N-urea incubation has not been totally clarified. The 15N-labeled DNA stable isotope probing (DNA-SIP) technique was utilized in order to study the response from the soil nitrification process and the active nitrifying populations, in both acidic and neutral paddy soils, to the application of urea. The presence of C2H2 almost completely inhibited NO3--N production, indicating that autotrophic ammonia oxidation was dominant in both paddy soils. 15N-DNA-SIP technology could effectively distinguish active nitrifying populations in both soils. The active ammonia oxidation groups in both soils were significantly different, AOA (NS (Nitrososphaerales)-Alpha, NS-Gamma, NS-Beta, NS-Delta, NS-Zeta and NT (Ca. Nitrosotaleales)-Alpha), and AOB (Nitrosospira) were functionally active in the acidic paddy soil, whereas comammox Nitrospira clade A and Nitrosospira AOB were functionally active in the neutral paddy soil. This study highlights the effective discriminative effect of 15N-DNA-SIP and niche differentiation of nitrifying populations in these paddy soils. KEY POINTS: • 15N-DNA-SIP technology could effectively distinguish active ammonia oxidizers. • Comammox Nitrospira clade A plays a lesser role than canonical ammonia oxidizers. • The active groups in the acidic and neutral paddy soils were significantly different.


Subject(s)
Ammonia , Archaea , Bacteria , Nitrification , Nitrogen Isotopes , Oxidation-Reduction , Soil Microbiology , Ammonia/metabolism , Archaea/metabolism , Archaea/classification , Archaea/genetics , Nitrogen Isotopes/metabolism , Nitrogen Isotopes/analysis , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Soil/chemistry , Urea/metabolism , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...