Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
Arthritis Res Ther ; 26(1): 96, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711064

ABSTRACT

BACKGROUND: Gout is caused by monosodium urate (MSU) crystals deposition to trigger immune response. A recent study suggested that inhibition of Class I Histone deacetylases (HDACs) can significantly reduce MSU crystals-induced inflammation. However, which one of HDACs members in response to MSU crystals was still unknown. Here, we investigated the roles of HDAC3 in MSU crystals-induced gouty inflammation. METHODS: Macrophage specific HDAC3 knockout (KO) mice were used to investigate inflammatory profiles of gout in mouse models in vivo, including ankle arthritis, foot pad arthritis and subcutaneous air pouch model. In the in vitro experiments, bone marrow-derived macrophages (BMDMs) from mice were treated with MSU crystals to assess cytokines, potential target gene and protein. RESULTS: Deficiency of HDAC3 in macrophage not only reduced MSU-induced foot pad and ankle joint swelling but also decreased neutrophils trafficking and IL-1ß release in air pouch models. In addition, the levels of inflammatory genes related to TLR2/4/NF-κB/IL-6/STAT3 signaling pathway were significantly decreased in BMDMs from HDAC3 KO mice after MSU treatment. Moreover, RGFP966, selective inhibitor of HDAC3, inhibited IL-6 and TNF-α production in BMDMs treated with MSU crystals. Besides, HDAC3 deficiency shifted gene expression from pro-inflammatory macrophage (M1) to anti-inflammatory macrophage (M2) in BMDMs after MSU challenge. CONCLUSIONS: Deficiency of HDAC3 in macrophage alleviates MSU crystals-induced gouty inflammation through inhibition of TLR2/4 driven IL-6/STAT3 signaling pathway, suggesting that HDAC3 could contribute to a potential therapeutic target of gout.


Subject(s)
Acrylamides , Gout , Histone Deacetylases , Macrophages , Mice, Inbred C57BL , Mice, Knockout , Phenylenediamines , Uric Acid , Animals , Uric Acid/toxicity , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/deficiency , Macrophages/metabolism , Macrophages/drug effects , Gout/metabolism , Gout/pathology , Mice , Inflammation/metabolism , Inflammation/chemically induced , Male , Arthritis, Gouty/chemically induced , Arthritis, Gouty/metabolism , Arthritis, Gouty/pathology , Disease Models, Animal , Signal Transduction/drug effects
2.
Arthritis Res Ther ; 25(1): 121, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468929

ABSTRACT

BACKGROUND: Previous studies have revealed that Sirt3 deficiency is associated with several inflammatory responses. The purpose of this study is to investigate the role and potential molecular mechanisms of Sirt3 in the inflammation induced by monosodium urate (MSU) crystals. METHODS: The Sirt3 expression level in the peripheral blood mononuclear cells (PBMCs) of patients with gout was measured. Function and molecular mechanism of Sirt3 in MSU crystal-induced inflammation were investigated in bone marrow-derived macrophages (BMDMs), C57BL/6 mouse, and Sirt3-/- mouse. RESULTS: Sirt3 expression was decreased in the PBMCs of patients with gout. Sirt3 agonist (Viniferin) inhibited the acetylation levels of mitochondrial proteins including the SOD2 protein. RNA sequencing, bio-informatics analysis, RT-PCR, and Western blot demonstrated that Sirt3 could suppress the expression of Acod1 (Irg1), which plays an important role in gout. In BMDMs treated with palmitic acid (C16:0) plus MSU crystals, Acod1 knockdown repressed mitochondrial reactive oxygen species (mtROS) over-production, macrophage migration, and mitochondrial fragmentation, and Acod1 improved AMPK activity. The over-expression of Acod1 did not significantly affect the level of itaconic acid, but greatly decreased the levels of some important intermediate metabolites of the tricarboxylic acid (TCA) cycle. These data indicate that Acod1 exerts a pro-inflammatory role in MSU crystal-induced inflammation and is independent of the metabolic level of itaconic acid. Sirt3 deficiency exacerbates inflammatory response induced by MSU crystals in vitro and in vivo. CONCLUSION: The current study has shown that Sirt3 can alleviate the MSU crystal-induced inflammation by inhibiting the expression of Acod1.


Subject(s)
Gout , Sirtuin 3 , Animals , Mice , Gout/chemically induced , Gout/drug therapy , Gout/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Leukocytes, Mononuclear/metabolism , Mice, Inbred C57BL , Sirtuin 3/genetics , Sirtuin 3/metabolism , Uric Acid/toxicity
3.
Life Sci ; 326: 121766, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37209866

ABSTRACT

AIMS: Polygonum cuspidatum Sieb. et Zucc is one of the commonly used herbs for the treatment of gouty arthritis, and polydatin is one of its main effective components. This study evaluated the therapeutic potential of polydatin for the treatment of gout. MAIN METHODS: The ankle joint of C57BL/6 mice were injected with MSU suspensions to simulate human gouty arthritis, and oral treatment with polydatin (25, 50, and 100 mg/kg body weight) was performed at 1 h after MSU crystal injection. The effect of polydatin on model mice was evaluated by measuring ankle swelling, gait, histopathological analysis, proinflammatory cytokine expression, as well as the contents of NO, MDA and GSH. The targets of polydatin were explored by Real-Time PCR and IHC. KEY FINDINGS: Treatment with polydatin inhibited ankle swelling, improved abnormal gait, and reduced ankle lesions dose-dependently. Moreover, polydatin decreased pro-inflammatory cytokine expression, and promoted expression of anti-inflammatory cytokine. In addition, polydatin inhibited MSU-induced oxidative stress by decreasing oxidative product (NO, MDA) generation and promote the antioxidant (GSH). Further, we found that polydatin reduced inflammation by decreasing the expression of NLRP3 inflammasome component via activating PPAR-γ. Moreover, polydatin can protect against iron overload and attenuate oxidative stress by promoting the activation of ferritin. SIGNIFICANCE: Our findings indicates that polydatin ameliorates MSU-induced inflammation and oxidative stress by regulating PPAR-γ and ferritin activation in gouty arthritis model mice, and this research result suggests that polydatin has therapeutic potential for the treatment of gout in humans through multiple targets.


Subject(s)
Arthritis, Gouty , Gout , Mice , Humans , Animals , Arthritis, Gouty/chemically induced , Arthritis, Gouty/drug therapy , Arthritis, Gouty/metabolism , PPAR gamma/metabolism , Uric Acid/toxicity , Mice, Inbred C57BL , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Gout/drug therapy , Oxidative Stress , Inflammasomes/metabolism , Cytokines/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
4.
Oxid Med Cell Longev ; 2023: 3317307, 2023.
Article in English | MEDLINE | ID: mdl-36686377

ABSTRACT

Activation of the nod-like receptor protein 3 (NLRP3) inflammasome by monosodium urate (MSU) crystals has been identified as the molecular basis for the acute inflammatory response in gouty arthritis. However, MSU crystals alone are not sufficient to induce acute gouty arthritis (AGA). Adenosine triphosphate (ATP) is an endogenous signaling molecule involved in the NLRP3 inflammasome activation. We aimed to explore the role of ATP in MSU crystal-induced AGA development. In peripheral blood mononuclear cell-derived macrophages obtained from gout patients, we observed a synergistic effect of ATP on MSU crystal-induced IL-1ß release. Furthermore, in a rat model of spontaneous gout, we demonstrated that a synergistic effect of ATP and MSU crystals, but not MSU crystals alone, is essential for triggering AGA. Mechanistically, this synergistic effect is achieved through the purinergic receptor P2X7 (P2X7R). Blockade of P2X7R prevented AGA induction in rats after local injection of MSU crystals, and carrying the mutant hP2X7R gene contributed to the inhibition of NLRP3 inflammasome activation induced by costimulation of MSU crystals and ATP in vitro. Taken together, these results support the synergistic effect of ATP on MSU crystal-induced NLRP3 inflammasome activation facilitating inflammatory episodes in AGA. In this process, P2X7R plays a key regulatory role, suggesting targeting P2X7R to be an attractive therapeutic strategy for the treatment of AGA.


Subject(s)
Arthritis, Gouty , Gout , Rats , Animals , Arthritis, Gouty/chemically induced , Arthritis, Gouty/drug therapy , Arthritis, Gouty/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Adenosine Triphosphate , Leukocytes, Mononuclear/metabolism , Uric Acid/toxicity , Uric Acid/chemistry , Gout/metabolism
5.
Toxins (Basel) ; 13(9)2021 09 16.
Article in English | MEDLINE | ID: mdl-34564665

ABSTRACT

Bee venom (BV) acupuncture has anti-inflammatory and analgesic effects; therefore, it was used as a traditional Korean medicine for various musculoskeletal disorders, especially arthritis. In this study, we investigated the effect of BV on monosodium urate (MSU) crystal-induced acute gouty rats. An intra-articular injection of MSU crystal suspension (1.25 mg/site) was administered to the tibiotarsal joint of the hind paw of Sprague Dawley rats to induce MSU crystal-induced gouty arthritis. Colchicine (30 mg/kg) was orally administered 1 h before MSU crystal injection as a positive control, and BV (0.5 mg/kg) was injected into the tibiotarsal joint immediately after MSU crystal injection. The ankle thickness, mechanical allodynia, and expression of proinflammatory cytokines (TNF-α, IL-1ß, IL6, COX2 and iNOS) and chemokines (MIP-1α, MIP-1ß, MCP-1, GRO-α, MIP-2α) were then evaluated. BV reduced the expression of proinflammatory cytokines and chemokines, which are important mediators of MSU crystal-induced inflammatory responses. This anti-inflammatory effect was also confirmed histologically to attenuate synovitis and neutrophil infiltration. We demonstrated that BV markedly ameliorated ankle edema and mechanical allodynia in gouty rats. These results suggest that BV acupuncture is a potential clinical therapy for acute gouty management.


Subject(s)
Arthritis, Gouty/chemically induced , Arthritis, Gouty/drug therapy , Bee Venoms/therapeutic use , Edema/drug therapy , Inflammation/drug therapy , Pain/drug therapy , Uric Acid/toxicity , Animals , Disease Models, Animal , Humans , Male , Rats , Rats, Sprague-Dawley , Treatment Outcome
6.
Chem Res Toxicol ; 34(9): 2054-2069, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34410109

ABSTRACT

Using molecular dynamics, we address uric acid (UA) replacement by a model small-molecule inhibitor, allopurinol (AP), from its aggregated cluster in a columnar fashion. Experimentally it has been affirmed that AP is efficient in preventing UA-mediated renal stone formation. However, no study has presented the underlying mechanisms yet. Hence, a theoretical approach is presented for mapping the AP, which binds to melamine (MM) and UA clusters. In AP's presence, the higher-order cluster of UA molecules turns into a lower-order cluster, which "drags" fewer MM to them. Consequently, the MM-UA composite structure gets reduced. It is worth noting that UA-AP and AP-MM hydrogen-bonding interactions often play an essential role in reducing the UA-MM cluster size. Interestingly, an AP around UA makes a pillar-like structure, confirmed by defining the point-plane distribution function. The decomposition of the preferential interaction by Kirkwood-Buff integral into different angles like 0°-30°, 30°-60°, and 60°-90° firmly establishes the phenomenon mentioned above. However, the structural order for such π-stacking interactions between AP and UA molecules is not hierarchical but rather more spontaneous. The driving force behind UA-AP-MM composite formation is the favorable complexation energy that can be inferred by computing pairwise binding free energies for all possible combinations. Performing enhanced sampling and quantum calculations further confirms the evidence for UA degradation.


Subject(s)
Allopurinol/chemistry , Triazines/chemistry , Uric Acid/chemistry , Hydrogen Bonding , Kidney Calculi/prevention & control , Molecular Dynamics Simulation , Static Electricity , Thermodynamics , Triazines/toxicity , Uric Acid/toxicity
7.
Int Immunopharmacol ; 99: 108000, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34352566

ABSTRACT

Mesenchymal stem cells (MSCs), due to their multi-directional differentiation, paracrine and immunomodulation potentials, and the capacity of homing to target organ, have been reported to facilitate regeneration and repair of kidney and improve kidney function in acute or chronic kidney injury. The present study was aimed to evaluate whether MSCs could have a protective effect in hyperuricemic nephropathy (HN) and the underlying mechanisms. A rat HN model was established by oral administration of a mixture of potassium oxonate (PO, 1.5 g/kg) and adenine (Ad, 50 mg/kg) daily for 4 weeks. For MSCs treatment, MSCs (3 × 106 cells/kg per week) were injected via tail vein from the 2nd week for 3 times. The results showed that along with the elevated uric acid (UA) in HN rats, creatinine (CREA), blood urea nitrogen (BUN), microalbuminuria (MAU) and 24-hour urinary protein levels were significantly increased comparing with the normal control rats, while decreased after MSCs treatment. Moreover, the mRNA levels of inflammation and fibrosis-related gene were reduced in UA + MSCs group. Consistently, hematoxylin-eosin (HE) staining results showed the destruction of kidney structure and fibrosis were significantly alleviated after MSCs administration. Similarly, in vitro, NRK-52Es cells were treated with high concentration UA (10 mg/dL) in the presence of MSCs, and we found that MSCs co-culture could inhibited UA-induced cell injury, characterized as improvement of cell viability and proliferation, inhibition of apoptosis, inflammation, and fibrosis. Collectively, MSCs treatment could effectively attenuate UA-induced renal injury, and thus it might be a potential therapy to hyperuricemia-related renal diseases.


Subject(s)
Hyperuricemia/metabolism , Mesenchymal Stem Cells/metabolism , Uric Acid/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Cell Culture Techniques , Cell Survival , Fibrosis , Hyperuricemia/blood , Hyperuricemia/chemically induced , Inflammation , Kidney/pathology , Male , Mesenchymal Stem Cell Transplantation , Rats , Rats, Sprague-Dawley , Uric Acid/blood , Uric Acid/toxicity
8.
Inflammopharmacology ; 29(4): 1187-1200, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34244900

ABSTRACT

Lagotis brachystachya Maxim is a herb widely used in traditional Tibetan medicine. Our previous study indicated that total extracts from Lagotis brachystachya could lower uric acid levels. This study aimed to further elucidate the active components (luteolin, luteoloside and apigenin) isolated from Lagotis brachystachya and the underlying mechanism in vitro and in vivo. The results showed that treatment with luteolin and luteoloside reversed the reduction of organic anion transporter 1 (OAT1) levels, while apigenin attenuated the elevation of urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) levels in uric acid-treated HK-2 cells, which was consistent with the finding in the kidneys of potassium oxonate (PO)-induced mice. On the other hand, hepatic xanthine oxidase activity was inhibited by the components. In addition, all of these active components improved the morphology of the kidney in hyperuricemic mice. Moreover, molecular docking showed that luteolin, luteoloside and apigenin could bind Toll-like receptor 4 (TLR4) and NLR family pyrin domain containing 3 (NLRP3). Congruently, western blot analysis showed that the components inhibited TLR4/myeloid differentiation primary response 88 (MyD88)/NLRP3 signaling. In conclusion, these results indicated that luteolin, luteoloside and apigenin could attenuate hyperuricemia by decreasing the production and increasing the excretion of uric acid, which were mediated by inhibiting inflammatory signaling pathways.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Hyperuricemia/metabolism , Kidney/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Toll-Like Receptor 4/metabolism , Uric Acid/metabolism , Animals , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/therapeutic use , Homeostasis/drug effects , Homeostasis/physiology , Hyperuricemia/drug therapy , Kidney/drug effects , Male , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Plants, Medicinal , Protein Structure, Secondary , Signal Transduction/drug effects , Signal Transduction/physiology , Toll-Like Receptor 4/antagonists & inhibitors , Uric Acid/toxicity
9.
BMC Complement Med Ther ; 21(1): 202, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34284768

ABSTRACT

BACKGROUND: Gout is initiated by the precipitation of monosodium urate (MSU) crystals within the joints and soft tissues, and it can eventually cause acute or chronic arthritis. MSU crystals trigger, amplify, and maintain a strong inflammatory response through promoting proinflammatory activity. In this study, the therapeutic effects of Stephania hainanensis (S. hainanensis) total alkaloid (SHA) were tested and evaluated on MSU-induced acute gouty arthritis in a mouse model. METHODS: After oral administration of SHA (10 or 20 mg/kg) or the antigout medicine colchicine (0.5 mg/kg) once daily for 3 consecutive days, MSU crystals suspended in saline (2.5 mg/50 µl) were intradermally injected into the right paw of the mice. Then, SHA and colchicine were administered for another 2 days. During this period, swelling of the ankle and clinical scores were measured at 12, 24, and 48 h postinjection. After the mice were euthanized, inflammatory cytokine expression and paw tissue inflammation-related gene and protein expression, and a histopathological analysis was performed. RESULTS: SHA had obvious therapeutic effects on MSU-induced acute gouty arthritis in mice. SHA alleviated ankle swelling and inhibited the production of cytokines, such as IL-1ß and TNF-α. In addition, NLRP3, Caspase-1 and IL-1ß, which are activated by MSU were also suppressed by SHA. The histological evaluation showed that SHA relieved the infiltration of inflammation around the ankle. CONCLUSIONS: These results suggest that SHA is capable of anti-inflammatory activities and may be useful for treating gouty arthritis.


Subject(s)
Alkaloids/pharmacology , Anti-Inflammatory Agents/pharmacology , Antioxidants/toxicity , Arthritis, Gouty/chemically induced , Stephania/metabolism , Uric Acid/toxicity , Animals , Antioxidants/pharmacology , Mice
10.
Int Immunopharmacol ; 97: 107819, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34098486

ABSTRACT

Tanshinones, the active ingredients derived from the roots of Salvia miltiorrhiza, have been widely used as traditional medicinal herbs for treating human diseases. Although tanshinones showed anti-inflammatory effects in many studies, large knowledge gaps remain regarding their underlying mechanisms. Here, we identified 15 tanshinones that suppressed the activation of NLRP3 inflammasome and studied their structure-activity relationships. Three tanshinones (tanshinone IIA, isocryptotanshinone, and dihydrotanshinone I) reduced mitochondrial reactive-oxygen species production in lipopolysaccharide (LPS)/nigericin-stimulated macrophages and correlated with altered mitochondrial membrane potentials, mitochondria complexes activities, and adenosine triphosphate and protonated-nicotinamide adenine dinucleotide production. The tanshinones may confer mitochondrial protection by promoting autophagy and the AMP-activated protein kinase pathway. Importantly, our findings demonstrate that dihydrotanshinone I improved the survival of mice with LPS shock and ameliorated inflammatory responses in septic and gouty animals. Our results suggest a potential pharmacological mechanism whereby tanshinones can effectively treat inflammatory diseases, such as septic and gouty inflammation.


Subject(s)
Abietanes/pharmacology , Furans/pharmacology , Gout/drug therapy , Inflammasomes/antagonists & inhibitors , Phenanthrenes/pharmacology , Quinones/pharmacology , Shock, Septic/drug therapy , AMP-Activated Protein Kinases/metabolism , Abietanes/therapeutic use , Animals , Autophagy/drug effects , Autophagy/immunology , Disease Models, Animal , Female , Furans/therapeutic use , Gout/chemically induced , Gout/immunology , Gout/pathology , Humans , Inflammasomes/metabolism , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Male , Mice , Mitochondria/drug effects , Mitochondria/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phenanthrenes/therapeutic use , Quinones/therapeutic use , Rats , Reactive Oxygen Species/metabolism , Shock, Septic/immunology , Shock, Septic/pathology , Uric Acid/administration & dosage , Uric Acid/toxicity
11.
Curr Med Sci ; 41(4): 757-763, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34047943

ABSTRACT

The aim of this study was to identify the effects of melatonin on acute gouty inflammation and to investigate the underlying mechanisms. We found significantly lower serum melatonin levels in gout patients in the acute phase than in those in the remission phase or in normal individuals. The mRNA expression of melatonin receptor 2 (MT2) was also lower in gout patients than in normal individuals. To verify the in-vivo role of melatonin, a gouty arthritis model was established by intraarticular injection of monosodium urate (MSU, 1 mg) crystals into the paws of C57BL/6 mice. Joint inflammation in the mouse model was evaluated by measuring the thickness of the right paw/left paw, and the inflammation index was determined by examining infiltrating neutrophils with haematoxylin and eosin (H&E) staining. Melatonin was found to reduce both paw thickness and the inflammation index in the mouse model, and melatonin also reduced the mRNA levels of interleukin-1 beta (IL-1ß), IL-6 and NLR family pyrin domain containing 3 (NLRP3) inflammasome. To mimic gouty inflammation in vitro, mouse peritoneal macrophages were stimulated with lipopolysaccharides (LPS) plus MSU. Melatonin was revealed to reduce IL-1ß secretion by stimulated macrophages. The mRNA expression levels of IL-1ß and IL-6 were also inhibited by melatonin. Western blot analysis showed that the expression of NLRP3, caspase-1 and pro-IL-1ß was also inhibited by melatonin. In conclusion, our study demonstrated that melatonin alleviated gouty inflammation in vivo and in vitro, and the underlying mechanism may involve inhibiting the assembly of the NLRP3 inflammasome.


Subject(s)
Arthritis, Gouty/drug therapy , Gout/drug therapy , Inflammation/drug therapy , Melatonin/pharmacology , Receptor, Melatonin, MT2/blood , Acute Disease/epidemiology , Animals , Arthritis, Gouty/blood , Arthritis, Gouty/chemically induced , Arthritis, Gouty/genetics , Disease Models, Animal , Gout/metabolism , Gout/pathology , Humans , Inflammation/blood , Inflammation/chemically induced , Inflammation/genetics , Interleukin-1beta/genetics , Interleukin-6/genetics , Joints/drug effects , Joints/pathology , Macrophages/drug effects , Macrophages/pathology , Melatonin/blood , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , RNA, Messenger/blood , Uric Acid/toxicity
12.
J Cell Mol Med ; 25(14): 6733-6745, 2021 07.
Article in English | MEDLINE | ID: mdl-34053175

ABSTRACT

High uric acid (HUA) is associated with insulin resistance (IR) in cardiomyocytes. We investigated whether metformin protects against HUA-induced IR in cardiomyocytes. We exposed primary cardiomyocytes to HUA, and cellular glucose uptake was quantified by measuring the uptake of 2-NBDG, a fluorescent glucose analog. Western blot was used to examine the levels of signalling protein. Membrane of glucose transporter type 4 (GLUT4) was analysed by immunofluorescence. We monitored the impact of metformin on HUA-induced IR and in myocardial tissue of an acute hyperuricaemia mouse model established by potassium oxonate treatment. Treatment with metformin protected against HUA-reduced glucose uptake induced by insulin in cardiomyocytes. HUA directly inhibited the phosphorylation of Akt and the translocation of GLUT4 induced by insulin, which was blocked by metformin. Metformin promoted phosphorylation of AMP-activated protein kinase (AMPK) and restored the insulin-stimulated glucose uptake in HUA-induced IR cardiomyocytes. As a result of these effects, in a mouse model of acute hyperuricaemia, metformin improved insulin tolerance and glucose tolerance, accompanied by increased AMPK phosphorylation, Akt phosphorylation and translocation of GLUT4 in myocardial tissues. As expected, AICAR, another AMPK activator, had similar effects to metformin, demonstrating the important role of AMPK activation in protecting against IR induced by HUA in cardiomyocytes. Metformin protects against IR induced by HUA in cardiomyocytes and improves insulin tolerance and glucose tolerance in an acute hyperuricaemic mouse model, along with the activation of AMPK. Consequently, metformin may be an important potential new treatment strategy for hyperuricaemia-related cardiovascular disease.


Subject(s)
AMP-Activated Protein Kinase Kinases/metabolism , Hyperuricemia/drug therapy , Hypoglycemic Agents/pharmacology , Insulin Resistance , Metformin/pharmacology , Myocytes, Cardiac/drug effects , Animals , Cells, Cultured , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Hyperuricemia/metabolism , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Signal Transduction , Uric Acid/toxicity
13.
J Ethnopharmacol ; 275: 114123, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33894285

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Simiao Wan (SMW) is a classical traditional Chinese medicine (TCM) prescription to empirically treat gouty arthritis (GA) in TCM clinical practice. However, the potential mechanisms of SMW on GA are not fully evaluated. AIM OF STUDY: The aim of this study is to investigate the role of macrophage polarization in the anti-GA activity of SMW. MATERIALS AND METHODS: Rats were intragastricly treated with SMW for consecutive 7 days. On day 6, monosodium urate (MSU) crystal-induced arthritis (MIA) in the ankle joint was prepared. Paw volume, gait score and histological score were measured. Levels of interleukin (IL)-1ß and IL-10 in serum were detected by enzyme-linked immunosorbent assay. Expressions of inducible nitric oxide synthase (iNOS), arginase (Arg)-1, phosphorylated (p)-p65, inhibitor of nuclear factor (NF)-κB (IκB)α, p-signal transducer and transcription activator (STAT)3 and p-Janus kinase (JAK)2 in synovial tissues were determined by Western blot. RESULTS: The elevated paw volume, gait score and histological score in MIA rats were significantly decreased by SMW treatment. Meanwhile, SMW significantly decreased the IL-1ß level and increased the IL-10 level in serum of MIA rats. Furthermore, SMW reduced the expressions of iNOS, p-p65 and enhanced the expressions of Arg-1, IκBα, p-STAT3 and p-JAK2 in synovial tissues of MIA rats. CONCLUSIONS: The results suggest that SMW attenuates the inflammation in MIA rats through promoting macrophage M2 polarization.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antirheumatic Agents/pharmacology , Antirheumatic Agents/therapeutic use , Arthritis, Experimental/prevention & control , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Macrophages/drug effects , Animals , Anti-Inflammatory Agents/chemistry , Antirheumatic Agents/chemistry , Arginase/metabolism , Arthritis, Experimental/pathology , Drugs, Chinese Herbal/chemistry , Edema/chemically induced , Edema/drug therapy , Edema/pathology , Extremities/pathology , Gait/drug effects , I-kappa B Proteins/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/pathology , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Janus Kinase 2/metabolism , Macrophage Activation/drug effects , Macrophages/metabolism , Male , Neoplasm Proteins/metabolism , Nitric Oxide Synthase Type II/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Rats, Sprague-Dawley , STAT3 Transcription Factor/metabolism , Synovial Membrane/drug effects , Synovial Membrane/metabolism , Uric Acid/toxicity
14.
Mar Drugs ; 19(5)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922488

ABSTRACT

This work aimed to investigate the effect of fucoidan (FPS) on urate transporters induced by uric acid (UA). The results showed that UA stimulated the expression of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1) in HK-2 cells, and FPS could reverse the effect. Moreover, UA could activate NF-κB, JNK and PI3K/Akt pathways, but both pathway inhibitors and FPS inhibited the UA-induced activation of these three pathways. These data suggested that FPS effectively inhibited the expression induction of reabsorption transporters URAT1 and GLUT9 by UA, through repressing the activation of NF-κB, JNK and PI3K/Akt signal pathways in HK-2 cells. The in vitro research findings support the in vivo results that FPS reduces serum uric acid content in hyperuricemia mice and rats through inhibiting the expression of URAT1 and GLUT9 in renal tubular epithelial cells. This study provides a theoretical basis for the application of FPS in the treatment of hyperuricemia.


Subject(s)
Glucose Transport Proteins, Facilitative/metabolism , Gout Suppressants/pharmacology , JNK Mitogen-Activated Protein Kinases/metabolism , Kidney Tubules, Proximal/drug effects , Laminaria , NF-kappa B/metabolism , Organic Anion Transporters/metabolism , Organic Cation Transport Proteins/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Polysaccharides/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Cell Line , Gout Suppressants/isolation & purification , Humans , Kidney Tubules, Proximal/enzymology , Laminaria/chemistry , Polysaccharides/isolation & purification , Signal Transduction , Uric Acid/toxicity
15.
Biomed Pharmacother ; 138: 111413, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33677310

ABSTRACT

BACKGROUND: Monosodium urate (MSU)-mediated inflammatory response is a crucial inducing factor in gouty arthritis. Here, we explored the underlying mechanism of total glucosides of paeony (TGP) in MSU-induced inflammation of THP-1 macrophages in gouty arthritis. METHODS: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect cell viability. Enzyme-linked immunosorbent assay (ELISA) was utilized to measure the production of interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α). Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were conducted to determine RNA and protein expression. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull down assay were used to confirm the interaction between miR-876-5p and MALAT1 or NLR family pyrin domain containing 3 (NLRP3). RESULTS: MSU-induced damage and inflammatory response in THP-1 macrophages were alleviated by the treatment of TGP in a dose-dependent manner. Overexpression of NLRP3 or MALAT1 reversed the protective effects of TGP in MSU-induced THP-1 macrophages. The binding relation between miR-876-5p and MALAT1 or NLRP3 was identified in THP-1 macrophages. MALAT1 up-regulated the expression of NLRP3 by sponging miR-876-5p in THP-1 macrophages. TGP suppressed MSU-induced inflammation in THP-1 macrophages through regulating MALAT1/miR-876-5p/NLRP3 axis. TGP suppressed MSU-induced activation of TLR4/MyD88/NF-κB pathway through regulating MALAT1/miR-876-5p/NLRP3 axis. CONCLUSION: In conclusion, TGP suppressed MSU-induced inflammation in THP-1 macrophages through regulating MALAT1/miR-876-5p/NLRP3 axis and TLR4/MyD88/NF-κB pathway, suggesting that TGP was a promising active ingredient for gouty arthritis treatment.


Subject(s)
Arthritis, Gouty/metabolism , Glucosides/therapeutic use , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Paeonia , RNA, Long Noncoding/metabolism , Uric Acid/toxicity , Arthritis, Gouty/chemically induced , Arthritis, Gouty/prevention & control , Glucosides/isolation & purification , Glucosides/pharmacology , Humans , Inflammation Mediators/metabolism , Macrophages/drug effects , Macrophages/metabolism , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Signal Transduction/drug effects , Signal Transduction/physiology , THP-1 Cells/drug effects , THP-1 Cells/metabolism
16.
Inflammation ; 44(4): 1405-1415, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33515125

ABSTRACT

The aim of the present study was to observe the changes of TTX-R, Nav1.8, and Nav1.9 Na+ currents in MSU-induced gouty arthritis mice, and to explore the possibility of Nav1.8 and Nav1.9 channels as potential targets for gout pain treatment. Acute gouty arthritis was induced by monosodium urate (MSU) in mice. Swelling degree was evaluated by measuring the circumference of the ankle joint. Mechanical allodynia was assessed by applying the electronic von Frey. Na+ currents were recorded by patch-clamp techniques in acute isolated dorsal root ganglion (DRG) neurons. MSU treatment significantly increased the swelling degree of ankle joint and decreased the mechanical pain threshold. The amplitude of TTX-R Na+ current was significantly increased and reached its peak on the 4th day after injection of MSU. For TTX-R Na+ channel subunits, Nav1.8 current density was significantly increased, but Nav1.9 current density was markedly decreased after MSU treatment. MSU treatment shifted the steady-state activation curves of TTX-R Na+ channel, Nav1.8 and Nav1.9 channels, and the inactivation curves of TTX-R Na+ channel and Nav1.8 channels to the depolarizing direction, but did not affect the inactivation curve of Nav1.9 channel. Compared with the normal group, the recovery of Nav1.8 channel was faster, while that of Nav1.9 channel was slower. The recovery of TTX-R Na+ channel remained unchanged after MSU treatment. Additionally, MSU treatment increased DRG neurons excitability by reducing action potential threshold. Nav1.8 channel, not Nav1.9 channel, may be involved in MSU-induced gout pain by increasing nerve excitability.


Subject(s)
Arthritis, Gouty/chemically induced , Arthritis, Gouty/metabolism , NAV1.8 Voltage-Gated Sodium Channel/metabolism , NAV1.9 Voltage-Gated Sodium Channel/metabolism , Uric Acid/toxicity , Animals , Arthritis, Gouty/pathology , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Hyperalgesia/pathology , Male , Mice , Mice, Inbred ICR , Sodium Channel Blockers/pharmacology
17.
J Ethnopharmacol ; 270: 113825, 2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33460754

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Modified Simiaowan (MSW) is a traditional Chinese medicine formula that is composed of six herbs. It has been widely used in the treatment of gouty arthritis. AIM OF THE STUDY: This study was designed to investigate the effect of MSW on gouty arthritis and explore the possible mechanisms. MATERIAL AND METHODS: The rat gouty arthritis model was established by intra-articular injection of Monosodium Urate (MSU) crystal, and then treated with MSW for 5 days. The perimeter of the knee joints was measured in a time-dependent manner and serum samples were collected for the detection of TNF-α, IL-1ß, and IL-6 protein levels by ELISA. The protein expressions of MMP-3, TIMP-3, STAT3, and p-STAT3 in cartilage tissues and C28/I2 cells were detected by Western blot, and the levels of proteoglycan in primary chondrocytes and cartilage tissues were determined by toluidine blue staining. In addition, AG490 and IL-6 were used in vitro to explore the function of IL-6/STAT3 pathway in the protective effect of MSU. RESULTS: MSW reduced the joint swelling rate in gouty arthritis model and inhibited MSU induced up-regulation of IL-1ß, TNF-α, and IL-6 protein levels in serum and synovial fluid. IL-1ß induced an increase in p-STAT3 and MMP-3 protein expression in C28/I2 cells, as well as a decrease in TIMP-3. MSW serum inhibited the protein expression changes induced by IL-1ß in vitro. Furthermore, inhibition of STAT3 signaling negated the effect of MSW serum on p-STAT3, MMP-3, and TIMP-3 protein levels in C28/I2 cells. MSW also increased the content of proteoglycan significantly both in vivo and in vitro. CONCLUSION: Our data indicated that MSW protected rats from MSU-induced experimental gouty arthritis and IL-1ß/IL-6/STAT3 pathway played an essential role in the protective effect of MSU against GA.


Subject(s)
Arthritis, Gouty/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Protective Agents/pharmacology , Protective Agents/therapeutic use , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Animals , Arthritis, Gouty/chemically induced , Cell Line , Chondrocytes/drug effects , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Edema/chemically induced , Edema/drug therapy , Humans , Interleukin-1beta/toxicity , Male , Proteoglycans/drug effects , Rabbits , Rats, Sprague-Dawley , Uric Acid/toxicity
18.
Cell Mol Immunol ; 18(1): 162-170, 2021 01.
Article in English | MEDLINE | ID: mdl-31511642

ABSTRACT

Monosodium urate (MSU) crystals activate inflammatory pathways that overlap with interleukin-1ß (IL-1ß) signaling. However, the post-translational mechanisms involved and the role of signaling proteins in this activation are unknown. In the present study, we investigated the intracellular signaling mechanisms involved in MSU-induced activation of THP-1 macrophages and human nondiseased synovial fibroblasts (NLSFs) and the in vivo efficacy of an inhibitor of tumor growth factor-ß (TGF-ß)-activated kinase 1 (TAK1), 5Z-7-oxozeaenol, in MSU-induced paw inflammation in C57BL/6 mice. THP-1 macrophage activation with MSU crystals (25-200 µg/ml) resulted in the rapid and sustained phosphorylation of interleukin-1 receptor-activated kinase 1 (IRAK1 Thr209) and TAK1 (Thr184/187) and their association with the E3 ubiquitin ligase TRAF6. At the cellular level, MSU inhibited the deubiquitinases A20 and UCHL2 and increased 20s proteasomal activity, leading to a global decrease in K63-linked ubiquitination and increase in K48-linked ubiquitination in THP-1 macrophages. While MSU did not stimulate cytokine production in NLSFs, it significantly amplified IL-1ß-induced IL-6, IL-8, and ENA-78/CXCL5 production. Docking studies and MD simulations followed by TAK1 in vitro kinase assays revealed that uric acid molecules are capable of arresting TAK1 in an active-state conformation, resulting in sustained TAK1 kinase activation. Importantly, MSU-induced proinflammatory cytokine production was completely inhibited by 5Z-7-oxozeaenol but not IRAK1/4 or TRAF6 inhibitors. Administration of 5Z-7-oxozeaenol (5 or 15 mg/kg; orally) significantly inhibited MSU-induced paw inflammation in C57BL/6 mice. Our study identifies a novel post-translational mechanism of TAK1 activation by MSU and suggests the therapeutic potential of TAK1 in regulating MSU-induced inflammation.


Subject(s)
Gout/drug therapy , Inflammation/drug therapy , Lactones/pharmacology , MAP Kinase Kinase Kinases/antagonists & inhibitors , Proteasome Endopeptidase Complex/drug effects , Resorcinols/pharmacology , Ubiquitin/metabolism , Uric Acid/toxicity , Animals , Antioxidants/toxicity , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Gout/chemically induced , Gout/enzymology , Gout/pathology , Humans , Inflammation/chemically induced , Inflammation/enzymology , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Signal Transduction , Synovial Membrane/drug effects , Synovial Membrane/metabolism , Synovial Membrane/pathology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
19.
Mol Pharm ; 18(2): 667-678, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32579365

ABSTRACT

Gasdermin D (GSDMD) plays a causal role in NOD-like receptor protein 3 (NLRP3) inflammasome-mediated pyroptosis eruption, which has been regarded as a potential therapeutic target for pyroptosis-related diseases including acute gouty arthritis. In the present study, the synthesized PEI-Chol (cholesterol grafted polyethylenimine) was assembled with GSDMD small interfering RNA (siRNA) to form PEI-Chol/siGSDMD polyplexes, which provided high transfection efficiency for siRNA-mediated GSDMD knockdown. Then we evaluated the effect of GSDMD siRNA-loaded PEI-Chol on inflammatory cascades in bone-marrow-derived macrophages (BMDMs) and acute gouty arthritis animal models under MSU exposure. When accompanied by pyroptosis blockade and decreased release of interleukin-1 beta (IL-1ß), NLRP3 inflammasome activation was also suppressed by GSDMD knockdown in vivo and in vitro. Moreover, in MSU-induced acute gouty arthritis mice, blocking GSDMD with siRNA significantly improved ankle swelling and inflammatory infiltration observed in histopathological analysis. Furthermore, investigation using a mouse air pouch model verified the effect of siGSDMD-loaded PEI-Chol on pyroptosis of recruited macrophages and related signaling pathways in response to MSU. These novel findings exhibited that GSDMD knockdown relieved acute gouty arthritis through inhibiting pyroptosis, providing a possible therapeutic approach for MSU-induced acute gouty arthritis molecular therapy using PEI-Chol as a nucleic acid delivery carrier.


Subject(s)
Arthritis, Gouty/drug therapy , Drug Carriers/chemistry , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Phosphate-Binding Proteins/antagonists & inhibitors , Pyroptosis/drug effects , RNA, Small Interfering/administration & dosage , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Arthritis, Gouty/chemically induced , Arthritis, Gouty/immunology , Arthritis, Gouty/pathology , Cells, Cultured , Cholesterol , Gene Knockdown Techniques/methods , Humans , Inflammasomes/drug effects , Inflammasomes/immunology , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Male , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Polyethyleneimine/chemistry , Primary Cell Culture , Signal Transduction/drug effects , Signal Transduction/immunology , Uric Acid/administration & dosage , Uric Acid/toxicity
20.
Mol Cell Endocrinol ; 520: 111070, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33127482

ABSTRACT

Hyperuricaemia is a disorder of purine metabolism. Elevated serum uric acid is strongly associated with many diseases, including gout, abdominal obesity, insulin resistance, and cardiovascular and kidney disease. Our previous studies showed that high uric acid (HUA) induced insulin resistance in several peripheral organs, including the liver, myocardium and adipose tissue. However, whether HUA directly induces insulin resistance of pancreatic ß cells, the only source of insulin in the body and also a sensitive insulin target, is unknown. In this study, pancreatic ß cells pretreated with HUA showed impaired insulin expression/secretion, glucose uptake and the glycolytic pathway. RNA-seq revealed that HUA affected the biological processes of INS-1 cells broadly, including oxidoreduction coenzyme metabolic process, pyruvate metabolic process, and glycolytic process. In addition, HUA reduced mitochondrial membrane potential and increased the production of reactive oxygen species(ROS) in INS-1 cells. INS-1 cells pretreated with probenecid, an organic anion transporter inhibitor, protected INS-1 cells against HUA-induced insulin secretion decrease, Pretreatment with N-acetyl-L-cysteine(NAC), a globally used antioxidant, recovered HUA-decreased insulin secretion and glucose uptake by pancreatic ß cells. Insulin-like growth factor 1 (IGF-1), the phosphatidylinositol 3-kinase (PI3K) activator, rescues HUA-decreased insulin secretion by re-activating AKT phosphorylation. Thus, HUA induce insulin resistance, impaired insulin secretion and glycolytic pathway of pancreatic ꞵ cell through IRS2/AKT pathway.


Subject(s)
Insulin Receptor Substrate Proteins/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Uric Acid/toxicity , Animals , Cell Line , Gene Expression Profiling , Glucose/metabolism , Glycolysis/drug effects , Insulin Secretion/drug effects , Insulin-Like Growth Factor I/pharmacology , Insulin-Secreting Cells/drug effects , Male , Matrix Metalloproteinases/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice , Models, Biological , Oxidative Stress/drug effects , Phosphorylation/drug effects , Phosphoserine/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...