Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters










Publication year range
1.
Fungal Genet Biol ; 152: 103570, 2021 07.
Article in English | MEDLINE | ID: mdl-34004340

ABSTRACT

Ustilago maydis encodes ten predicted light-sensing proteins. The biological functions of only a few of them are elucidated. Among the characterized ones are two DNA-photolyases and two rhodopsins that act as DNA-repair enzymes or green light-driven proton pumps, respectively. Here we report on the role of two other photoreceptors in U. maydis, namely White collar 1 (Wco1) and Phytochrome 1 (Phy1). We show that they bind flavins or biliverdin as chromophores, respectively. Both photoreceptors undergo a photocycle in vitro. Wco1 is the dominant blue light receptor in the saprophytic phase, controlling all of the 324 differentially expressed genes in blue light. U. maydis also responds to red and far-red light. However, the number of red or far-red light-controlled genes is less compared to blue light-regulated ones. Moreover, most of the red and far-red light-controlled genes not only depend on Phy1 but also on Wco1, indicating partial coregulation of gene expression by both photoreceptors. GFP-fused Wco1 is preferentially located in the nucleus, Phy1 in the cytosol, thus providing no hint that these photoreceptors directly interact or operate within the same complex. This is the first report on a functional characterization and coaction of White collar 1 and phytochrome orthologs in basidiomycetes.


Subject(s)
Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Phytochrome/genetics , Phytochrome/metabolism , Ustilago/genetics , Ustilago/metabolism , Basidiomycota , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Fungal/drug effects , Gene Expression Regulation, Fungal/radiation effects , Genes, Fungal/genetics , Light , Phytochrome/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome , Ustilago/drug effects , Ustilago/radiation effects
2.
Nat Commun ; 11(1): 1608, 2020 03 30.
Article in English | MEDLINE | ID: mdl-32231209

ABSTRACT

The emerging resistance of crop pathogens to fungicides poses a challenge to food security and compels discovery of new antifungal compounds. Here, we show that mono-alkyl lipophilic cations (MALCs) inhibit oxidative phosphorylation by affecting NADH oxidation in the plant pathogens Zymoseptoria tritici, Ustilago maydis and Magnaporthe oryzae. One of these MALCs, consisting of a dimethylsulfonium moiety and a long alkyl chain (C18-SMe2+), also induces production of reactive oxygen species at the level of respiratory complex I, thus triggering fungal apoptosis. In addition, C18-SMe2+ activates innate plant defense. This multiple activity effectively protects cereals against Septoria tritici blotch and rice blast disease. C18-SMe2+ has low toxicity in Daphnia magna, and is not mutagenic or phytotoxic. Thus, MALCs hold potential as effective and non-toxic crop fungicides.


Subject(s)
Cations/pharmacology , Crops, Agricultural/drug effects , Fungicides, Industrial/pharmacology , Plant Diseases/prevention & control , Protective Agents/pharmacology , Animals , Ascomycota/drug effects , Cations/chemistry , Daphnia/drug effects , Drug Discovery , Edible Grain/microbiology , Fibroblasts/drug effects , Fungicides, Industrial/chemistry , Humans , Mitochondria/drug effects , Oryza/microbiology , Plant Diseases/microbiology , Protective Agents/chemistry , Triticum/microbiology , Ustilago/drug effects
3.
Eur J Med Chem ; 191: 112159, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32101782

ABSTRACT

The endophytic fungus Cladosporium sphaerospermum WBS017 was obtained from healthy bulbs of Fritillaria unibracteata var. wabuensis. Fermentation of C. sphaerospermum on solid rice medium yielded three new hybrid polyketides, cladosins L-N (1-3), and a known derivative cladodionen (4). Further cultivation of this fungus on white bean medium afforded an additional new hybrid polyketide, cladosin O (5) along with three known analogues (6-8). The structures of the new compounds were elucidated using a combination of NMR and HRESIMS data. The absolute configurations of compounds 2 and 3 were determined by Mosher's method and TDDFT-ECD calculations. All isolated compounds were evaluated for their cytotoxic and antimicrobial activities. Cladodionen (4) exhibited cytotoxicity against the mouse lymphoma cell line L5178Y with an IC50 value of 3.7 µM, and also exhibited antifungal activity against Ustilago maydis and Saccharomyces cerevisiae, while cladosin L (1) displayed week antibacterial activity against Staphylococcus aureus ATCC 29213 and S. aureus ATCC 700699 with MIC values of 50 and 25 µM, respectively.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Cladosporium/chemistry , Polyketides/pharmacology , Acinetobacter baumannii/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Density Functional Theory , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enterococcus faecalis/drug effects , Mice , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/drug effects , Polyketides/chemistry , Polyketides/isolation & purification , Pseudomonas aeruginosa/drug effects , Saccharomyces cerevisiae/drug effects , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Ustilago/drug effects
4.
Arch Microbiol ; 202(5): 1211-1221, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32088730

ABSTRACT

The evolutionarily conserved serine/threonine kinase TOR recruits different subunits to assemble the Target of Rapamycin Complex 1 (TORC1), which is inhibited by rapamycin and regulates ribosome biogenesis, autophagy, and lipid metabolism by regulating the expression of lipogenic genes. In addition, TORC1 participates in the cell cycle, increasing the length of the G2 phase. In the present work, we investigated the effect of rapamycin on cell growth, cell morphology and neutral lipid metabolism in the phytopathogenic fungus Ustilago maydis. Inhibition of TORC1 by rapamycin induced the formation of septa that separate the nuclei that were formed after mitosis. Regarding neutral lipid metabolism, a higher accumulation of triacylglycerols was not detected, but the cells did contain large lipid bodies, which suggests that small lipid bodies became fused into big lipid droplets. Vacuoles showed a similar behavior as the lipid bodies, and double labeling with Blue-CMAC and BODIPY indicates that vacuoles and lipid bodies were independent organelles. The results suggest that TORC1 has a role in cell morphology, lipid metabolism, and vacuolar physiology in U. maydis.


Subject(s)
Lipid Metabolism/drug effects , Sirolimus/pharmacology , Ustilago/drug effects , Antifungal Agents/pharmacology , Lipids/analysis , Mechanistic Target of Rapamycin Complex 1/metabolism , Triglycerides/administration & dosage , Ustilago/chemistry , Vacuoles/chemistry
5.
Plant Signal Behav ; 14(10): e1651604, 2019.
Article in English | MEDLINE | ID: mdl-31397626

ABSTRACT

Enhancing broad-spectrum resistance is a major goal of crop breeding. However, broad-spectrum resistance has not been thoroughly investigated, and its underlying molecular mechanisms remain elusive. In the model plant Arabidopsis (Arabidopsis thaliana), ACCELERATED CELL DEATH6 (ACD6) is a key component of broad-spectrum resistance that acts in a positive feedback loop with salicylic acid (SA) to regulate multiple pattern recognition receptors. However, the role of ACD6 in disease resistance in crop plants is unclear. Here, we show that the transcript of ANK23, one of the 15 ACD6-like genes in maize (Zea mays), is induced by SA and by infection with the pathogenic fungus Ustilago maydis. Heterologous expression of ANK23 restored disease resistance in the Arabidopsis mutant acd6-2. We show that ANK23 is a maize ortholog of ACD6 and therefore rename ANK23 as ZmACD6. Furthermore, using CRISPR/Cas9, we generated ZmACD6 knockout maize plants, which are more susceptible to U. maydis than wild-type plants. We also identified a maize line (SC-9) with relatively high ZmACD6 expression levels from a diverse natural maize population. SC-9 has increased disease resistance to U. maydis and defense activation, suggesting a practical approach to cultivate elite varieties with enhanced disease resistance.


Subject(s)
Disease Resistance , Genes, Plant , Plant Diseases/microbiology , Ustilago/physiology , Zea mays/genetics , Zea mays/microbiology , Base Sequence , Gene Expression Regulation, Plant/drug effects , Loss of Function Mutation/genetics , Phylogeny , Plant Diseases/genetics , Salicylic Acid/pharmacology , Time Factors , Ustilago/drug effects , Zea mays/drug effects
6.
Angew Chem Int Ed Engl ; 58(43): 15304-15308, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31419367

ABSTRACT

Divergent and enantiospecific total syntheses of the indolosesquiterpenoids xiamycins A, C, F, H and oridamycin A have been accomplished. The syntheses, which commence from (R)-carvone, employ a key photoinduced benzannulation sequence to forge the carbazole moiety characteristic of these natural products. Late-stage diversification from a common intermediate enabled the first syntheses of xiamycins C and F, and an unexpected one-pot oxidative decarboxylation, which may prove general, led to xiamycin H. All synthetic intermediates and the natural products were tested for anti-fungal activity. Xiamycin H emerged as an inhibitor of three agriculturally relevant fungal pathogens.


Subject(s)
Antifungal Agents/chemical synthesis , Light , Sesquiterpenes/chemical synthesis , Antifungal Agents/pharmacology , Cyclization , Cyclohexane Monoterpenes/chemistry , Decarboxylation , Mitosporic Fungi/drug effects , Oxidation-Reduction , Sesquiterpenes/pharmacology , Stereoisomerism , Ustilago/drug effects
7.
FEMS Microbiol Lett ; 366(10)2019 05 01.
Article in English | MEDLINE | ID: mdl-31183499

ABSTRACT

In the present study we determined whether Ustilago maydis accumulates autophagosomes within vacuoles when the cells are exposed to nutritional stress conditions. We investigated whether proteinase B and proteinase A are involved in their degradation. To this effect, wild type and Δpep4 mutant were incubated in minimal medium lacking a carbon source. It was observed that after incubation in nutrient-deficient media, spherical bodies appeared within the Δpep4 mutant strains vacuoles. In addition, autophagosomes were accumulated in U. maydis WT cells incubated in the presence of the serine protease inhibitor PMSF and accumulation of large autophagosomes and electrodense structures in the Δpep4 mutant cell vacuoles took place. These results demonstrate that the homologues of both, the proteinase B and the protease A, are involved in the autophagosomes degradation process in U. maydis.


Subject(s)
Autophagosomes/metabolism , Peptide Hydrolases/metabolism , Stress, Physiological , Ustilago/enzymology , Vacuoles/physiology , Aspartic Acid Endopeptidases/metabolism , Carbon/metabolism , Culture Media , Fungal Proteins/metabolism , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/pharmacology , Ustilago/drug effects , Ustilago/genetics
8.
Rev. iberoam. micol ; 36(1): 1-8, ene.-mar. 2019. graf, ilus, tab
Article in English | IBECS | ID: ibc-185486

ABSTRACT

Background: The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (Hmgr) catalyzes the synthesis of mevalonate, a key compound for the synthesis of cholesterol in humans and ergosterol in fungi. Since the Hmgr enzymes of Saccharomyces cerevisiae, Schizosaccharomyces pombe and Candida glabrata are similar to the Hmgr enzymes of mammals, fungal Hmgr enzymes have been proposed as a model for studying antifungal agents. Aims: To examine the correlation between inhibiting Um-Hmgr enzyme and the viability, sterols synthesis and mating in Ustilago maydis. Methods: Using in silico analysis, the ORF codifying for Um-Hmgr was identified and the protein characteristics were deduced. The effect of the competitive inhibitors of Um-Hmgr on the viability of this basidiomycota, the synthesis of its sterols, and its mating were evaluated. Results: The Umhmgr gene (XP_011389590.1) identified putatively codifies a protein of 1443 aa (ca. MW = 145.5 kDa) that has a possible binding domain in the endoplasmic reticulum (ER) and high identity with the Hmgr catalytic domain of humans and other yeasts. The inhibition of Um-Hmgr caused a decrease of viability and synthesis of sterols, and also the inhibition of mating. The activity of Um-Hmgr is mainly located in the membrane fraction of the fungus. Conclusions: Given our results we believe U. maydis is a valid model for studying synthetic inhibitors with lipid-lowering or antifungal activity. Additionally, we propose the Hmgr enzyme as an alternative molecular target to develop compounds for treating both phytopathogenic and pathogenic human fungi


Antecedentes: La enzima 3-hidroxi-3-metilglutaril-coenzima A-reductasa (Hmgr) cataliza la síntesis de mevalonato, compuesto clave precursor en la biosíntesis del colesterol en el ser humano y en la del ergosterol en los hongos. Las enzimas Hmgr de Saccharomyces cerevisiae, Schizosaccharomyces pombe y Candida glabrata presentan similitud con la Hmgr de los mamíferos, motivo por el cual se han propuesto como modelo para el estudio de antifúngicos. Objetivos: Estudiar la correlación que existe entre la inhibición de la enzima Um-Hmgr y la viabilidad, la síntesis de esteroles y el mating en Ustilago maydis. Métodos: Por medio de un análisis in silico se identificó el ORF de la Um-Hmgr, y se dedujeron las características de la proteína. Se evaluó el efecto de los inhibidores competitivos de la enzima Um-Hmgr en la viabilidad, la síntesis de esteroles y el mating. Resultados: El gen Umhmgr (XP_011389590.1) codifica una proteína putativa de 1.443 aa (MW = 145,5 kDa), con un posible dominio de unión al retículo endoplásmico (RE) y una identidad alta con el dominio catalítico de la Hmgr humana y de otras levaduras. La inhibición de la Um-Hmgr ocasionó una disminución en la viabilidad y síntesis de esteroles del hongo, así como la inhibición del mating. La actividad de la Um-Hmgr está localizada principalmente en la fracción membranal del hongo. Conclusiones: La enzima Um-Hmgr está anclada probablemente al RE y presenta una elevada homología con el dominio catalítico de otras Hmgr de eucariotas. La Um-Hmgr participa en la síntesis de esteroles de este basidiomiceto, y su inhibición provoca la pérdida de la viabilidad, la reducción de los niveles de esteroles y del mating del hongo


Subject(s)
Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Microbial Viability/drug effects , Simvastatin/pharmacology , Ustilago/drug effects , Ustilago/enzymology , Sterols/biosynthesis , Ustilago/physiology
9.
Rev Iberoam Micol ; 36(1): 1-8, 2019.
Article in English | MEDLINE | ID: mdl-30745018

ABSTRACT

BACKGROUND: The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (Hmgr) catalyzes the synthesis of mevalonate, a key compound for the synthesis of cholesterol in humans and ergosterol in fungi. Since the Hmgr enzymes of Saccharomyces cerevisiae, Schizosaccharomyces pombe and Candida glabrata are similar to the Hmgr enzymes of mammals, fungal Hmgr enzymes have been proposed as a model for studying antifungal agents. AIMS: To examine the correlation between inhibiting Um-Hmgr enzyme and the viability, sterols synthesis and mating in Ustilago maydis. METHODS: Using in silico analysis, the ORF codifying for Um-Hmgr was identified and the protein characteristics were deduced. The effect of the competitive inhibitors of Um-Hmgr on the viability of this basidiomycota, the synthesis of its sterols, and its mating were evaluated. RESULTS: The Umhmgr gene (XP_011389590.1) identified putatively codifies a protein of 1443 aa (ca. MW=145.5kDa) that has a possible binding domain in the endoplasmic reticulum (ER) and high identity with the Hmgr catalytic domain of humans and other yeasts. The inhibition of Um-Hmgr caused a decrease of viability and synthesis of sterols, and also the inhibition of mating. The activity of Um-Hmgr is mainly located in the membrane fraction of the fungus. CONCLUSIONS: Given our results we believe U. maydis is a valid model for studying synthetic inhibitors with lipid-lowering or antifungal activity. Additionally, we propose the Hmgr enzyme as an alternative molecular target to develop compounds for treating both phytopathogenic and pathogenic human fungi.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Microbial Viability/drug effects , Simvastatin/pharmacology , Ustilago/drug effects , Ustilago/enzymology , Sterols/biosynthesis , Ustilago/physiology
10.
Pest Manag Sci ; 75(7): 1831-1846, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30636031

ABSTRACT

BACKGROUND: UK-2A is an antifungal antibiotic produced by Streptomyces sp. 517-02. Derivatization of its picolinamide OH to form the isobutyryl acetal led to the discovery of fenpicoxamid (InatreqTM active), which is currently under development as a fungicide by Dow AgroSciences LLC. This paper documents efforts to achieve additional efficacy enhancements through semi-synthetic modification of the benzyl substituent of the UK-2A macrocycle. RESULTS: Of 34 analogs prepared, the most active had mitochondrial electron transport IC50 values 1.5- to 3.7-fold higher than UK-2A (IC50 0.86 nM). The cyclohexyl analog (38, IC50 1.23 nM) was the most intrinsically active derivative, and inhibited in vitro growth of Zymoseptoria tritici (EC50 2.8 ppb) and Leptosphaeria nodorum (EC50 6.2 ppb) more strongly than UK-2A (EC50 5.3 and 11.3 ppb for Z. tritici and L. nodorum, respectively). Heterocyclic ring systems and polar linker functionalities resulted in substantial activity loss. Several analogs (20, 22, 23, 24, 36 and 38) translated Z. tritici in vitro growth inhibition activity to in planta disease control more effectively than did UK-2A, with log D being a key factor in this regard. CONCLUSIONS: UK-2A is amenable to further modification at the benzyl position on the macrocycle, which provides opportunities for manipulation of physical properties while retaining strong intrinsic and antifungal activity. © 2019 Society of Chemical Industry.


Subject(s)
Ascomycota/drug effects , Fungicides, Industrial/chemical synthesis , Ustilago/drug effects , Electron Transport Complex III/antagonists & inhibitors , Fungicides, Industrial/chemistry , Fungicides, Industrial/pharmacology , Inhibitory Concentration 50 , Lactones/chemical synthesis , Lactones/chemistry , Lactones/pharmacology , Mitochondria , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Structure-Activity Relationship , Triticum/microbiology
11.
Pest Manag Sci ; 75(2): 413-426, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29952118

ABSTRACT

BACKGROUND: The antifungal antibiotic UK-2A strongly inhibits mitochondrial electron transport at the Qi site of the cytochrome bc1 complex. Previous reports have described semi-synthetic modifications of UK-2A to explore the structure-activity relationship (SAR), but efforts to replace the picolinic acid moiety have been limited. RESULTS: Nineteen UK-2A analogs were prepared and evaluated for Qi site (cytochrome c reductase) inhibition and antifungal activity. While the majority are weaker Qi site inhibitors than UK-2A (IC50 , 3.8 nM), compounds 2, 5, 13 and 16 are slightly more active (IC50 , 3.3, 2.02, 2.89 and 1.55 nM, respectively). Compared to UK-2A, compounds 13 and 16 also inhibit growth of Zymoseptoria tritici and Leptosphaeria nodorum more strongly, while 2 and 13 provide stronger control of Z. tritici and Puccinia triticina in glasshouse tests. The relative activities of compounds 1-19 are rationalized based on a homology model constructed for the Z. tritici Qi binding site. Physical properties of compounds 1-19 influence translation of intrinsic activity to antifungal growth inhibition and in planta disease control. CONCLUSIONS: The 3-hydroxy-4-methoxy picolinic acid moiety of UK-2A can be replaced by a variety of o-hydroxy-substituted arylcarboxylic acids that retain strong activity against Z. tritici and other agriculturally relevant fungi. © 2018 Society of Chemical Industry.


Subject(s)
Ascomycota/drug effects , Basidiomycota/drug effects , Fungicides, Industrial/chemical synthesis , Amides/chemistry , Fungicides, Industrial/chemistry , Fungicides, Industrial/pharmacology , Lactones/chemical synthesis , Lactones/chemistry , Lactones/pharmacology , Picolinic Acids/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Structure-Activity Relationship , Ustilago/drug effects
12.
Genetics ; 210(2): 559-572, 2018 10.
Article in English | MEDLINE | ID: mdl-30082279

ABSTRACT

DNA-protein cross-links (DPCs) are frequently occurring lesions that provoke continual threats to the integrity of the genome by interference with replication and transcription. Reactive aldehydes generated from endogenous metabolic processes or produced in the environment are sources that trigger cross-linking of DNA with associated proteins. DNA repair pathways in place for removing DPCs, or for bypassing them to enable completion of replication, include homologous recombination (HR) and replication fork remodeling (FR) systems. Here, we surveyed a set of mutants defective in known HR and FR components to determine their contribution toward maintaining resistance to chronic formaldehyde (FA) exposure in Ustilago maydis, a fungus that relies on the BRCA2-family member Brh2 as the principal Rad51 mediator in repair of DNA strand breaks. We found that, in addition to Brh2, Rad52 was also vital for resistance to FA. Deleting the gene for Rec8, a kleisin subunit of cohesin, eliminated the requirement for Brh2, but not Rad52, in FA resistance. The Rad51K133R mutant variant that is able to bind DNA but unable to dissociate from it was able to support resistance to FA. These findings suggest a model for DPC repair and tolerance that features a specialized role for Rad52, enabling Rad51 to access DNA in its noncanonical capacity of replication fork protection rather than DNA strand transfer.


Subject(s)
Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Drug Resistance, Fungal/genetics , Formaldehyde/toxicity , Fungal Proteins/genetics , Rad51 Recombinase/genetics , Ustilago/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Fungal Proteins/metabolism , Homologous Recombination , Rad51 Recombinase/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Ustilago/drug effects , Cohesins
13.
DNA Repair (Amst) ; 63: 47-55, 2018 03.
Article in English | MEDLINE | ID: mdl-29414053

ABSTRACT

Cells maintain a small arsenal of resolving functions to process and eliminate complex DNA intermediates that result as a consequence of homologous recombination and distressed replication. Ordinarily the homologous recombination system serves as a high-fidelity mechanism to restore the integrity of a damaged genome, but in the absence of the appropriate resolving function it can turn DNA intermediates resulting from replication stress into pathological forms that are toxic to cells. Here we have investigated how the nucleases Mus81 and Gen1 and the helicase Blm contribute to survival after DNA damage or replication stress in Ustilago maydis cells with crippled yet homologous recombination-proficient forms of Brh2, the BRCA2 ortholog and primary Rad51 mediator. We found collaboration among the factors. Notable were three findings. First, the ability of Gen1 to rescue hydroxyurea sensitivity of dysfunctional Blm requires the absence of Mus81. Second, the response of mutants defective in Blm and Gen1 to hydroxyurea challenge is markedly similar suggesting cooperation of these factors in the same pathway. Third, the repair proficiency of Brh2 mutant variants deleted of its N-terminal DNA binding region requires not only Rad52 but also Gen1 and Mus81. We suggest these factors comprise a subpathway for channeling repair when Brh2 is compromised in its interplay with DNA.


Subject(s)
DNA Replication , Recombinational DNA Repair , Ustilago/metabolism , BRCA2 Protein/metabolism , DNA/drug effects , DNA/metabolism , Endonucleases/metabolism , Fungal Proteins/metabolism , Holliday Junction Resolvases/metabolism , Hydroxyurea/toxicity , Mutagens/toxicity , Rad51 Recombinase/metabolism , RecQ Helicases/metabolism , Ustilago/drug effects , Ustilago/enzymology , Ustilago/genetics
14.
Mol Microbiol ; 107(4): 488-507, 2018 02.
Article in English | MEDLINE | ID: mdl-29235175

ABSTRACT

The fungal pathogen Ustilago maydis causes disease on maize by mating to establish an infectious filamentous cell type that invades the host and induces tumours. We previously found that ß-oxidation mutants were defective in virulence and did not grow on acetate. Here, we demonstrate that acetate inhibits filamentation during mating and in response to oleic acid. We therefore examined the influence of different carbon sources by comparing the transcriptomes of cells grown on acetate, oleic acid or glucose, with expression changes for the fungus during tumour formation in planta. Guided by the transcriptional profiling, we found that acetate negatively influenced resistance to stress, promoted the formation of reactive oxygen species, triggered cell death in stationary phase and impaired virulence on maize. We also found that acetate induced mitochondrial stress by interfering with mitochondrial functions. Notably, the disruption of oxygen perception or inhibition of the electron transport chain also influenced filamentation and mating. Finally, we made use of the connections between acetate and ß-oxidation to test metabolic inhibitors for an influence on growth and virulence. These experiments identified diclofenac as a potential inhibitor of virulence. Overall, these findings support the possibility of targeting mitochondrial metabolic functions to control fungal pathogens.


Subject(s)
Acetates/pharmacology , Mitochondria/metabolism , Plant Diseases/microbiology , Ustilago/drug effects , Ustilago/pathogenicity , Zea mays/microbiology , Cell Death , Diclofenac/pharmacology , Glucose/pharmacology , Mutation/genetics , Oleic Acid/pharmacology , Reactive Oxygen Species/metabolism , Transcriptome/drug effects , Ustilago/genetics , Virulence/drug effects
15.
Molecules ; 22(12)2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29215563

ABSTRACT

Chitosan is a stressing molecule that affects the cells walls and plasma membrane of fungi. For chitosan derivatives, the action mode is not clear. In this work, we used the yeast Ustilago maydis to study the effects of these molecules on the plasma membrane, focusing on physiologic and stress responses to chitosan (CH), oligochitosan (OCH), and glycol-chitosan (GCH). Yeasts were cultured with each of these molecules at 1 mg·mL-1 in minimal medium. To compare plasma membrane damage, cells were cultivated in isosmolar medium. Membrane potential (Δψ) as well as oxidative stress were measured. Changes in the total plasma membrane phospholipid and protein profiles were analyzed using standard methods, and fluorescence-stained mitochondria were observed. High osmolarity did not protect against CH inhibition and neither affected membrane potential. The OCH did produce higher oxidative stress. The effects of these molecules were evidenced by modifications in the plasma membrane protein profile. Also, mitochondrial damage was evident for CH and OCH, while GCH resulted in thicker cells with fewer mitochondria and higher glycogen accumulation.


Subject(s)
Cell Membrane/drug effects , Cell Wall/drug effects , Chitin/analogs & derivatives , Chitosan/pharmacology , Ustilago/drug effects , Cell Membrane/ultrastructure , Cell Membrane Permeability , Cell Wall/ultrastructure , Chitin/pharmacology , Membrane Potentials/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , Oligosaccharides , Osmolar Concentration , Phospholipids/metabolism , Polyamines/pharmacology , Polyelectrolytes , Reactive Oxygen Species/agonists , Reactive Oxygen Species/metabolism , Ustilago/metabolism , Ustilago/ultrastructure
16.
J Basic Microbiol ; 57(7): 597-604, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28429489

ABSTRACT

Regulation of genes involved in nitrogen metabolism likely plays a role in the ability of fungi to exploit and survive under different environmental situations. To learn about the mechanism of adaptation of the biotrophic fungus Ustilago maydis from a medium containing a source of fixed nitrogen, to a medium depending on the ability to fix N2 by its bacterial endosymbiont, we explored gene expression profiles using RNA-Seq analyses under these two conditions. The differentially expressed (DE) fungal genes were analyzed, identifying 90 genes that were regulated 24 h after shifting the fungus to media lacking ammonium nitrate as a nitrogen source. From these, mRNA levels were increased for 49 genes, whereas 41 were down-regulated. The functional description associated to the regulated genes revealed that nine key pathways were represented, including, secondary metabolism, the metabolism of nitrogen, amino acid, fatty acid, amino sugar and nucleotide sugar, purine, peroxisome, and the regulation of actin cytoskeleton. These results suggest that the interplay of U. maydis with its N2 fixing bacterial endosymbiont is a flexible process that may be active during the adaptation of the fungus to the different nitrogen sources.


Subject(s)
Adaptation, Physiological/genetics , Gene Expression Profiling , Nitrogen Fixation , Ustilago/genetics , Actins/genetics , Down-Regulation , Gene Expression Regulation, Fungal , High-Throughput Nucleotide Sequencing , Nitrates/pharmacology , Nitrogen/metabolism , Peroxisomes/genetics , Secondary Metabolism/genetics , Ustilago/drug effects , Ustilago/growth & development , Ustilago/metabolism
17.
Fungal Genet Biol ; 101: 34-45, 2017 04.
Article in English | MEDLINE | ID: mdl-28285895

ABSTRACT

Previously, we demonstrated that when Ustilago maydis (DC) Cda., a phytopathogenic basidiomycete and the causal agent of corn smut, is grown in the vicinity of maize embryogenic calli in a medium supplemented with the herbicide Dicamba, it developed gastroid-like basidiocarps. To elucidate the molecular mechanisms involved in the basidiocarp development by the fungus, we proceeded to analyze the transcriptome of the process, identifying a total of 2002 and 1064 differentially expressed genes at two developmental stages, young and mature basidiocarps, respectively. Function of these genes was analyzed with the use of different databases. MIPS analysis revealed that in the stage of young basidiocarp, among the ca. two thousand differentially expressed genes, there were some previously described for basidiocarp development in other fungal species. Additional elements that operated at this stage included, among others, genes encoding the transcription factors FOXO3, MIG3, PRO1, TEC1, copper and MFS transporters, and cytochromes P450. During mature basidiocarp development, important up-regulated genes included those encoding hydrophobins, laccases, and ferric reductase (FRE/NOX). The demonstration that a mapkk mutant was unable to form basidiocarps, indicated the importance of the MAPK signaling pathway in this developmental process.


Subject(s)
Dicamba/pharmacology , Fruiting Bodies, Fungal/genetics , Transcriptome/drug effects , Ustilago/genetics , Fruiting Bodies, Fungal/drug effects , Fruiting Bodies, Fungal/growth & development , Fungal Proteins/biosynthesis , Gene Expression Profiling , Gene Expression Regulation, Fungal/drug effects , Plant Diseases/microbiology , Ustilago/drug effects , Ustilago/growth & development , Ustilago/pathogenicity , Zea mays/microbiology
18.
J Microbiol Biotechnol ; 27(5): 1010-1022, 2017 May 28.
Article in English | MEDLINE | ID: mdl-28237997

ABSTRACT

Hybrid histidine kinase is part of a two-component system that is required for various stress responses and pathogenesis of pathogenic fungi. The Tco1 gene in human pathogen Cryptococcus neoformans encodes a hybrid histidine kinase and is important for pathogenesis. In this study, we identified a Tco1 homolog, UmTco1, in the maize pathogen Ustilago maydis by bioinformatics analysis. To explore the role of UmTco1 in the survival of U. maydis under environmental stresses and its pathogenesis, Δumtco1 mutants were constructed by allelic exchange. The growth of Δumtco1 mutants was significantly impaired when they were cultured under hyperosmotic stress. The Δumtco1 mutants exhibited increased resistance to antifungal agent fludioxonil. In particular, the Δumtco1 mutants were unable to produce cytokinesis or conjugation tubes, and to develop fuzzy filaments, resulting in impaired mating between compatible strains. The expression levels of Prf1, Pra1, and Mfa1, which are involved in the pheromone pathway, were significantly decreased in the Δumtco1 mutants. In inoculation tests to the host plant, the Δumtco1 mutants showed significantly reduced ability in the production of anthocyanin pigments and tumor development on maize leaves. Overall, the combined results indicated that UmTco1 plays important roles in the survival under hyperosmotic stress, and contributes to cytokinesis, sexual development, and virulence of U. maydis by regulating the expression of the genes involved in the pheromone pathway.


Subject(s)
Genes, Mating Type, Fungal/genetics , Histidine Kinase/genetics , Sexual Development/genetics , Ustilago/growth & development , Ustilago/pathogenicity , Virulence/genetics , Amino Acid Sequence , Anthocyanins/metabolism , Antifungal Agents/pharmacology , Axenic Culture , Computational Biology , Cytokinesis , DNA, Fungal/genetics , Dioxoles/pharmacology , Escherichia coli/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , High Mobility Group Proteins/metabolism , Histidine Kinase/classification , Hyperostosis , Mutation , Osmotic Pressure , Phenotype , Pheromones/metabolism , Phylogeny , Plant Diseases/microbiology , Plant Leaves/metabolism , Plant Proteins/metabolism , Pyrroles/pharmacology , RNA, Messenger/analysis , Receptors, Pheromone/metabolism , Sequence Alignment , Stress, Physiological/genetics , Transcription Factors/metabolism , Ustilago/drug effects , Zea mays/microbiology
19.
Int J Mycobacteriol ; 5(4): 417-425, 2016 12.
Article in English | MEDLINE | ID: mdl-27931683

ABSTRACT

OBJECTIVE/BACKGROUND: Microbial infections such as tuberculosis is a major cause of mortality worldwide. Plant-derived phytochemicals have a long history of providing much-needed novel therapeutics. Triterpenoids are among the prominent phytochemicals that possess numerous biological activities. Among them is maslinic acid (MA), a biologically active olean-type pentacyclic triterpenoid. In search of a novel antimicrobial agent, we aimed to evaluate the antimicrobial potential of MA. METHODS: Antibacterial and antifungal activity was evaluated through the agar well diffusion method. Antitubercular activity was analysed through the agar well diffusion and disc diffusion methods, respectively. Antioxidant capacity was determined through assays for total antioxidant capacity, 2,2-diphenyl-1-picrylhydrazyl radical scavenging, hydrogen peroxide radical scavenging, and Fe3+ reducing power. The program Prediction of Activity Spectra for Substances was used to calculate the possible biological activity of MA. RESULTS: MA showed dose-dependent antioxidant activity similar to that of ascorbic acid. It had no inhibitory effect on bacterial strains, but it had moderate activity against the fungi Aspergillus flavus and Ustilago maydis, with Aspergillus niger being the most sensitive to MA. MA also exhibited strong antimycobacterial activity. Probable antioxidant, antibacterial, and antifungal activity of MA based on software calculations are 0.479, 0.363 and 0.589 respectively. CONCLUSION: This work provides scientific evidence of the antioxidant, antifungal, and antimycobacterial activities of MA, showing its potential application in the development of natural antioxidants and antimicrobial agents for the agro-food and pharmaceutical industries.


Subject(s)
Antifungal Agents/pharmacology , Antioxidants/pharmacology , Antitubercular Agents/pharmacology , Phytochemicals/pharmacology , Triterpenes/pharmacology , Aspergillus/drug effects , Computer Simulation , Ustilago/drug effects
20.
Mycopathologia ; 181(3-4): 311-4, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26590580

ABSTRACT

Ustilago, a common fungal parasite of grains, is infrequently isolated as a pathogen in humans. We describe a case of Ustilago echinata infection following an open distal tibia fracture, review the current literature of this genus as a cause of invasive fungal infection in humans, and discuss management issues.


Subject(s)
Antifungal Agents/therapeutic use , Fractures, Open/microbiology , Mycoses/drug therapy , Tibia/injuries , Ustilago/drug effects , Ustilago/isolation & purification , Adult , Base Sequence , DNA, Fungal/genetics , Humans , Male , Martial Arts , Microbial Sensitivity Tests , Mycoses/microbiology , Sequence Analysis, DNA , Tibia/microbiology , Ustilago/classification , Ustilago/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...