Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.908
Filter
2.
Clin Sci (Lond) ; 138(12): 699-709, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38817011

ABSTRACT

Our previous studies indicated that there is overexpression of MIAT in fibroids and MIAT is a sponge for the miR-29 family in these tumors. The objective of the present study was to determine if the knockdown of MIAT in fibroid xenografts will increase miR-29 levels and reduce the expression of genes targeted by this miRNA such as collagen and cell cycle regulatory proteins in a mouse model for fibroids. Ovariectomized CB-17 SCID/Beige mice bearing estrogen/progesterone pellets were implanted subcutaneously in the flank with equal weight of fibroid explants which had been transduced by lentivirus for either control (empty vector) or MIAT knockdown for four weeks (n=7). Knockdown of MIAT in fibroid xenografts resulted in a 30% reduction of tumor weight and a marked increase in miR-29a, -b, and -c levels in the xenografts. There was reduced cell proliferation and expression of cell cycle regulatory genes CCND1, CDK2, and E2F1 and no significant changes in apoptosis. The xenografts with MIAT knockdown expressed lower mRNA and protein levels of FN1, COL3A1, and TGF-ß3, and total collagen protein. Targeting MIAT, which sponges the pro-fibrotic miR-29 family, is an effective therapy for fibroids by reducing cell proliferation and thereby, tumor growth and accumulation of ECM, which is a hallmark of these benign gynecologic tumors.


Subject(s)
Cell Proliferation , Leiomyoma , MicroRNAs , RNA, Long Noncoding , Animals , Leiomyoma/genetics , Leiomyoma/therapy , Leiomyoma/metabolism , Leiomyoma/pathology , Female , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Uterine Neoplasms/genetics , Uterine Neoplasms/therapy , Uterine Neoplasms/pathology , Uterine Neoplasms/metabolism , Mice, SCID , Gene Expression Regulation, Neoplastic , Disease Models, Animal , Mice , Gene Knockdown Techniques , Xenograft Model Antitumor Assays , Apoptosis
5.
Clinics (Sao Paulo) ; 79: 100350, 2024.
Article in English | MEDLINE | ID: mdl-38636197

ABSTRACT

OBJECTIVE: The present study aimed to investigate FOXO3a deregulation in Uterine Smooth Muscle Tumors (USMT) and its potential association with cancer development and prognosis. METHODS: The authors analyzed gene and protein expression profiles of FOXO3a in 56 uterine Leiomyosarcomas (LMS), 119 leiomyomas (comprising conventional and unusual leiomyomas), and 20 Myometrium (MM) samples. The authors used techniques such as Immunohistochemistry (IHC), FISH/CISH, and qRT-PCR for the present analyses. Additionally, the authors conducted an in-silico analysis to understand the interaction network involving FOXO3a and its correlated genes. RESULTS: This investigation revealed distinct expression patterns of the FOXO3a gene and protein, including both normal and phosphorylated forms. Expression levels were notably elevated in LMS, and Unusual Leiomyomas (ULM) compared to conventional Leiomyomas (LM) and Myometrium (MM) samples. This upregulation was significantly associated with metastasis and Overall Survival (OS) in LMS patients. Intriguingly, FOXO3a deregulation did not seem to be influenced by EGF/HER-2 signaling, as there were minimal levels of EGF and VEGF expression detected, and HER-2 and EGFR were negative in the analyzed samples. In the examination of miRNAs, the authors observed upregulation of miR-96-5p and miR-155-5p, which are known negative regulators of FOXO3a, in LMS samples. Conversely, the tumor suppressor miR-let7c-5p was downregulated. CONCLUSIONS: In summary, the outcomes of the present study suggest that the imbalance in FOXO3a within Uterine Smooth Muscle Tumors might arise from both protein phosphorylation and miRNA activity. FOXO3a could emerge as a promising therapeutic target for individuals with Unusual Leiomyomas and Leiomyosarcomas (ULM and LMS), offering novel directions for treatment strategies.


Subject(s)
Forkhead Box Protein O3 , Leiomyoma , Uterine Neoplasms , Humans , Female , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology , Uterine Neoplasms/metabolism , Middle Aged , Leiomyoma/genetics , Leiomyoma/pathology , Leiomyoma/metabolism , Adult , Immunohistochemistry , Gene Expression Regulation, Neoplastic/genetics , Leiomyosarcoma/genetics , Leiomyosarcoma/pathology , Leiomyosarcoma/metabolism , Smooth Muscle Tumor/genetics , Smooth Muscle Tumor/pathology , Smooth Muscle Tumor/metabolism , Up-Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Prognosis , Aged , Myometrium/metabolism , Myometrium/pathology
6.
Ageing Res Rev ; 97: 102314, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670462

ABSTRACT

Uterine fibroids (or uterine leiomyoma, UFs) are one of the most prevalent benign uterine tumors with high proliferation and collagen synthesis capabilities. UFs are a significant worldwide health issue for women, affecting their physical and financial well-being. Risk factors for UFs include age, racial disparities, obesity, uterine infections, hormonal variation, and lifestyle (i.e., diet, exercise, stress, and smoking). Senescence and its associated secretory phenotypes (SASPs) are among the most salient changes accompanying the aging process. As a result, SASPs are suggested to be one of the major contributors to developing UFs. Interleukin 6 (IL-6), IL-8, IL-1, chemokine ligand 20 (CCL-20), and transforming growth factor-beta (TGF-ß) are the most prominent SASPs associated with aging. In addition, different processes contribute to UFs such as collagen deposition and the changes in the immune microenvironment. Programmed death ligand 1 is a major player in the tumor immune microenvironment, which helps tumor cells evade immune attacks. This review focuses on the correlation of SASPs on two axes of tumor progression: immune suppression and collagen deposition. This review opens the door towards more investigations regarding changes in the UF immune microenvironment and age-UFs correlation and thus, a novel targeting approach for UF treatment.


Subject(s)
B7-H1 Antigen , Collagen , Leiomyoma , Senescence-Associated Secretory Phenotype , Humans , Female , Leiomyoma/metabolism , Leiomyoma/genetics , Leiomyoma/pathology , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Collagen/metabolism , Collagen/genetics , Uterine Neoplasms/metabolism , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology , Aging/metabolism , Aging/immunology , Cellular Senescence , Tumor Microenvironment/immunology
7.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119721, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580088

ABSTRACT

Metabolic reprogramming is considered as a hallmark of cancer and is clinically exploited as a novel target for therapy. The E2F transcription factor-1 (E2F1) regulates various cellular processes, including proliferative and metabolic pathways, and acts, depending on the cellular and molecular context, as an oncogene or tumor suppressor. The latter is evident by the observation that E2f1-knockout mice develop spontaneous tumors, including uterine sarcomas. This dual role warrants a detailed investigation of how E2F1 loss impacts metabolic pathways related to cancer progression. Our data indicate that E2F1 binds to the promoter of several glutamine metabolism-related genes. Interestingly, the expression of genes in the glutamine metabolic pathway were increased in mouse embryonic fibroblasts (MEFs) lacking E2F1. In addition, we confirm that E2f1-/- MEFs are more efficient in metabolizing glutamine and producing glutamine-derived precursors for proliferation. Mechanistically, we observe a co-occupancy of E2F1 and MYC on glutamine metabolic promoters, increased MYC binding after E2F1 depletion and that silencing of MYC decreased the expression of glutamine-related genes in E2f1-/- MEFs. Analyses of transcriptomic profiles in 29 different human cancers identified uterine sarcoma that showed a negative correlation between E2F1 and glutamine metabolic genes. CRISPR/Cas9 knockout of E2F1 in the uterine sarcoma cell line SK-UT-1 confirmed elevated glutamine metabolic gene expression, increased proliferation and increased MYC binding to glutamine-related promoters upon E2F1 loss. Together, our data suggest a crucial role of E2F1 in energy metabolism and metabolic adaptation in uterine sarcoma cells.


Subject(s)
E2F1 Transcription Factor , Fibroblasts , Gene Expression Regulation, Neoplastic , Glutamine , Uterine Neoplasms , Animals , E2F1 Transcription Factor/metabolism , E2F1 Transcription Factor/genetics , Glutamine/metabolism , Mice , Female , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology , Fibroblasts/metabolism , Humans , Sarcoma/genetics , Sarcoma/metabolism , Sarcoma/pathology , Mice, Knockout , Cell Line, Tumor , Cell Proliferation , Promoter Regions, Genetic
8.
Br J Cancer ; 130(9): 1463-1476, 2024 May.
Article in English | MEDLINE | ID: mdl-38438589

ABSTRACT

BACKGROUND: Uterine serous cancer (USC) comprises around 10% of all uterine cancers. However, USC accounts for approximately 40% of uterine cancer deaths, which is attributed to tumor aggressiveness and limited effective treatment. Galectin 3 (Gal3) has been implicated in promoting aggressive features in some malignancies. However, Gal3's role in promoting USC pathology is lacking. METHODS: We explored the relationship between LGALS3 levels and prognosis in USC patients using TCGA database, and examined the association between Gal3 levels in primary USC tumors and clinical-pathological features. CRISPR/Cas9-mediated Gal3-knockout (KO) and GB1107, inhibitor of Gal3, were employed to evaluate Gal3's impact on cell function. RESULTS: TCGA analysis revealed a worse prognosis for USC patients with high LGALS3. Patients with no-to-low Gal3 expression in primary tumors exhibited reduced clinical-pathological tumor progression. Gal3-KO and GB1107 reduced cell proliferation, stemness, adhesion, migration, and or invasion properties of USC lines. Furthermore, Gal3-positive conditioned media (CM) stimulated vascular tubal formation and branching and transition of fibroblast to cancer-associated fibroblast compared to Gal3-negative CM. Xenograft models emphasized the significance of Gal3 loss with fewer and smaller tumors compared to controls. Moreover, GB1107 impeded the growth of USC patient-derived organoids. CONCLUSION: These findings suggest inhibiting Gal3 may benefit USC patients.


Subject(s)
Blood Proteins , Cystadenocarcinoma, Serous , Galectin 3 , Uterine Neoplasms , Humans , Female , Uterine Neoplasms/pathology , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Cell Proliferation , Cell Line, Tumor , Prognosis , Animals , Mice , Galectins/genetics , Galectins/metabolism , Cell Movement
9.
Gynecol Oncol ; 183: 93-102, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38555710

ABSTRACT

OBJECTIVE: Uterine serous carcinoma is a highly aggressive non-endometrioid subtype of endometrial cancer with poor survival rates overall, creating a strong need for new therapeutic strategies to improve outcomes. High-dose ascorbate (vitamin C) has been shown to inhibit cell proliferation and tumor growth in multiple preclinical models and has shown promising anti-tumor activity in combination with chemotherapy, with a favorable safety profile. We aimed to study the anti-tumor effects of ascorbate and its synergistic effect with carboplatin on uterine serous carcinoma cells. METHODS: Cell proliferation was evaluated by MTT and colony formation assays in ARK1, ARK2 and SPEC2 cells. Cellular stress, antioxidant ability, cleaved caspase 3 activity and adhesion were measured by ELISA assays. Cell cycle was detected by Cellometer. Invasion was measured using a wound healing assay. Changes in protein expression were determined by Western immunoblotting. RESULTS: High-dose ascorbate significantly inhibited cell proliferation, caused cell cycle arrest, induced cellular stress, and apoptosis, increased DNA damage, and suppressed cell invasion in ARK1 and SPEC2 cells. Treatment of both cells with 1 mM N-acetylcysteine reversed ascorbate-induced apoptosis and inhibition of cell proliferation. The combination of ascorbate and carboplatin produced significant synergistic effects in inhibiting cell proliferation and invasion, inducing cellular stress, causing DNA damage, and enhancing cleaved caspase 3 levels compared to each compound alone in both cells. CONCLUSIONS: Ascorbate has potent antitumor activity and acts synergistically with carboplatin through its pro-oxidant effects. Clinical trials of ascorbate combined with carboplatin as adjuvant treatment of uterine serous carcinoma are worth exploring.


Subject(s)
Apoptosis , Ascorbic Acid , Carboplatin , Cystadenocarcinoma, Serous , Drug Synergism , Uterine Neoplasms , Ascorbic Acid/pharmacology , Ascorbic Acid/administration & dosage , Humans , Carboplatin/pharmacology , Carboplatin/administration & dosage , Female , Cell Line, Tumor , Uterine Neoplasms/drug therapy , Uterine Neoplasms/pathology , Uterine Neoplasms/metabolism , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Reactive Oxygen Species/metabolism , DNA Damage/drug effects , Antioxidants/pharmacology , Antioxidants/administration & dosage
10.
Reprod Sci ; 31(6): 1651-1661, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38379067

ABSTRACT

Uterine leiomyomas (fibroids) are the most common non-cancerous tumors affecting women. Psychosocial stress is associated with fibroid risk and severity. The relationship between psychosocial stress and fibroid pathogenesis may involve alterations in microRNAs (miRNAs) although this has yet to be examined. We investigated associations between two psychosocial stress measures, a composite measure of recent stressful life events and perceived social status, with expression levels of 401 miRNAs in myometrium (n = 20) and fibroids (n = 44; 20 with paired fibroid and myometrium samples) among pre-menopausal women who underwent surgery for fibroid treatment. We used linear regressions to identify psychosocial stressors associated with miRNAs, adjusting for covariates (age, body mass index, race/ethnicity, and oral contraceptive use). The association between psychosocial stressors and miRNAs was considered statistically significant at an FDR p < 0.10 and showed a monotonic response (nominal p-trend < 0.05). In the myometrium, 21 miRNAs were significantly associated with a composite measure of recent stressful events, and two miRNAs were associated with perceived social status. No fibroid miRNAs were associated with either stress measure. Pathway analyses revealed miRNA-mRNA targets were significantly enriched (FDR p < 0.05) in pathways relevant to cancer/tumor development. Of the 74 differentially expressed miRNAs between myometrium and fibroids, miR-27a-5p and miR-301b were also associated with stress exposure. Our pilot analysis suggests that psychosocial stress is associated with myometrial miRNA expression and, thus, may have a role in the pathogenesis of fibroids from healthy myometrium.


Subject(s)
Leiomyoma , MicroRNAs , Myometrium , Stress, Psychological , Uterine Neoplasms , Humans , Female , Leiomyoma/surgery , Leiomyoma/metabolism , Leiomyoma/genetics , Leiomyoma/psychology , MicroRNAs/metabolism , MicroRNAs/genetics , Myometrium/metabolism , Stress, Psychological/metabolism , Stress, Psychological/genetics , Adult , Uterine Neoplasms/surgery , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Uterine Neoplasms/psychology , Middle Aged
11.
Mol Hum Reprod ; 30(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38290796

ABSTRACT

Uterine leiomyoma (LM), also known as uterine fibroids, are common gynecological tumors and can reach a prevalence of 70% among women by the age of 50 years. Notably, the LM burden is much higher in Black women with earlier onset, a greater tumor number, size, and severity compared to White women. Published knowledge shows that there are genetic, environmental, and lifestyle-based risk factors associated with racial disparity for LM. Significant strides have been made on genomic, epigenomic, and transcriptomic data levels in Black and White women to elucidate the underlying pathomolecular reasons of racial disparity in LM development. However, racial disparity of LM remains a major area of concern in gynecological research. This review highlights risk factors of LM and their role in different races. Furthermore, we discuss the genetics and uterine myometrial microenvironment in LM development. Comparative findings revealed that a major racial difference in the disease is linked to myometrial oxidative burden and altered ROS pathways which is relevant to the oxidized guanine in genomic DNA and MED12 mutations that drive the LM genesis. Considering the burden and morbidity of LM, we anticipate that this review on genetic risk and myometrial microenvironment will strengthen understanding and propel the growth of research to address the racial disparity of LM burden.


Subject(s)
Leiomyoma , Uterine Neoplasms , Female , Humans , Middle Aged , Black or African American , Gene Expression Profiling , Leiomyoma/genetics , Leiomyoma/metabolism , Myometrium/metabolism , Tumor Microenvironment , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Uterus/metabolism , White
12.
Adv Med Sci ; 69(1): 21-28, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278085

ABSTRACT

Uterine leiomyomas (ULs) are the most common benign smooth muscle cell steroid-dependent tumors that occur in women of reproductive age. Progesterone (P4) is a major hormone that promotes the ULs development and growth. P4 action in ULs is mediated mainly by its nuclear progesterone receptors (PGRs), although rapid non-genomic responses have also been observed. Data on the membrane progesterone receptors (mPRs) regulated signaling pathways in ULs in the available literature is still very limited. One of the essential characteristics of ULs is the excessive production of extracellular matrix (ECM). P4 has been shown to stimulate ECM production and collagen synthesis in ULs. Recent research demonstrated that, despite their benign nature, ULs may present with abnormal vasculature. P4 has been shown to regulate angiogenesis in ULs through the upregulation of vascular endothelial growth factor (VEGF) and by controlling the secretion of permeability factors. This review summarizes the key findings regarding the role of PGRs and mPRs in ULs, especially highlighting the potential ECM and angiogenesis modulation by P4. An increased understanding of this mechanistic role of nuclear and specifically mPRs in the biology of P4-modulated ECM and angiogenesis in the growth of ULs could turn out to be fundamental for developing effective targeted therapies for ULs.


Subject(s)
Leiomyoma , Progesterone , Receptors, Progesterone , Signal Transduction , Uterine Neoplasms , Humans , Leiomyoma/metabolism , Leiomyoma/pathology , Progesterone/metabolism , Female , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology , Uterine Neoplasms/drug therapy , Receptors, Progesterone/metabolism , Extracellular Matrix/metabolism , Molecular Targeted Therapy
13.
Clin. transl. oncol. (Print) ; 26(1): 245-259, jan. 2024.
Article in English | IBECS | ID: ibc-229163

ABSTRACT

Purpose A substantial amount of evidence demonstrates suggests that long non-coding RNAs (lncRNAs) play a key role in the progression of various malignancies, cervical squamous cell carcinoma (CSCC) included. In our study, we deeply investigated the role and molecular mechanism of lncRNA NPHS2-6 in CSCC. Methods The expression level of gene and protein expression were measured by qRT-PCR and western blot. To test the cell proliferation and cell metastasis ability, we carried out the CCK-8 experiment, clone formation assay, transwell assay and wound healing, respectively. The interactivity among NPHS2-6, miR-1323 and SMC1B were co demonstrated using the bioinformatics tool, dual-luciferase reporter system, and RNA pulldown assay. The subcutaneous tumor model of nude mice was established to verify the results of previous studies at the in vivo. NPHS2-6 was upregulated in CSCC tissues and cells. Results NPHS2-6 deficiency significantly inhibited CSCC cell growth and EMT in vitro. In addition, NPHS2-6 deficiency also inhibited the growth of CSCC xenograft tumors in mice in vivo. Importantly, NPHS2-6 was a competing endogenous RNA (ceRNA) to increases SMC1B levels by binding to miR-1323, leading to activate the PI3K/Akt pathway, thereby exacerbating tumorigenesis of CSCC. Conclusions In conclusion, NPHS2-6/miR-1323/SMC1B/PI3K/Akt signaling accelerates the progression of CSCC, providing a new direction for the treatment strategy of CSCC (AU)


Subject(s)
Animals , Female , Mice , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
14.
Int J Mol Sci ; 25(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38279317

ABSTRACT

The objective of this study was to elucidate the expression of long non-coding RNA (lncRNA) in leiomyomas (Lyo) and paired myometrium (Myo) and explore the impact of race and MED12 mutation. Fold change analysis (Lyo/paired Myo) indicated the expression of 63 lncRNAs was significantly altered in the mutated group but not in the non-mutated Lyo. Additionally, 65 lncRNAs exhibited an over 1.5-fold change in the Black but not the White group. Fifteen differentially expressed lncRNAs identified with next-generation sequencing underwent qRT-PCR confirmation. Compared with Myo, the expression of TPTEP1, PART1, RPS10P7, MSC-AS1, SNHG12, CA3-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433, and LINC02624 was significantly higher, while the expression of ZEB2-AS1, LINC00957, and LINC01186 was significantly lower. Comparison of normal Myo with diseased Myo showed significant differences in the expression of several lncRNAs. Analysis based on race and Lyo MED12 mutation status indicated a significantly higher expression of RPS10P7, SNHG12, LINC01449, LINC02433, and LINC02624 in Lyo from Black patients. The expression of TPTEP1, PART1, RPS10P7, MSC-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433, and LINC02624 was higher, while LINC01186 was significantly lower in the MED12-mutated group. These results indicate that Lyo are characterized by aberrant lncRNA expression, which is further impacted by race and Lyo MED12 mutation status.


Subject(s)
Leiomyoma , Mediator Complex , RNA, Long Noncoding , Uterine Neoplasms , Female , Humans , Ethnicity , Leiomyoma/genetics , Leiomyoma/metabolism , Mediator Complex/genetics , Mediator Complex/metabolism , Mutation , Myometrium/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcription Factors/metabolism , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism
15.
F S Sci ; 5(1): 80-91, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38043603

ABSTRACT

OBJECTIVES: To assess the effect of simvastatin on uterine leiomyoma growth and extracellular matrix (ECM) deposition. DESIGN: Laboratory analysis of human leiomyoma cell culture, xenograft in a mouse model, and patient tissue from a clinical trial. SETTING: Academic research center. PATIENT(S): Tissue culture from human leiomyoma tissue and surgical leiomyoma tissue sections from a placebo-controlled randomized clinical trial. INTERVENTION(S): Simvastatin treatment. MAIN OUTCOME MEASURE(S): Serum concentrations, xenograft volumes, and protein expression. RESULTS: Mice xenografted with 3-dimensional human leiomyoma cultures were divided as follows: 7 untreated controls; 12 treated with activated simvastatin at 10 mg/kg body weight; and 15 at 20 mg/kg body weight. Simvastatin was detected in the serum of mice injected at the highest dose. Xenograft volumes were significantly smaller (mean 53% smaller at the highest concentration). There was dissolution of compact ECM, decreased ECM formation, and lower collagen protein expression in xenografts. Membrane type 1 matrix metalloproteinase was increased in vitro and in vivo. Matrix metalloproteinase 2 and low-density lipoprotein receptor-related protein 1 were increased in vitro. CONCLUSIONS: Simvastatin exhibited antitumoral activity with ECM degradation and decreased leiomyoma tumor volume in vivo. Activation of the matrix metalloproteinase 2, membrane type 1 matrix metalloproteinase, and low-density lipoprotein receptor-related protein 1 pathway may explain these findings.


Subject(s)
Leiomyoma , Uterine Neoplasms , Female , Humans , Mice , Animals , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/pharmacology , Simvastatin/pharmacology , Simvastatin/metabolism , Simvastatin/therapeutic use , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 14/pharmacology , Uterine Neoplasms/drug therapy , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology , Leiomyoma/drug therapy , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Body Weight , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Lipoproteins, LDL/therapeutic use
16.
Hum Fertil (Camb) ; 26(4): 712-719, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37815345

ABSTRACT

The effect of the intramural fibroids not distorting the cavity remains controversial on implantation and pregnancy. The aim of this study was to examine the impact of non-cavity distorting intramural fibroids on endometrium. Fifty-six women with non-cavity distorting intramural fibroid were recruited in this study. Paired endometrial specimens, one from beneath the fibroid (ipsilateral endometrium) and the other from the opposite side of uterine cavity, away from the fibroid (contralateral endometrium) were obtained 7-9 days after the luteinizing hormone surge in a natural cycle. Histological dating, Mucin1 and Glycodelin expression and uterine natural killer (uNK) cell density were compared between the paired samples. The median (IQR) H-score of Mucin1 staining in the ipsilateral luminal epithelium was 210% (142-230%), which was significantly (p < 0.05) higher than that of the contralateral luminal endometrium (157%, IQR 114-176%). There was no significant difference in Mucin1 expression in the glandular epithelium. There was no significant difference in Glycodelin expression in luminal and glandular epithelium, uNK cells density or histological dating results between the paired endometrial samples. In conclusion, it is uncertain whether the altered expression of Mucin1 in luminal epithelium alone may have impact on implantation when other markers are not changed.


Subject(s)
Leiomyoma , Uterine Neoplasms , Pregnancy , Female , Humans , Glycodelin/metabolism , Leiomyoma/metabolism , Leiomyoma/pathology , Embryo Implantation , Endometrium/metabolism , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology
17.
F S Sci ; 4(4): 327-338, 2023 11.
Article in English | MEDLINE | ID: mdl-37797815

ABSTRACT

OBJECTIVE: To determine whether cyclic strain affects fibroid cell cytoskeletal organization, proliferation, and collagen synthesis differently than myometrial cells. DESIGN: A basic science study using primary cultures of patient-matched myometrial and fibroid cells. SETTING: Academic laboratory. PATIENT(S): Premenopausal women undergoing myomectomy or hysterectomy for the treatment of symptomatic uterine fibroids. INTERVENTION(S): Application of uniaxial strain patterns mimicking periovulation, menses, or dysmenorrhea using the Flexcell tension system or static control. Secondarily, inhibition of G protein-coupled estrogen receptor-1 and phosphatidylinositol 3-kinase. MAIN OUTCOME MEASURE(S): Cell alignment, cell number, and collagen content. RESULT(S): Menses-strained cells demonstrated the most variation in cell alignment, cell proliferation, and procollagen content between myometrial and fibroid cells. Procollagen content decreased in myometrial cells with increasing strain amplitude and decreasing frequency. G protein-coupled estrogen receptor-1 inhibition decreases cellular alignment in the presence of strain. CONCLUSION(S): Mechanotransduction affecting cytoskeletal arrangement through the G protein-coupled estrogen receptor-1-phosphatidylinositol 3-kinase pathway is altered in fibroid cells. These results highlight the importance of incorporating mechanical stimulation into the in vitro study of fibroid pathology.


Subject(s)
Leiomyoma , Uterine Neoplasms , Humans , Female , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology , Uterine Neoplasms/therapy , Mechanotransduction, Cellular , Procollagen/metabolism , Receptors, Estrogen/metabolism , Collagen/metabolism , Phosphatidylinositol 3-Kinases , GTP-Binding Proteins/metabolism
18.
F S Sci ; 4(4): 341-349, 2023 11.
Article in English | MEDLINE | ID: mdl-37739343

ABSTRACT

OBJECTIVE: To investigate the combined effects of Crila and green tea extract, epigallocatechin gallate (EGCG), compared with single treatments, on human uterine fibroid cells. DESIGN: Human uterine leiomyoma (HuLM) cells were treated with different concentrations of Crila, alone or in combination with EGCG, and several experiments were employed. SETTING: A laboratory study. PATIENTSS: N/A. INTERVENTIONS: Crila, EGCG. MAIN OUTCOME MEASURES: Cell proliferation assay, drug synergy using combination index, protein and gene expression analysis of proliferation marker proliferating cell nuclear antigen, and apoptosis marker BAX using western blotting and quantitative polymerase chain reaction, respectively. RESULTS: Results showed that tested Crila concentrations, when combined with 25 and 50 µM EGCG, exerted synergistic growth inhibitory effects on HuLM viability. This inhibitory effect on HuLM cell viability was because of decreased cell proliferation, as shown by a decrease in the proliferation marker proliferating cell nuclear antigen at messenger RNA and protein levels, rather than inducing apoptosis. CONCLUSION: Our study concludes that the utility of natural compounds may provide a safe and cost-effective alternative to currently used short-term hormonal therapies against uterine fibroids.


Subject(s)
Leiomyoma , Uterine Neoplasms , Female , Humans , Proliferating Cell Nuclear Antigen/analysis , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/therapeutic use , Uterine Neoplasms/drug therapy , Uterine Neoplasms/metabolism , Cell Line, Tumor , Leiomyoma/drug therapy
19.
J Mol Endocrinol ; 71(4)2023 11 01.
Article in English | MEDLINE | ID: mdl-37668348

ABSTRACT

Abstract: Uterine fibroids (UFs) are benign tumors arising from the uterus, characterized by accumulation of abundant extracellular matrix (ECM) and sex steroid-dependent growth. Women with symptomatic UFs have reduced quality of life and decreased labor productivity. Among the driver gene mutations identified in UFs, mutations in MED12, a component of the cyclin-dependent kinase (CDK) Mediator module, are the most common and observed in 50-80% of UFs. They are gain-of-function mutations and are more frequently observed in Black women and commonly observed even in small UFs. MED12 mutation-positive UFs (MED12-UFs) often develop multiple rather than solitary and have distinct gene expression profiles, DNA methylomes, transcriptomes, and proteomes. Gene expressions related to ECM organization and collagen-rich ECM components are upregulated, and impaired Mediator kinase activity and dysregulation of Wnt/ß-catenin signaling are identified in MED12-UFs. Clinically, the UF shrinking effect of gonadotropin-releasing hormone agonists and ulipristal acetate is dependent on the MED12 mutation status. Understanding of characteristics of MED12-UFs and functions of MED12 mutations for UF tumorigenesis may elucidate the pathophysiology of UFs, leading to the development of new therapeutic options in women with symptomatic UFs.


Subject(s)
Leiomyoma , Uterine Neoplasms , Female , Humans , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology , Quality of Life , Mediator Complex/genetics , Mediator Complex/metabolism , Leiomyoma/genetics , Leiomyoma/metabolism , Leiomyoma/pathology , Transcription Factors/metabolism , Mutation
20.
Nutrients ; 15(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37299521

ABSTRACT

Leiomyosarcoma is an aggressive soft tissue sarcoma derived from the smooth muscle cells of the uterus. We tested the effect of Romina strawberry extract treatment on three-dimensional cultured uterine leiomyosarcoma cells. We established 3D cultures in agarose gel, where the cells seeded were able to form spheroids. We performed the observation and counting of the spheroids with a phase-contrast optical microscope, finding a decrease in the number of spheroids formed in the plates after 24 and 48 h treatment with 250 µg/mL of cultivar Romina strawberry extract. We also characterized the spheroids morphology by DNA binding fluorescent-stain observation, hematoxylin and eosin stain, and Masson's trichrome stain. Finally, the real-time PCR showed a reduced expression of extracellular matrix genes after strawberry treatment. Overall, our data suggest that the fruit extract of this strawberry cultivar may be a useful therapeutic adjuvant for the management of uterine leiomyosarcoma.


Subject(s)
Fragaria , Leiomyosarcoma , Sarcoma , Uterine Neoplasms , Humans , Female , Leiomyosarcoma/drug therapy , Leiomyosarcoma/metabolism , Fragaria/chemistry , Uterine Neoplasms/drug therapy , Uterine Neoplasms/metabolism , Myocytes, Smooth Muscle/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...