Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 756
Filter
1.
BMC Pregnancy Childbirth ; 24(1): 427, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877443

ABSTRACT

OBJECTIVE: The vaginal microbiota dysbiosis induces inflammation in the uterus that triggers tissue damage and is associated with preterm birth. Progesterone is used to prevent labor in pregnant women at risk of preterm birth. However, the mechanism of action of progesterone still needs to be clarified. We aimed to show the immunomodulatory effect of progesterone on the inflammation of uterine tissue triggered by dysbiotic vaginal microbiota in a pregnant mouse model. METHODS: Healthy (n = 6) and dysbiotic (n = 7) vaginal microbiota samples isolated from pregnant women were transferred to control (n = 10) and dysbiotic (n = 14) pregnant mouse groups. The dysbiotic microbiota transferred group was treated with 1 mg progesterone (n = 7). Flow cytometry and immunohistochemistry analyses were used to evaluate inflammatory processes. Vaginal microbiota samples were analyzed by 16 S rRNA sequencing. RESULTS: Vaginal exposure to dysbiotic microbiota resulted in macrophage accumulation in the uterus and cellular damage in the placenta. Even though TNF and IL-6 elevations were not significant after dysbiotic microbiota transplantation, progesterone treatment decreased TNF and IL-6 expressions from 49.085 to 31.274% (p = 0.0313) and 29.279-21.216% (p = 0.0167), respectively. Besides, the macrophage density in the uterus was reduced, and less cellular damage in the placenta was observed. CONCLUSION: Analyzing the vaginal microbiota before or during pregnancy may support the decision for initiation of progesterone therapy. Our results also guide the development of new strategies for preventing preterm birth.


Subject(s)
Dysbiosis , Microbiota , Placenta , Progesterone , Uterus , Vagina , Female , Pregnancy , Vagina/microbiology , Vagina/pathology , Placenta/microbiology , Mice , Humans , Animals , Uterus/microbiology , Uterus/pathology , Microbiota/drug effects , Premature Birth/prevention & control , Premature Birth/microbiology , Disease Models, Animal , Progestins/therapeutic use , Progestins/pharmacology
2.
Theriogenology ; 223: 115-121, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38714077

ABSTRACT

The Metrisor device has been developed using gas sensors for rapid, highly accurate and effective diagnosis of metritis. 513 cattle uteri were collected from abattoirs and swabs were taken for microbiological testing. The Metrisor device was used to measure intrauterine gases. The results showed a bacterial growth rate of 75.75 % in uteri with clinical metritis. In uteri positive for clinical metritis, the most commonly isolated and identified bacteria were Trueperella pyogenes, Fusobacterium necrophorum and Escherichia coli. Measurements taken with Metrisor to determine the presence of metritis in the uterus yielded the most successful results in evaluations of relevant machine learning algorithms. The ICO (Iterative Classifier Optimizer) algorithm achieved 71.22 % accuracy, 64.40 % precision and 71.20 % recall. Experiments were conducted to examine bacterial growth in the uterus and the random forest algorithm produced the most successful results with accuracy, precision and recall values of 78.16 %, 75.30 % and 78.20 % respectively. ICO also showed high performance in experiments to determine bacterial growth in metritis-positive uteri, with accuracy, precision and recall values of 78.97 %, 77.20 % and 79.00 %, respectively. In conclusion, the Metrisor device demonstrated high accuracy in detecting metritis and bacterial growth in uteri and could identify bacteria such as E. coli, S. aureus, coagulase-negative staphylococci, T. pyogenes, Bacillus spp., Clostridium spp. and F. necrophorum with rates up to 80 %. It provides a reliable, rapid and effective means of detecting metritis in animals in the field without the need for laboratory facilities.


Subject(s)
Cattle Diseases , Endometritis , Machine Learning , Animals , Cattle , Female , Cattle Diseases/diagnosis , Cattle Diseases/microbiology , Endometritis/veterinary , Endometritis/diagnosis , Endometritis/microbiology , Uterus/microbiology
3.
Sci Rep ; 14(1): 11864, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789554

ABSTRACT

Objectives were to assess differences in uterine microbiome associated with clinical cure and pregnancy outcomes in dairy cows treated for metritis. Cows with metritis (reddish-brownish, watery, and fetid vaginal discharge) were paired with cows without metritis based on parity and days postpartum. Uterine contents were collected through transcervical lavage at diagnosis, five days later following antimicrobial therapy (day 5), and at 40 days postpartum. Uterine microbiome was assessed by sequencing the V4 hypervariable region of the 16S rRNA gene. Although alpha-diversity based on Chao1, Shannon, and inverse Simpson indexes at diagnosis did not differ between cows with and without metritis, disease was associated with differences in beta-diversity. Prevalence of Porphyromonas, Bacteroides, and Veillonella was greater in cows with metritis. Streptococcus, Sphingomonas, and Ureaplasma were more prevalent in cows without metritis. Differences in beta-diversity between cows with and without metritis persisted on day 5. Uterine microbiome was not associated with clinical cure. Richness and alpha-diversity, but not beta-diversity, of uterine microbiome 40 days postpartum were associated with metritis and pregnancy. No relationship between uterine microbiome and pregnancy outcomes was observed. Results indicate that factors other than changes in intrauterine bacterial community underlie fertility loss and clinical cure in cows with metritis.


Subject(s)
Cattle Diseases , Endometritis , Microbiota , Pregnancy Outcome , RNA, Ribosomal, 16S , Uterus , Female , Animals , Cattle , Pregnancy , Uterus/microbiology , Endometritis/microbiology , Endometritis/veterinary , Endometritis/drug therapy , Cattle Diseases/microbiology , Cattle Diseases/therapy , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
4.
mBio ; 15(6): e0102724, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38742889

ABSTRACT

Escherichia coli has been attributed to playing a major role in a cascade of events that affect the prevalence and severity of uterine disease in cattle. The objectives of this project were to (i) define the association between the prevalence of specific antimicrobial resistance and virulence factor genes in E. coli with the clinical status related to uterine infection, (ii) identify the genetic relationship between E. coli isolates from cows with diarrhea, with mastitis, and with and without metritis, and (iii) determine the association between the phenotypic and genotypic antimicrobial resistance identified on the E. coli isolated from postpartum cattle. Bacterial isolates (n = 148) were obtained from a larger cross-sectional study. Cows were categorized into one of three clinical groups before enrollment: metritis, cows with purulent discharge, and control cows. For genomic comparison, public genomes (n = 130) from cows with diarrhea, mastitis, and metritis were included in a genome-wide association study, to evaluate differences between the drug classes or the virulence factor category among clinical groups. A distinct E. coli genotype associated with metritis could not be identified. Instead, a high genetic diversity among the isolates from uterine sources was present. A virulence factor previously associated with metritis (fimH) using PCR was not associated with metritis. There was moderate accuracy for whole-genome sequencing to predict phenotypic resistance, which varied depending on the antimicrobial tested. Findings from this study contradict the traditional pathotype classification and the unique intrauterine E. coli genotype associated with metritis in dairy cows.IMPORTANCEMetritis is a common infectious disease in dairy cattle and the second most common reason for treating a cow with antimicrobials. The pathophysiology of the disease is complex and is not completely understood. Specific endometrial pathogenic Escherichia coli have been reported to be adapted to the endometrium and sometimes lead to uterine disease. Unfortunately, the specific genomic details of the endometrial-adapted isolates have not been investigated using enough genomes to represent the genomic diversity of this organism to identify specific virulence genes that are consistently associated with disease development and severity. Results from this study provide key microbial ecological advances by elucidating and challenging accepted concepts for the role of Intrauterine E. coli in metritis in dairy cattle, especially contradicting the existence of a unique intrauterine E. coli genotype associated with metritis in dairy cows, which was not found in our study.


Subject(s)
Cattle Diseases , Escherichia coli Infections , Escherichia coli , Genotype , Postpartum Period , Virulence Factors , Cattle , Animals , Female , Virulence Factors/genetics , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli/isolation & purification , Escherichia coli/classification , Cattle Diseases/microbiology , Cross-Sectional Studies , Whole Genome Sequencing , Uterine Diseases/microbiology , Uterine Diseases/veterinary , Uterine Diseases/genetics , Genome, Bacterial , Uterus/microbiology , Anti-Bacterial Agents/pharmacology , Genome-Wide Association Study , Drug Resistance, Bacterial/genetics
5.
Reprod Domest Anim ; 59(5): e14615, 2024 May.
Article in English | MEDLINE | ID: mdl-38798181

ABSTRACT

Present study was designed to evaluate the role of virulence factor genes (papG, cnf1 and hylA) in the pathogenesis of canine pyometra. Antimicrobial susceptibility test and detection of virulence genes were performed Escherichia coli (E. coli) detected in uterine swab samples. Animals were divided into two groups based on the presence (VF+, n:14) or absence (VF-, n:7) of the virulence factor genes papG, cnf1 and hylA. Blood and tissue glutathione peroxidase activity, uterine histopathologic analysis and AQP3, ESR1, PGR, OXTR gene expressions were determined in both groups. Statistical analyses were performed using Stata version 15.1. All E. coli isolates were susceptible to amikacin, whereas resistant to ampicillin, amoxicillin/clavulanic acid and lincomycin. None of the isolates were susceptible to cefotaxime. E. coli isolates had at least one virulence gene. The most prevalent gene was fimH (100%), followed by fyuA (95.8%), usp (83.3%), sfa (75%), cnf1 and hlyA (70.8%) genes. Blood GPx activity was greater in VF+ animals. On the other hand, uterine tissue GPx activity was lower in VF+ group compared to the control group. Expression levels of AQP3 were upregulated more than fivefold in VF-dogs compared to the control group. In addition, AQP3 expression levels were found approximately threefold higher in VF (-) than VF (+) group (p < .05). Varying degree of inflammation noted for all animals with pyometra, but the presence of bacteria noted only in VF+ animals. In conclusion, the presence of virulence factor genes does not play a role in the histopathological degree of inflammation, the presence of bacteria was found to vary. Serum GPx activity increased in VF+ animals. While the hormone receptor expressions were similar, AQP expression was upregulated in the absence of virulence factor genes.


Subject(s)
Aquaporin 3 , Dog Diseases , Escherichia coli , Glutathione Peroxidase , Pyometra , Uterus , Virulence Factors , Animals , Female , Virulence Factors/genetics , Virulence Factors/metabolism , Aquaporin 3/genetics , Aquaporin 3/metabolism , Dogs , Pyometra/veterinary , Pyometra/microbiology , Pyometra/pathology , Dog Diseases/microbiology , Uterus/pathology , Uterus/microbiology , Uterus/metabolism , Escherichia coli/genetics , Escherichia coli/pathogenicity , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Anti-Bacterial Agents/pharmacology , Down-Regulation , Microbial Sensitivity Tests/veterinary
6.
Placenta ; 152: 1-8, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729066

ABSTRACT

INTRODUCTION: The majority of unexplained recurrent pregnancy loss (URPL) cases have been attributed to immune abnormalities. Inappropriate changes in microbiota could lead to immune disorders. However, the specific role of uterine cavity microbiota in URPL remains unclear, and only a limited number of related studies are available for reference. METHODS: We utilized double-lumen embryo transfer tubes to collect uterine cavity fluid samples from pregnant women in their first trimester. Subsequently, we conducted 16S rRNA sequencing to analyze the composition and abundance of the microbiota in these samples. RESULTS: For this study, we enlisted 10 cases of URPL and 28 cases of induced miscarriages during early pregnancy. Microbial communities were detected in all samples of the URPL group (100 %, n = 10), whereas none were found in the control group (0 %, n = 28). Among the identified microbes, Lactobacillus and Curvibacter were the two most dominant species. The abundance of Curvibacter is correlated with the number of NK cells in peripheral blood (r = -0.759, P = 0.018). DISCUSSION: This study revealed that during early pregnancy, Lactobacillus and Curvibacter were the predominant colonizers in the uterine cavity of URPL patients and were associated with URPL. Consequently, alterations in the dominant microbiota may lead to adverse pregnancy outcomes.


Subject(s)
Abortion, Habitual , Microbiota , Uterus , Humans , Female , Pregnancy , Abortion, Habitual/microbiology , Adult , Uterus/microbiology , Pregnancy Trimester, First , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , Lactobacillus/isolation & purification , Case-Control Studies
7.
Res Vet Sci ; 173: 105242, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640833

ABSTRACT

Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) is a mucosal commensal of the lower genital tract in horses and is the most isolated bacterium causing endometritis in mares. The aim of this study was to determine the molecular diversity of S. zooepidemicus obtained from endometritis in mares in Buenos Aires province, Argentina. Thirty isolates obtained from the uterus of mares in 2005 and 2017 were studied. The MLST scheme was applied to identify the Argentinian genotypes and the clonal relationships and patterns of evolutionary descent were identified using the eBURST algorithm - goeBURST. Twenty six different Sequence types (STs) were identified, being only 11 of them previously reported in horses and also, from several host species and tissues. The other 15 STs were reported in Argentinian reproductive strains of mares in our study for the first time. The genotypes obtained from uterus in Argentina were not evenly distributed when all the published S. zooepidemicus STs were analysed, thus, it was not possible to establish that the same lineage circulates in our equine population. The fact that the identified genotypes were also reported in other countries, diverse samples and host species suggest that there is not a host, and an anatomical niche adaptation. Finally, the isolation of the same genotype in the vagina/clitoris and the uterus of the same mare highlights the versatility of S. zooepidemicus and its role as an opportunistic pathogen.


Subject(s)
Endometritis , Genotype , Horse Diseases , Streptococcal Infections , Animals , Horses/microbiology , Horse Diseases/microbiology , Female , Argentina , Endometritis/veterinary , Endometritis/microbiology , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology , Genetic Variation , Multilocus Sequence Typing/veterinary , Uterus/microbiology , Streptococcus/genetics , Streptococcus/isolation & purification , Streptococcus/classification , Streptococcus equi/genetics , Streptococcus equi/isolation & purification , Streptococcus equi/classification
8.
Microb Pathog ; 191: 106660, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657710

ABSTRACT

Endometritis is the inflammation of the endothelial lining of the uterine lumen and is multifactorial in etiology. Escherichia (E.) coli is a Gram-negative bacteria, generally considered as a primary causative agent for bovine endometritis. Bovine endometritis is characterized by the activation of Toll-like receptors (TLRs) by E. coli, which in turn triggers inflammation, oxidative stress, and apoptosis. The objective of this study was to investigate the gene expression of inflammatory, oxidative stress, and apoptotic markers related to endometritis in the uteri of cows. Twenty uterine tissues were collected from the abattoir. Histologically, congestion, edema, hyperemia, and hemorrhagic lesions with massive infiltration of neutrophil and cell necrosis were detected markedly (P < 0.05) in infected uterine samples. Additionally, we identify E. coli using the ybbW gene (177 base pairs; E. coli-specific gene) from infected uterine samples. Moreover, qPCR and western blot results indicated that TLR2, TLR4, proinflammatory mediators, and apoptosis-mediated genes upregulated except Bcl-2, which is antiapoptotic, and there were downregulations of oxidative stress-related genes in the infected uterine tissue. The results of our study suggested that different gene expression regimes related to the immune system reflex were activated in infected uteri. This research gives a novel understanding of active immunological response in bovine endometritis.


Subject(s)
Apoptosis , Cattle Diseases , Endometritis , Escherichia coli Infections , Escherichia coli , Oxidative Stress , Up-Regulation , Uterus , Cattle , Animals , Female , Endometritis/veterinary , Endometritis/microbiology , Endometritis/pathology , Endometritis/metabolism , Cattle Diseases/microbiology , Cattle Diseases/metabolism , Cattle Diseases/immunology , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/immunology , Escherichia coli Infections/pathology , Uterus/pathology , Uterus/microbiology , Uterus/metabolism , Inflammation , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Inflammation Mediators/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
9.
Sci Rep ; 14(1): 9511, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664449

ABSTRACT

It is important to study the bacteria that cause endometritis to identify effective therapeutic drugs for dairy cows. In this study, 20% oxytetracycline was used to treat Holstein cows (n = 6) with severe endometritis. Additional 10 Holstein cows (5 for healthy cows, 5 for cows with mild endometritis) were also selected. At the same time, changes in bacterial communities were monitored by high-throughput sequencing. The results show that Escherichia coli, Staphylococcus aureus and other common pathogenic bacteria could be detected by traditional methods in cows both with and without endometritis. However, 16S sequencing results show that changes in the abundance of these bacteria were not significant. Endometritis is often caused by mixed infections in the uterus. Oxytetracycline did not completely remove existing bacteria. However, oxytetracycline could effectively inhibit endometritis and had a significant inhibitory effect on the genera Bacteroides, Trueperella, Peptoniphilus, Parvimonas, Porphyromonas, and Fusobacterium but had no significant inhibitory effect on the bacterial genera Marinospirillum, Erysipelothrix, and Enteractinococcus. During oxytetracycline treatment, the cell motility, endocrine system, exogenous system, glycan biosynthesis and metabolism, lipid metabolism, metabolism of terpenoids, polyketides, cofactors and vitamins, signal transduction, and transport and catabolism pathways were affected.


Subject(s)
Anti-Bacterial Agents , Endometritis , Oxytetracycline , Uterus , Oxytetracycline/pharmacology , Oxytetracycline/therapeutic use , Animals , Female , Cattle , Endometritis/microbiology , Endometritis/veterinary , Endometritis/drug therapy , Uterus/microbiology , Uterus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/drug effects , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Cattle Diseases/microbiology , Cattle Diseases/drug therapy , RNA, Ribosomal, 16S/genetics , Microbiota/drug effects
10.
BMC Microbiol ; 24(1): 4, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172685

ABSTRACT

BACKGROUND: Uterine infections, primarily caused by bacterial pathogens, pose a significant problem for dairy farmers worldwide, leading to poor reproductive performance and economic losses. However, the bacteria responsible for uterine infections have not been adequately studied, nor has the antibiotic susceptibility of the causative bacteria been frequently tested in Ethiopia. This study aims to estimate the cumulative incidence of uterine infections in postpartum dairy cows, identify bacterial causes and determine antimicrobial susceptibility profile of the isolated bacteria. METHODS: A prospective cohort study was conducted in which 236 cows from 74 dairy farms were monitored biweekly from calving to 90 days postpartum for metritis, endometritis and other disorders. Aseptic uterine swab samples were collected from 40 cows with uterine infections. The samples were cultured, and the isolated bacteria were tested for antimicrobial susceptibility using the disk diffusion method. RESULTS: Out of 236 cows monitored during the postpartum phase, 45 (19.1%) were found to have contracted uterine infection. The cumulative incidence of metritis was 11.4% (n = 27), while the cumulative incidence of endometritis was 7.6% (n = 18). Of the 40 cultured swab samples, 29 (72.5%) had one or more bacteria isolated. The most commonly isolated bacteria were Escherichia coli (45%), coagulase-positive staphylococci (30%), and Klebsiella spp. (22.5%). Other bacterial spp, including Arcanobacterium pyogenes (12.5%), Fusobacterium spp. (12.5%), Enterobacter aerogenes (12.5%), coagulase-negative staphylococci (12.5%), Streptococcus spp. (7.5%), Salmonella spp, (5%) Proteus spp (5%) and Pasteurella spp (2.5%) were also isolated. All of the isolated bacteria demonstrated resistance to at least one of the antimicrobials tested. Multidrug resistance was observed in E. coli, Klebsiella spp., A. pyogenes, and Fusobacterium spp. Gentamicin was found to be the most effective antimicrobial against all bacteria tested, while tetracycline was the least effective of all. CONCLUSION: The study found that a significant proportion of cows in the population were affected by uterine infections and the isolated bacteria developed resistance to several antimicrobials. The study emphasizes the need for responsible use of antimicrobials to prevent the emergence of antimicrobial resistance. It also highlights the importance of raising awareness among dairy farmers to avoid the indiscriminate use of antibiotics and its consequences.


Subject(s)
Cattle Diseases , Endometritis , Humans , Female , Cattle , Animals , Endometritis/epidemiology , Endometritis/veterinary , Endometritis/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Incidence , Escherichia coli , Uterus/microbiology , Prospective Studies , Coagulase , Ethiopia/epidemiology , Cattle Diseases/microbiology , Drug Resistance, Bacterial , Bacteria , Postpartum Period
11.
Reproduction ; 167(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37903182

ABSTRACT

In brief: Opposing conclusions have been drawn regarding the presence of viable bacteria in the healthy pregnant uterus. Current evidence in humans and animals suggests that fetomaternal tissues present only traces of bacteria whose viability is still to be proven. Abstract: The debate about the pioneer colonization of the fetus is still open, being the 'in utero colonization' hypothesis versus the 'sterile womb paradigm' the two opposing sides. The seed in this field of research sprouted in human medicine in the last decade and became a central topic in other mammals as well. We aimed to review the literature on bacterial colonization of the healthy placenta, amniotic fluid, and meconium as representatives of the fetal environment. What emerges is that confirming the colonization of fetomaternal tissues by viable bacteria is challenging in humans as well as in animals. Contamination represents the major risk in this type of research as it can be related to different parts of the study design. Sampling at natural parturition or postpartum introduces risk for colonization by the vaginal microbiome of the mother or from the environment. Culture does not reveal the presence of unculturable microorganisms, and sequencing does not allow confirming bacterial viability, while also introducing the variability associated with the data analysis. Therefore, on the basis of the present review, we provide some guidelines on the best practices when performing this type of studies. What emerges from the current literature in humans and animals is that fetomaternal tissues are characterized by a very low biomass, that the viability of bacteria eventually present is still to be confirmed, while massive colonization happens at birth, priming the individual, regardless of the species.


Subject(s)
Infertility , Microbiota , Humans , Pregnancy , Infant, Newborn , Female , Animals , Uterus/microbiology , Placenta , Amniotic Fluid , Vagina , Bacteria , Mammals
12.
Sci Rep ; 13(1): 18768, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37907617

ABSTRACT

Bacterial communities in the mammalian reproductive system can be rich and diverse, differing in structure and quantity depending on location. In addition, its microbiome is associated with the state of health of this tract and reproductive success. This study evaluated the microbiome composition of the uterine body (UB) and uterine horn mucosa (UH) samples using 16S rRNA sequencing of samples extracted from cows in the Amazon region. It was observed that four main phyla were shared between the uterine sites: Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Linear discriminant analysis effect size and heat tree analysis showed that members of Lachnospiraceae (NK3A20 group) and Oscillospiraceae were significantly more abundant in the UB than in UH. In addition, there are more unique genera in the UB than in the UH. A higher bacterial load in UB than in UH is expected because of the exposure to external factors of UB. However, comparing the site's communities through beta diversity did not generate well-defined clustering. Thus, it can be attributed to the closeness of the sites, which would make the niches similar ecologically and microbiologically. Therefore, this research provides knowledge to understand biomarkers in the prior reproduction period.


Subject(s)
Microbiota , Female , Animals , Cattle , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , Microbiota/genetics , Uterus/microbiology , Bacteria/genetics , Firmicutes/genetics , Mammals/genetics
13.
J Equine Vet Sci ; 115: 104029, 2022 08.
Article in English | MEDLINE | ID: mdl-35659620

ABSTRACT

The United Arab Emirates (UAE) presents a unique environment in which to breed horses with a non-physiological breeding season coupled with high temperatures and humidity for much of the year. This study aimed to describe bacterial isolates from the uteri of mares in the UAE and compare them to those reported elsewhere in the world. Bacterial antibiotic resistance was also analyzed to give a starting point for future monitoring. A total of 2,022 swabs taken over five breeding seasons from the endometrium (n = 1,350) or from uterine lavages (n = 672) were submitted for microbiological culture and antibiotic sensitivity testing. At 48 hours post-inoculation 616 of 2,022 (30.5%) of cultures showed microbial growth from which 690 isolates were identified. Most positive plates (548 of 616; 89%) grew one isolate; 68 cultures had two (62 of 616; 10.1%) or three (6 of 616; 1%) isolates. The most frequently isolated bacteria were ß-hemolytic Streptococcus (36.5%; 252 of 690), E. coli (10.6%; 73 of 690), P. aeruginosa (10.1%; 70 of 690), K. pneumoniae (8.8%; 61 of 690) and Aeromonas hydrophila (4.1%; 28 of 690). The lowest level of antibiotic susceptibility for all isolates was shown by trimethoprim-sulphonamide (36.4%; 198 of 544), with amikacin showing the highest (76.1%; 271 of 356). A significant decrease in susceptibility to doxycycline, enrofloxacin, and erythromycin, but a significant increase for amoxicillin with clavulanic acid, was seen for ß-hemolytic Streptococcus. Decreasing susceptibility of trimethoprim-sulphonamide between two time periods was seen for E. coli. Compared to other studies UAE-based mares had a high incidence of P. aeruginosa and K. pneumoniae isolates, whereas E. coli was represented far less frequently as an isolate.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Animals , Anti-Bacterial Agents/pharmacology , Bacteria , Female , Horses , Klebsiella pneumoniae , Pseudomonas aeruginosa , Retrospective Studies , Sulfonamides , Trimethoprim , United Arab Emirates/epidemiology , Uterus/microbiology
14.
Reproduction ; 163(5): R81-R96, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35195535

ABSTRACT

Microbiome or microbiota is essential to regulate many mammalian physiological processes, including reproduction. Like other organs or tissues, the upper female reproductive tract used to be considered as devoid of microorganisms; however, a non-infection-related bacterial community was discovered in the uterus from humans and other mammals, and its composition is related to reproductive success. The dysbiosis of endometrial microbiota is associated with benign and malign uterine diseases. Hence, this review addressed the current knowledge about uterine microbiota alterations and their association with common endometrial diseases, including endometrial polyposis, endometriosis, uterine myomatosis, endometrial hyperplasia, and endometrial cancer. There is a specific bacterial community in the endometrium in the most-analyzed uterine diseases. However, the constant finding consists in a reduced abundance of Firmicutes and Lactobacillus, while there is an increased abundance of Proteobacteria (such as Escherichia coli and Enterococcus), Bacteroidetes (Prevotella, for example), and Actinobacteria (as Gardnerella), in contrast to healthy endometrium. Besides, we discussed the future usefulness of the endometrial microbiota components as biomarkers to diagnose uterine diseases and their probable clinical outcomes. In addition, we analyzed their potential use as probiotics since they could provide an alternative or complement to existing therapies.


Subject(s)
Endometriosis , Microbiota , Uterine Diseases , Animals , Endometrium/microbiology , Female , Humans , Mammals , Microbiota/physiology , Uterus/microbiology
15.
J Equine Vet Sci ; 112: 103913, 2022 05.
Article in English | MEDLINE | ID: mdl-35196546

ABSTRACT

Endometritis is a major cause of infertility and subfertility in the mare. Early diagnosis and identification of the pathogens involved in infectious endometritis are crucial to initiate correct treatments in time, in order to optimize fertility and reduce the risk of bacterial resistance development. In this retrospective study (from 2014 to 2018), 394 samples (uterine swabs and lavages) obtained from mares before breeding, regardless of clinical history of endometritis were analyzed. Our bacteriological procedure included the subculturing from the enrichment in Brain Heart Infusion Broth of the samples resulted negative after direct smearing. A total of 386 microorganisms were isolated from 230 positive samples (58%). At least one microorganism was isolated from 33% of the samples after direct smearing and from another 25% after enrichment. The results, obtained from both direct smearing and enrichment, also show a significative difference between positive uterine lavages (80%) and swabs (53%). The most frequently isolated bacteria were α-haemolytic Streptococcus (27%), Escherichia coli (27%), ß-haemolytic Streptococcus (26.1%) and Staphylococcus spp. (19.1%). In monoculture, the most common isolated microorganisms were α-haemolytic Streptococcus (13%), Staphylococcus spp. (12.2%), ß-haemolytic Streptococcus (11.4%) and Escherichia coli (9.8%). Focusing on the samples with a pure culture, Gram-negative bacteria grew preferably after direct smearing, while Gram-positive after enrichment. In conclusion, the present study shows that uterine lavage with high volume of fluid statistically significantly increased the sensitivity of the bacteriological examination and highlights the key role of the enrichment step in the routine bacteriological laboratory procedure by increasing the isolation rate.


Subject(s)
Communicable Diseases , Endometritis , Escherichia coli Infections , Horse Diseases , Animals , Communicable Diseases/veterinary , Endometritis/diagnosis , Endometritis/veterinary , Escherichia coli , Escherichia coli Infections/veterinary , Female , Horse Diseases/diagnosis , Horses , Retrospective Studies , Uterus/microbiology
16.
Vet Microbiol ; 266: 109355, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35114536

ABSTRACT

The source and route of bacterial colonization of the uterus are still not established. The objective was to investigate the source and route of bacterial colonization of the uterus by exploring the genetic relationship among E. coli strains isolated from the gastrointestinal and the reproductive tract of dairy cows pre- and postpartum. Secondarily, uterine health status (metritis vs. healthy) was evaluated. Cows (n = 34) had the rectoanal junction (RAJ), vulva, and vagina swabbed every three days starting six days before expected calving until nine days postpartum. The uterus was swabbed postpartum. A blood sample was collected at all time points, but cultures were negative. Whole-genome sequencing was performed on 44 isolates recovered from eight cows (four metritic and four healthy) with growth on selective E. coli media from the RAJ, vulva and/or vagina and uterus. Clonal isolates were found in the RAJ or the vulva prepartum and in the vulva, vagina or uterus postpartum. Clonal isolates were also found in the RAJ, the vulva, the vagina and the uterus postpartum. Clonal isolates were found in individual cows and different cows. Absence of clustering based on virulence factor genes and all genes indicate no strain specificity to body site or uterine health status. These findings indicate that the gastrointestinal tract is the likely source of bacteria that colonize the reproductive tract via ascending colonization of the uterus through the lower genital tract. Additionally, cow to cow transmission occurs, and strains are not specific to body site or to health status.


Subject(s)
Cattle Diseases , Endometritis , Animals , Cattle , Cattle Diseases/microbiology , Endometritis/veterinary , Escherichia coli/genetics , Female , Gastrointestinal Tract , Postpartum Period , Uterus/microbiology
17.
Front Cell Infect Microbiol ; 12: 1025714, 2022.
Article in English | MEDLINE | ID: mdl-36683698

ABSTRACT

The human microbiota influences physiology, disease, and metabolic reproduction. The origin of uterine bacteria is controversial. The main assumption is that the germs enter the uterine cavity from the vagina through the cervical canal, bloodstream, fallopian tubes, and gynecological surgical channels. Understanding the microbiota at various anatomical sites is critical to the female reproductive system and pregnancy. Today's study focuses on the role of uterine bacteria in pregnancy and embryo implantation. According to our findings, the uterine microbiome influences embryo implantation and pregnancy outcome. Pregnancy is a natural, evolutionarily selected approach to human reproduction. During pregnancy, the microbiota of the reproductive tract changes, facilitating the maintenance of pregnancy, and the human immune system undergoes a series of changes that recognize and adapt to the non-self. From the beginning of pregnancy, a non-self fetus must establish a placenta of embryonic origin to protect itself and promote growth; the VMB tends to be more stable and lactobacillus-dominated in late gestation than in early gestation. Any material that disrupts this connection, such as microbial changes, is associated with a higher risk of poor health and poor pregnancy outcomes in women (eclampsia). The presence of any material that disrupts this connection, such as microbial changes, is associated with a higher risk of poor health and poor pregnancy outcomes (preeclampsia, preterm birth, gestational diabetes, etc.). In this work, we review the last decade of relevant research to improve our understanding of the mechanisms by which the microbiota of the female reproductive tract influences female reproductive health. This work discusses the mechanisms associated with the reproductive tract microbiota and pregnancy immunity, as well as the impact of an abnormal microbiota on adverse pregnancy outcomes. Emphasis is placed on the characteristics and sources of the female vaginal, uterine, and placental microbiota and the importance of a well-stabilized local human microbiota and immune system for embryo implantation, placental development, fetal growth, and pregnancy outcome.


Subject(s)
Placenta , Premature Birth , Pregnancy , Female , Infant, Newborn , Humans , Uterus/microbiology , Cervix Uteri , Vagina/microbiology , Bacteria
18.
Open Vet J ; 12(6): 797-805, 2022.
Article in English | MEDLINE | ID: mdl-36650865

ABSTRACT

Background: Culture-independent techniques have made it possible to expand the knowledge about the composition of bacterial communities present in the healthy uterus and their role in health and disease, mainly in humans. However, in animals like mares, there is a dearth of information regarding this area. Aim: To narrow this knowledge gap, the objective of this study was to identify and characterize the composition and function of the uterine microbiome of a group of Chilean purebred mares (CPM), an equine breed with the oldest genealogical record in South America and an economical important reproductive industry. Methods: From uterine biopsy samples obtained during estrus, DNA extraction and targeted sequencing were performed to investigate the bacterial diversity and its probable metabolic function. Results: CPM biopsy samples were characterized by having a varied microbial composition, where the four most relatively abundant phyla were Proteobacteria (69.6%), Firmicutes (21.1%), Bacteroidetes (7.8%), and Actinobacteria (1.06%); which made up 99.6% of the total identified phyla. In contrast, Actinobacteria and Fusobacteria were the phyla not identified in all samples. Of a total of 59 genera identified across all samples, Staphylococcus was the most abundant genus with an average relative abundance of 18.88%, followed by Pseudomonas (17.9%), Escherichia/Shigella (10.42%), and Klebsiella (9.92%). Conclusion: These findings contribute to the knowledge of microbes' presence in the uterus, while future studies are required to demonstrate the role of these microorganisms in health and disease.


Subject(s)
Actinobacteria , Microbiota , Uterus , Animals , Female , Humans , Actinobacteria/genetics , Bacteria/genetics , Firmicutes/genetics , Horses , Metabolic Networks and Pathways , Microbiota/genetics , Uterus/microbiology
19.
Vet Microbiol ; 261: 109213, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34481272

ABSTRACT

Bovine genital leptospirosis (BGL) is characterized by silent chronic reproductive disorders, most related to early embryonic death leading to estrus repetition, subfertility and abortions. However, most studies were conducted in slaughterhouses, which lacks reproductive and sanitary history of the studied animals. This study aimed to evaluate the occurrence of Leptospira sp. infection in live cows with history of low reproductive efficiency. Blood, urine, cervico-vaginal mucus and uterine fragment were collected from nine cows of the same herd presenting reproductive failure (abortions, estrus repetition and chronic infertility). Serology (MAT) and molecular analysis (PCR and nucleotide sequencing) were performed. Serology showed three (33.3%) seroreactive cows, two to Sejroe and one to Icterohaemorrhagiae serogroups. Six cows (66.7%) presented leptospiral DNA on genital samples, while all urine samples were negative. L. interrogans was identified in five samples, very closely related to strains from Sejroe (n = 3) and Icterohaemorrhagiae (n = 2) serogroups, while L. noguchii was identified in one sample. Results from this preliminary study demonstrates the presence of leptospires on uterus and reinforces the negative impact of leptospiral infection on reproductive tract, highlighting its association with reproductive failures on live animals.


Subject(s)
Cattle Diseases/epidemiology , Genital Diseases, Female/veterinary , Infertility/veterinary , Leptospirosis/veterinary , Animals , Cattle , Cattle Diseases/microbiology , Female , Genital Diseases, Female/epidemiology , Genital Diseases, Female/microbiology , Infertility/complications , Leptospira/genetics , Leptospira/isolation & purification , Leptospirosis/complications , Leptospirosis/epidemiology , Uterus/microbiology
20.
PLoS Comput Biol ; 17(9): e1009365, 2021 09.
Article in English | MEDLINE | ID: mdl-34492008

ABSTRACT

Chlamydia trachomatis is a common sexually transmitted infection that is associated with a range of serious reproductive tract sequelae including in women Pelvic Inflammatory Disease (PID), tubal factor infertility, and ectopic pregnancy. Ascension of the pathogen beyond the cervix and into the upper reproductive tract is thought to be necessary for these pathologies. However, Chlamydia trachomatis does not encode a mechanism for movement on its genome, and so the processes that facilitate ascension have not been elucidated. Here, we evaluate the factors that may influence chlamydial ascension in women. We constructed a mathematical model based on a set of stochastic dynamics to elucidate the moderating factors that might influence ascension of infections in the first month of an infection. In the simulations conducted from the stochastic model, 36% of infections ascended, but only 9% had more than 1000 bacteria ascend. The results of the simulations indicated that infectious load and the peristaltic contractions moderate ascension and are inter-related in impact. Smaller initial loads were much more likely to ascend. Ascension was found to be dependent on the neutrophil response. Overall, our results indicate that infectious load, menstrual cycle timing, and the neutrophil response are critical factors in chlamydial ascension in women.


Subject(s)
Chlamydia Infections/microbiology , Chlamydia trachomatis , Models, Biological , Uterus/microbiology , Bacterial Load , Cervix Uteri/microbiology , Chlamydia Infections/complications , Chlamydia Infections/physiopathology , Chlamydia trachomatis/pathogenicity , Computational Biology , Computer Simulation , Female , Humans , Infertility, Female/etiology , Menstrual Cycle/physiology , Neutrophils/immunology , Pelvic Inflammatory Disease/etiology , Peristalsis/physiology , Pregnancy , Pregnancy, Ectopic/etiology , Stochastic Processes , Uterus/immunology , Uterus/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...