Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.893
Filter
1.
Theriogenology ; 224: 94-101, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759609

ABSTRACT

The aims of this study were to determine the effect of the embryo flushing technique and the number of flushing attempts performed by operators of different experience on embryo recovery (ER). Ten non-lactating mares were inseminated with the same stallion in six cycles each (n = 60). Embryo flushing (EF) was performed 7-9 days after ovulation by three operators (OP; 20 EF cycles each): OP1 had performed >500 EF before the study, while OP2 and 3 had performed 0 EF. Each EF was performed with 2 flushing attempts (FA) using 1L of ringer's lactate "in-and-out" using two EF techniques: 1) uterine massage (UM): continuous ballottement and massage of the uterus per rectum during ringer lactate recovery, 2) gravity flow (GF): the ringer lactate was allowed to flow back without massaging the uterus. In both groups, 20 IU of oxytocin were administered at the second FA and the ringer lactate was allowed to remain in the uterus for 3 min before recovery. An extra FA was performed in each group using 0.5 L of ringer lactate and uterine massage. More embryos (P < 0.05) per ovulation were recovered in the UM (17/33, 0.51) than in the GF group (8/36, 0.22). For the UM group, 16/17 embryos (94.1 %) were recovered in the first FA, while only one embryo in the second FA (1/17, 5.9 %). In the GF group, 4 embryos were recovered in each FA. No embryo was found in the extra FA in the UM group, while seven additional embryos were found in the GF group (5/7 flushed by OP1; P < 0.05). The overall ER per cycle was 70, 40, and 45 % for OP1, 2 and 3, respectively. In conclusion, highest embryo recovery is achieved in EF performed with UM, with the majority of embryos being flushed in the first FA.


Subject(s)
Massage , Uterus , Animals , Female , Horses/physiology , Horses/embryology , Uterus/physiology , Massage/methods , Massage/veterinary , Embryo Transfer/veterinary , Embryo Transfer/methods , Embryo, Mammalian/physiology , Pregnancy , Insemination, Artificial/veterinary , Insemination, Artificial/methods
2.
PeerJ ; 12: e16875, 2024.
Article in English | MEDLINE | ID: mdl-38680889

ABSTRACT

Background: Extracellular vesicles (EVs) are membrane-bound vesicles containing various proteins, lipids, and nucleic acids. EVs are found in many body fluids, such as blood and urine. The release of EVs can facilitate intercellular communication through fusion with the plasma membrane or endocytosis into the recipient cell or through internalization of the contents. Recent studies have reported that EVs isolated from human endometrial epithelial cells (EECs) promote sperm fertilization ability. EVs from uterine flushing fluid more closely resemble the physiological condition of the uterus. However, it is unclear whether EVs derived directly from uterine flushing fluid have the same effect on sperm. This study aimed to research the effect of EVs from uterine flushing fluid on sperm. Methods: EVs were isolated from the uterine flushing fluid. The presence of EVs was confirmed by nanoparticle tracking analysis (NTA), Western blot, and transmission electron microscopy (TEM). EVs were incubated with human sperm for 2 h and 4 h. The effects of EVs on sperm were evaluated by analyzing acrosome reaction, sperm motility, and reactive oxygen species (ROS). Results: The EVs fractions isolated from the uterine fluid were observed in cup-shaped vesicles of different sizes by TEM. All isolated vesicles contained similar numbers of vesicles in the expected size range (30-200 nm) by NTA. CD9 and CD63 were detected in EVs by western blot. Comparing the motility of the two groups incubated sperm motility significantly differed at 4 h. The acrosome reactions were promoted by incubating with EVs significantly. ROS were increased in sperm incubated with EVs. Conclusion: Our results showed EVs present in the uterine fluid. Acrosome reactions and ROS levels increased in human sperm incubated with EVs. EVs from uterine fluid can promote the capacitation of human sperm. The increased capacitation after sperm interaction with EVs suggests a possible physiological effect during the transit of the uterus.


Subject(s)
Exosomes , Reactive Oxygen Species , Sperm Capacitation , Spermatozoa , Uterus , Humans , Male , Female , Exosomes/metabolism , Sperm Capacitation/physiology , Spermatozoa/metabolism , Reactive Oxygen Species/metabolism , Uterus/metabolism , Uterus/physiology , Sperm Motility/physiology , Body Fluids/chemistry , Body Fluids/metabolism , Acrosome Reaction/physiology , Microscopy, Electron, Transmission
3.
Theriogenology ; 222: 45-53, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38615435

ABSTRACT

Artificial insemination (AI) plays a critical role in facilitating rapid genetic and production gains within the sheep industry. However, variable rates of AI success remain a concern for the industry and a barrier to adoption. Furthermore, the degree to which female factors influence the success of intrauterine laparoscopic AI rather than natural mating remains unknown. As such, this study investigates the effect of several factors collected during the time of AI, on the success of intrauterine laparoscopic AI. Data was generously donated by artificial breeding companies and stud breeders during routine commercial AI operations. AI data was collected over 3 breeding seasons during commercial AI programs (N = 24 programs) using Merino ewes (N = 24,700). Sire ID (N = 253), time of AI following progesterone removal (approx. 43-59 h post removal), uterine tone and intra-abdominal fat (both scored 1-5) as well as age of the ewe were all recorded at the time of AI. Transcutaneous ultrasound subsequently determined pregnancy rate approximately 55 days post-AI. A multivariate regression analysis was performed and revealed pregnancy success to increase when semen was inseminated into a ewe with a uterine tone score of 4 or 5 (P < 0.001). The remaining factors fell short of significance within the multivariate model. An interclass coefficient variation matrix was also used to determine the proportion of variation contributed to AI success by random factors allocated in the model; site, sire, AI date and breeding season (45.99 %, 29.94 %, 15.15 % and 8.92 %, respectively). These results highlight the influence of uterine tone on ewe fertility following laparoscopic AI, but also that program location and the sire used can further modify this influence on pregnancy rate. These factors must now be considered in combination with semen factors per individual sire used during AI to ascertain the contribution of several factors to the success of laparoscopic AI in Australia.


Subject(s)
Fertility , Insemination, Artificial , Laparoscopy , Uterus , Animals , Female , Insemination, Artificial/veterinary , Sheep/physiology , Uterus/physiology , Pregnancy , Laparoscopy/veterinary , Pregnancy Rate
4.
J Biomech Eng ; 146(10)2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38635234

ABSTRACT

Vaginal childbirth is the final phase of pregnancy when one or more fetuses pass through the birth canal from the uterus, and it is a biomechanical process. The uterine active contraction, causing the pushing force on the fetus, plays a vital role in regulating the fetus delivery process. In this project, the active contraction behaviors of muscle tissue were first modeled and investigated. After that, a finite element method (FEM) model to simulate the uterine cyclic active contraction and delivery of a fetus was developed in ls-dyna. The active contraction was driven through contractile fibers modeled as one-dimensional truss elements, with the Hill material model governing their response. Fibers were assembled in the longitudinal, circumferential, and normal (transverse) directions to correspond to tissue microstructure, and they were divided into seven regions to represent the strong anisotropy of the fiber distribution and activity within the uterus. The passive portion of the uterine tissue was modeled with a Neo Hookean hyperelastic material model. Three active contraction cycles were modeled. The cyclic uterine active contraction behaviors were analyzed. Finally, the fetus delivery through the uterus was simulated. The model of the uterine active contraction presented in this paper modeled the contractile fibers in three-dimensions, considered the anisotropy of the fiber distribution, provided the uterine cyclic active contraction and propagation of the contraction waves, performed a large deformation, and caused the pushing effect on the fetus. This model will be combined with a model of pelvic structures so that a complete system simulating the second stage of the delivery process of a fetus can be established.


Subject(s)
Finite Element Analysis , Models, Biological , Uterine Contraction , Female , Uterine Contraction/physiology , Pregnancy , Humans , Biomechanical Phenomena , Fetus/physiology , Uterus/physiology , Mechanical Phenomena
5.
Sci Rep ; 14(1): 7316, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538670

ABSTRACT

The uterus exhibits intermittent electrophysiological activity in vivo. Although most active during labor, the non-pregnant uterus can exhibit activity of comparable magnitude to the early stages of labor. In this study, two types of flexible electrodes were utilized to measure the electrical activity of uterine smooth muscle in vivo in anesthetized, non-pregnant rats. Flexible printed circuit electrodes were placed on the serosal surface of the uterine horn of six anesthetized rats. Electrical activity was recorded for a duration of 20-30 min. Activity contained two components: high frequency activity (bursts) and an underlying low frequency 'slow wave' which occurred concurrently. These components had dominant frequencies of 6.82 ± 0.63 Hz for the burst frequency and 0.032 ± 0.0055 Hz for the slow wave frequency. There was a mean burst occurrence rate of 0.76 ± 0.23 bursts per minute and mean burst duration of 20.1 ± 6.5 s. The use of multiple high-resolution electrodes enabled 2D mapping of the initiation and propagation of activity along the uterine horn. This in vivo approach has the potential to provide the organ level detail to help interpret non-invasive body surface recordings.


Subject(s)
Labor, Obstetric , Myometrium , Female , Pregnancy , Rats , Animals , Myometrium/physiology , Electromyography , Uterus/physiology , Labor, Obstetric/physiology , Electrodes , Uterine Contraction/physiology
6.
Poult Sci ; 103(5): 103489, 2024 May.
Article in English | MEDLINE | ID: mdl-38518666

ABSTRACT

This study aimed to systematically determined the effect of 28 h ahemeral light cycle on production performance, egg quality, blood parameters, uterine morphological characteristics, and gene expression of hens during the late laying period. At 74 wk, 260 Hy-Line Brown layers were randomly divided into 2 groups of 130 birds each and in duplicates. Both a regular (16L:8D) and an ahemeral light cycle (16L:12D) were provided to the hens. The oviposition pattern in an ahemeral cycle shifted into darkness, with oviposition mostly occurring 3 to 5 h after light out. Production performance was unaffected by light cycle (P > 0.05). Nonetheless, compared to the normal group, the ahemeral group exhibited increased egg weight, eggshell weight, eggshell percentage, yolk percentage, eggshell thickness, and eggshell strength (P < 0.05). There were rhythmic changes in the uterine morphological structure in both cycles, however, the ahemeral group maintained a longer duration and had more uterine folds than the normal group. In the ahemeral cycle, the phases of the CLOCK and PER2 genes were phase-advanced for 3.96 h and 4.54 h compared to the normal cycle. The PHLPP1 gene, which controls clock resetting, exhibited a substantial oscillated rhythm in the ahemeral group (P < 0.05), while the expression of genes presenting biological rhythm, such as CRY2 and FBXL3, was rhythmically oscillated in normal cycle (P < 0.05). The ITPR2 gene, which regulates intracellular Ca2+ transport, displayed a significant oscillated rhythm in ahemeral alone (P < 0.05), while the CA2 gene, which presents biomineralization, rhythmically oscillated in both cycles (P < 0.05). The ahemeral cycle caused 2.5 h phase delays in the CA2 gene compared to the normal cycle. In conclusion, the 28 h ahemeral light cycle preserved the high condition of the uterine folds and changed the uterine rhythms of CLOCK, PER2, ITPR2, and CA2 gene expression to improve ion transport and uterine biomineralization.


Subject(s)
Chickens , Oviposition , Photoperiod , Uterus , Animals , Chickens/physiology , Chickens/genetics , Chickens/blood , Female , Uterus/physiology , Uterus/anatomy & histology , Oviposition/physiology , Ovum/physiology , Random Allocation , Egg Shell/physiology , Gene Expression
7.
BMC Genomics ; 25(1): 303, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515025

ABSTRACT

BACKGROUND: A fine balance of feto-maternal resource allocation is required to support pregnancy, which depends on interactions between maternal and fetal genetic potential, maternal nutrition and environment, endometrial and placental functions. In particular, some imprinted genes have a role in regulating maternal-fetal nutrient exchange, but few have been documented in the endometrium. The aim of this study is to describe the expression of 42 genes, with parental expression, in the endometrium comparing two extreme breeds: Large White (LW); Meishan (MS) with contrasting neonatal mortality and maturity at two days of gestation (D90-D110). We investigated their potential contribution to fetal maturation exploring genes-fetal phenotypes relationships. Last, we hypothesized that the fetal genome and sex influence their endometrial expression. For this purpose, pure and reciprocally crossbred fetuses were produced using LW and MS breeds. Thus, in the same uterus, endometrial samples were associated with its purebred or crossbred fetuses. RESULTS: Among the 22 differentially expressed genes (DEGs), 14 DEGs were differentially regulated between the two days of gestation. More gestational changes were described in LW (11 DEGs) than in MS (2 DEGs). Nine DEGs were differentially regulated between the two extreme breeds, highlighting differences in the regulation of endometrial angiogenesis, nutrient transport and energy metabolism. We identified DEGs that showed high correlations with indicators of fetal maturation, such as ponderal index at D90 and fetal blood fructose level and placental weight at D110. We pointed out for the first time the influence of fetal sex and genome on endometrial expression at D90, highlighting AMPD3, CITED1 and H19 genes. We demonstrated that fetal sex affects the expression of five imprinted genes in LW endometrium. Fetal genome influenced the expression of four genes in LW endometrium but not in MS endometrium. Interestingly, both fetal sex and fetal genome interact to influence endometrial gene expression. CONCLUSIONS: These data provide evidence for some sexual dimorphism in the pregnant endometrium and for the contribution of the fetal genome to feto-maternal interactions at the end of gestation. They suggest that the paternal genome may contribute significantly to piglet survival, especially in crossbreeding production systems.


Subject(s)
Endometrium , Placenta , Pregnancy , Female , Animals , Swine , Placenta/metabolism , Endometrium/metabolism , Fetal Development/genetics , Uterus/physiology , Gene Expression
8.
Theriogenology ; 219: 32-38, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38382215

ABSTRACT

The semen of boar is characterized by ejaculation in well-differentiated fractions with specific concentration, composition, and volume. The 'sperm-rich fraction' (SRF), the most concentrated seminal fraction, is habitually collected in insemination centers to make artificial insemination (AI) doses. The absence of the other fractions in AI doses could alter the uterine reaction to AI and not trigger essential responses that could maximize fertility. Thus, there is an urge to ascertain the impact of different ejaculate fractions on the uterus after AI to optimize the semen doses. This work analyzed specific parameters related to fertility in pregnant artificially inseminated sows (n = 15) with ac-cumulative fractions of the semen of boars (n = 6): F1, composed of the sperm-rich fraction (SRF); F2, composed of F1 plus the intermediate fraction; F3, composed of F2 plus the post-SRF. Non-inseminated sows (n = 5) were included as control (C). The different types of seminal dose did not affect the number of ovulated follicles (CL; corpora lutea, p > 0.05) but did affect the embryo development (p < 0.05). The proportion of embryos in morula stages was significantly higher in AI-F1 sows (84.4%, p < 0.05). Morulas and blastocysts were balanced in AI-F2 or AI-F3 (p > 0.05). Independently of the type of seminal dose (F1, F2, or F3), we observed by immunohistochemistry that AI significantly increased uterine vascularization, although with some anatomical differences. The cranial region of the uterine horns was significantly more vascularized in AI-F1 or AI-F2 sows (26.7 ± 2.3 and 28.6 ± 2.0%, respectively), and AI-F3 showed significantly less vascularization at that point (17.8 ± 1.6%, p < 0.05). To summarize, the synergistic effect of all ejaculate fractions accelerates embryo development, at least during the preimplantation period, and increases the uterine reaction to AI in certain parts of the uterus.


Subject(s)
Semen , Spermatozoa , Pregnancy , Swine , Male , Animals , Female , Spermatozoa/physiology , Uterus/physiology , Insemination, Artificial/veterinary , Embryonic Development
9.
Physiol Rev ; 104(3): 1121-1145, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38329421

ABSTRACT

Parturition is a complex physiological process that must occur in a reliable manner and at an appropriate gestation stage to ensure a healthy newborn and mother. To this end, hormones that affect the function of the gravid uterus, especially progesterone (P4), 17ß-estradiol (E2), oxytocin (OT), and prostaglandins (PGs), play pivotal roles. P4 via the nuclear P4 receptor (PR) promotes uterine quiescence and for most of pregnancy exerts a dominant block to labor. Loss of the P4 block to parturition in association with a gain in prolabor actions of E2 are key transitions in the hormonal cascade leading to parturition. P4 withdrawal can occur through various mechanisms depending on species and physiological context. Parturition in most species involves inflammation within the uterine tissues and especially at the maternal-fetal interface. Local PGs and other inflammatory mediators may initiate parturition by inducing P4 withdrawal. Withdrawal of the P4 block is coordinated with increased E2 actions to enhance uterotonic signals mediated by OT and PGs to promote uterine contractions, cervix softening, and membrane rupture, i.e., labor. This review examines recent advances in research to understand the hormonal control of parturition, with focus on the roles of P4, E2, PGs, OT, inflammatory cytokines, and placental peptide hormones together with evolutionary biology of and implications for clinical management of human parturition.


Subject(s)
Parturition , Parturition/physiology , Humans , Female , Pregnancy , Animals , Progesterone/metabolism , Progesterone/physiology , Oxytocin/metabolism , Oxytocin/physiology , Uterus/metabolism , Uterus/physiology , Prostaglandins/metabolism , Estradiol/metabolism
10.
J Reprod Dev ; 70(3): 145-151, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38403584

ABSTRACT

Pregnancy is intricately regulated by the interactions between various bioactive substances secreted by the conceptus, uterus, and corpus luteum (CL). Interferon-τ, synthesized and secreted by the conceptus, plays a central role in the interaction mechanism of maternal recognition in cows. Chemokines, chemotaxis mediators that are primarily secreted by immune cells, regulate various reproductive responses in various species. Although there are scattered reports on the potential roles of chemokines in the bovine CL and the uterus during the estrous cycle, there is little information on chemokines in these organs during pregnancy. Therefore, in this review, we discuss the possible physiological roles of chemokines in the CL and uterus of pregnant cows, focusing on our recent findings on chemokines and changes in their receptor expression in the CL and endometrium of cows at some stages of pregnancy.


Subject(s)
Chemokines , Corpus Luteum , Uterus , Animals , Female , Cattle , Pregnancy , Chemokines/metabolism , Corpus Luteum/metabolism , Corpus Luteum/physiology , Uterus/metabolism , Uterus/physiology , Endometrium/metabolism , Estrous Cycle/physiology , Estrous Cycle/metabolism , Pregnancy, Animal/physiology
11.
J Reprod Immunol ; 162: 104192, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215650

ABSTRACT

There is a suggested pathophysiology associated with endometrial microbiota in cases where repeated implantation failure of high-quality embryos is observed. However, there is a suspected association between endometrial microbiota and the pathogenesis of implantation failure. However, there is still a lack of agreement on the fundamental composition of the physiological microbiome within the uterine cavity. This is primarily due to various limitations in the studies conducted, including small sample sizes and variations in experimental designs. As a result, the impact of bacterial communities in the endometrium on human reproduction is still a subject of debate. In this discourse, we undertake a comprehensive examination of the existing body of research pertaining to the uterine microbiota and its intricate interplay with the process of embryo implantation.


Subject(s)
Embryo Implantation , Microbiota , Female , Humans , Embryo Implantation/physiology , Endometrium/microbiology , Uterus/physiology , Research Design
12.
Int J Mol Sci ; 24(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37958878

ABSTRACT

The function of endometrial epithelial cells is to secrete various substances that are rich in growth factors and nutrients. These substances support both embryo implantation and its subsequent development into a fetus. A vast number of mucins are expressed in endometrial epithelial cells, and they play an important role in regulating the processes of embryo implantation, pregnancy, and parturition. Previous studies have shown that mucin forms a mucus layer covering endometrial epithelial cells, which helps resist damage from foreign bacteria and their toxins. Therefore, this article aims to investigate the location of mucins in the endometrium, the mechanism of mucin secretion by the endometrium, and the regulation of mucins in the uterine epithelium by reproductive hormones, as well as the role of mucins in the protection of the epithelium's structure. This research aims to provide a foundational understanding for future studies on the role and mechanism of endometrial mucins throughout the pregnancy cycle.


Subject(s)
Mucins , Uterus , Pregnancy , Female , Humans , Mucins/metabolism , Uterus/physiology , Endometrium/metabolism , Mucin-1/metabolism , Embryo Implantation/physiology , Epithelial Cells
13.
Comput Biol Med ; 167: 107697, 2023 12.
Article in English | MEDLINE | ID: mdl-37976821

ABSTRACT

Uterine contractions are routinely monitored by tocodynamometer (TOCO) at late stage of pregnancy to predict the onset of labor. However, TOCO reveals no information on the synchrony and coherence of contractions, which are important contributors to a successful delivery. The electrohysterography (EHG) is a recording of the electrical activities that trigger the local muscles to contract. The spatial-temporal information embedded in multiple channel EHG signals make them ideal for characterizing the synchrony and coherence of uterine contraction. To proceed, contractile time-windows are identified from TOCO signals and are then used to segment out the simultaneously recorded EHG signals of different channels. We construct sample entropy SamEn and Concordance Correlation based feature ψ from these EHG segments to quantify the synchrony and coherence of contraction. To test the effectiveness of the proposed method, 122 EHG recordings in the Icelandic EHG database were divided into two groups according to the time difference between the gestational ages at recording and at delivery (TTD). Both SamEn and ψ show clear difference in the two groups (p<10-5) even when measurements were made 120 h before delivery. Receiver operating characteristic curve analysis of these two features gave AUC values of 0.834 and 0.726 for discriminating imminent labor defined with TTD ≤ 24 h. The SamEn was significantly smaller in women (0.1433) of imminent labor group than in women (0.3774) of the pregnancy group. Using an optimal cutoff value of SamEn to identify imminent labor gives sensitivity, specificity, and accuracy as high as 0.909, 0.712 and 0.743, respectively. These results demonstrate superiority in comparing to the existing SOTA methods. This study is the first research work focusing on characterizing the synchrony property of contractions from the electrohysterography signals. Despite the very limited dataset used in the validation process, the promising results open a new direction to the use of electrohysterography in obstetrics.


Subject(s)
Labor, Obstetric , Uterine Monitoring , Pregnancy , Female , Humans , Adolescent , Uterine Contraction/physiology , Uterus/physiology , Electromyography/methods , Labor, Obstetric/physiology , Muscle Contraction , Uterine Monitoring/methods
14.
Sci Adv ; 9(46): eadi6488, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37967178

ABSTRACT

The recurrence rate for severe intrauterine adhesions is as high as 60%, and there is still lack of effective prevention and treatment. Inspired by the nature of uterus, we have developed a bilayer scaffold (ECM-SPS) with biomimetic heterogeneous features and extracellular matrix (ECM) microenvironment of the uterus. As proved by subtotal uterine reconstruction experiments, the mechanical and antiadhesion properties of the bilayer scaffold could meet the requirement for uterine repair. With the modification with tissue-specific cell-derived ECM, the ECM-SPS had the ECM microenvironment signatures of both the endometrium and myometrium and exhibited the property of inducing stem cell-directed differentiation. Furthermore, the ECM-SPS has recruited more endogenous stem cells to promote endometrial regeneration at the initial stage of repair, which was accompanied by more smooth muscle regeneration and a higher pregnancy rate. The reconstructed uterus could also sustain normal pregnancy and live birth. The ECM-SPS may thereby provide a potential treatment for women with severe intrauterine adhesions.


Subject(s)
Biomimetics , Tissue Scaffolds , Pregnancy , Female , Humans , Tissue Scaffolds/chemistry , Uterus/physiology , Extracellular Matrix/chemistry , Tissue Engineering
15.
Sci Data ; 10(1): 669, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37783671

ABSTRACT

The existing non-invasive automated preterm birth prediction methods rely on the use of uterine electrohysterogram (EHG) records coming from spontaneous preterm and term deliveries, and are indifferent to term induced and cesarean section deliveries. In order to enhance current publicly available pool of term EHG records, we developed a new EHG dataset, Induced Cesarean EHG DataSet (ICEHG DS), containing 126 30-minute EHG records, recorded early (23rd week), and/or later (31st week) during pregnancy, of those pregnancies that were expected to end in spontaneous term delivery, but ended in induced or cesarean section delivery. The records were collected at the University Medical Center Ljubljana, Ljubljana, Slovenia. The dataset includes 38 and 43, early and later, induced; 11 and 8, early and later, cesarean; and 13 and 13, early and later, induced and cesarean EHG records. This dataset enables better understanding of the underlying physiological mechanisms involved during pregnancies ending in induced and cesarean deliveries, and provides a robust and more realistic assessment of the performance of automated preterm birth prediction methods.


Subject(s)
Cesarean Section , Pregnancy , Premature Birth , Female , Humans , Infant, Newborn , Uterus/physiology
16.
Annu Rev Cell Dev Biol ; 39: 197-221, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37843929

ABSTRACT

The uterine lining (endometrium) regenerates repeatedly over the life span as part of its normal physiology. Substantial portions of the endometrium are shed during childbirth (parturition) and, in some species, menstruation, but the tissue is rapidly rebuilt without scarring, rendering it a powerful model of regeneration in mammals. Nonetheless, following some assaults, including medical procedures and infections, the endometrium fails to regenerate and instead forms scars that may interfere with normal endometrial function and contribute to infertility. Thus, the endometrium provides an exceptional platform to answer a central question of regenerative medicine: Why do some systems regenerate while others scar? Here, we review our current understanding of diverse endometrial disruption events in humans, nonhuman primates, and rodents, and the associated mechanisms of regenerative success and failure. Elucidating the determinants of these disparate repair processes promises insights into fundamental mechanisms of mammalian regeneration with substantial implications for reproductive health.


Subject(s)
Endometrium , Uterus , Female , Animals , Humans , Endometrium/pathology , Endometrium/physiology , Uterus/pathology , Uterus/physiology , Fibrosis , Mammals
17.
Mol Reprod Dev ; 90(12): 835-848, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37632839

ABSTRACT

High rates of early pregnancy loss are a critical issue in dairy herds, particularly in seasonal, grazing systems. Components of the uterine luminal fluid (ULF), on which the early embryo depends for sustenance and growth, partly determine early pregnancy losses. Here, changes in ULF from early to mid-postpartum in crossbred dairy cows were explored, linking them with divergent embryo development. For this, the uteri of 87 cows at Day 7 of pregnancy at first and third estrus postpartum were flushed to collect ULF. Eighteen metabolites (chiefly organic acids and sugars) significantly varied in abundance across postpartum, indicating a molecular signature of physiological recovery consistent of the upregulation of pyrimidine metabolism and glycerophospholipid metabolism, and downregulation of pentose phosphate and taurine metabolism pathways. Joint pathway analysis of metabolomics data and a previously generated proteomics data set on the same ULF samples suggests key links between postpartum recovery and subsequent successful embryo development. These include upregulation of VEGFA and downregulation of metabolism, NRF2, T-cell receptor, which appear to improve the ULF's capacity of sustaining normal embryo development, and a putative osmo-protectant role of beta-alanine. These relationships should be further investigated to develop tools to detect and reduce early pregnancy loss in dairy cows.


Subject(s)
Abortion, Spontaneous , Lactation , Pregnancy , Female , Humans , Cattle , Animals , Fertility/physiology , Postpartum Period , Uterus/physiology
18.
Nature ; 619(7970): 595-605, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37468587

ABSTRACT

Beginning in the first trimester, fetally derived extravillous trophoblasts (EVTs) invade the uterus and remodel its spiral arteries, transforming them into large, dilated blood vessels. Several mechanisms have been proposed to explain how EVTs coordinate with the maternal decidua to promote a tissue microenvironment conducive to spiral artery remodelling (SAR)1-3. However, it remains a matter of debate regarding which immune and stromal cells participate in these interactions and how this evolves with respect to gestational age. Here we used a multiomics approach, combining the strengths of spatial proteomics and transcriptomics, to construct a spatiotemporal atlas of the human maternal-fetal interface in the first half of pregnancy. We used multiplexed ion beam imaging by time-of-flight and a 37-plex antibody panel to analyse around 500,000 cells and 588 arteries within intact decidua from 66 individuals between 6 and 20 weeks of gestation, integrating this dataset with co-registered transcriptomics profiles. Gestational age substantially influenced the frequency of maternal immune and stromal cells, with tolerogenic subsets expressing CD206, CD163, TIM-3, galectin-9 and IDO-1 becoming increasingly enriched and colocalized at later time points. By contrast, SAR progression preferentially correlated with EVT invasion and was transcriptionally defined by 78 gene ontology pathways exhibiting distinct monotonic and biphasic trends. Last, we developed an integrated model of SAR whereby invasion is accompanied by the upregulation of pro-angiogenic, immunoregulatory EVT programmes that promote interactions with the vascular endothelium while avoiding the activation of maternal immune cells.


Subject(s)
Maternal-Fetal Exchange , Trophoblasts , Uterus , Female , Humans , Pregnancy , Arteries/physiology , Decidua/blood supply , Decidua/cytology , Decidua/immunology , Decidua/physiology , Pregnancy Trimester, First/genetics , Pregnancy Trimester, First/metabolism , Pregnancy Trimester, First/physiology , Trophoblasts/cytology , Trophoblasts/immunology , Trophoblasts/physiology , Uterus/blood supply , Uterus/cytology , Uterus/immunology , Uterus/physiology , Maternal-Fetal Exchange/genetics , Maternal-Fetal Exchange/immunology , Maternal-Fetal Exchange/physiology , Time Factors , Proteomics , Gene Expression Profiling , Datasets as Topic , Gestational Age
19.
Injury ; 54(8): 110843, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37270348

ABSTRACT

INTRODUCTION: Pregnancy-related trauma is one of the leading causes of morbidity and mortality in pregnant women and fetuses. The fetal response to injury is largely dependent on the timing of fetal presentation and the underlying pathophysiology of the trauma. The optimal management of pregnant patients who have suffered an obstetric emergency depends on clinical assessment and understanding of the placental implantation process, which can be difficult to perform during an emergency. Understanding the mechanisms of traumatic injuries to the fetus is crucial for developing next-generation protective devices. METHODS: This study aimed to investigate the effect of amniotic fluid on mine blast on the uterus, fetus, and placenta via computational analysis. Finite element models were developed to analyze the effects of explosion forces on the uterus, fetus, and placenta, based on cadaveric data obtained from the literature. This study uses computational fluid-structure interaction simulations to study the effect of external loading on the fetus submerged in amniotic fluid inside of the uterus. RESULTS: Computational fluid-structure interaction simulations are used to study the effect of external loading on the fetus/placenta submerged in amniotic fluid inside the uterus. Cushioning function of the amniotic fluid on the fetus and placenta is demonstrated. The mechanism of traumatic injuries to the fetus/placenta is shown. DISCUSSION: The intention of this research is to understand the cushioning function of the amniotic fluid on the fetus. Further, it is important to make use of this knowledge in order to ensure the safety of pregnant women and their fetuses.


Subject(s)
Military Personnel , Placenta , Pregnancy , Female , Humans , Amniotic Fluid , Explosions , Uterus/physiology
20.
J Complement Integr Med ; 20(3): 548-555, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37300330

ABSTRACT

OBJECTIVES: Crude oil is a common environmental contaminant that impacts the reproductive functions of women. Understanding the contractile mechanism of the gravid uterus and how it impacts fetal outcomes during crude oil-contaminated water (CCW) exposure is still evolving. This study investigates the effect of vitamin C supplementation during the ingestion of CCW from Bayelsa, Nigeria, on the contractile mechanism of the gravid uterus and fetal outcomes. METHODS: Fifteen nulliparous pregnant rats were randomly divided into 3 groups of 5 rats each and treated with normal saline (control), CCW (2.5 mL), and CCW + vitamin C (10 mg/kg bwt), respectively. Treatments were via oral gavage from gestation days 1-19. Gas chromatography-mass spectrometry of CCW, uterine oxidative biomarkers, and in vitro contractile activity of excised uterine tissue to acetylcholine, oxytocin, magnesium, and potassium were determined. Furthermore, uterine responses to acetylcholine after incubation with nifedipine, indomethacin, and N-nitro-L-arginine methyl ester were also recorded using the Ugo Basile data capsule acquisition system. Fetal weights, morphometric indices, and anogenital distance were also determined. RESULTS: Acetylcholine, oxytocin, magnesium, diclofenac, and indomethacin-mediated contractile mechanisms were significantly impaired with CCW exposure; however, vitamin C supplementation significantly attenuated the impaired uterine contractile activity. Maternal serum estrogen, weight, uterine superoxide dismutase, fetal weight, and anogenital distance were significantly reduced in the CCW group compared to the vitamin C supplemented group. CONCLUSIONS: Ingestion of CCW impaired the uterine contractile mechanism, fetal developmental indices, oxidative biomarkers, and estrogen. Vitamin C supplementation modulated these by elevating uterine antioxidant enzymes and reducing free radicals.


Subject(s)
Acetylcholine , Oxytocin , Humans , Pregnancy , Rats , Female , Animals , Rats, Wistar , Oxytocin/pharmacology , Acetylcholine/pharmacology , Magnesium , Water , Uterus/physiology , Indomethacin , Estrogens/pharmacology , Dietary Supplements , Ascorbic Acid/pharmacology , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL
...