Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Infect Genet Evol ; 88: 104711, 2021 03.
Article in English | MEDLINE | ID: mdl-33421655

ABSTRACT

The Astrakhan region of Russia is endemic for the number of arboviruses. In this paper, we describe the results of the detection of the list of neglected arboviruses in the Astrakhan region for the 2018 season. For the purpose of the study in-house PCR assays for detection of 18 arboviruses have been developed and validated using arboviruses obtained from Russian State Collection of Viruses. Pools of ticks (n = 463) and mosquitoes (n = 312) as well as 420 samples of human patients sera have been collected and analyzed. Using developed multiplex real-time PCR assays we were able to detect RNA of eight arboviruses (Crimean-Congo hemorrhagic fever virus, Dhori (Batken strain) virus, Batai virus, Tahyna virus, Uukuniemi virus, Inkoo virus, Sindbis virus and West Nile fever virus). All discovered viruses are capable of infecting humans causing fever and in some cases severe forms with hemorrhagic or neurologic symptoms. From PCR-positive samples, we were able to recover one isolate each of Dhori (Batken strain) virus and Crimean-Congo hemorrhagic fever virus which were further characterized by next-generation sequencing. The genomic sequences of identified Dhori (Batken strain) virus strain represent the most complete genome of Batken virus strain among previously reported.


Subject(s)
Arbovirus Infections/virology , Arboviruses/classification , Arboviruses/genetics , Culicidae/virology , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Thogotovirus/genetics , Ticks/virology , Animals , Arboviruses/isolation & purification , Bunyamwera virus/classification , Bunyamwera virus/genetics , Encephalitis Virus, California/classification , Encephalitis Virus, California/genetics , Genome, Viral , Hemorrhagic Fever Virus, Crimean-Congo/classification , Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification , High-Throughput Nucleotide Sequencing , Humans , Multiplex Polymerase Chain Reaction/methods , Pathology, Molecular/methods , Phylogeny , RNA, Viral , Russia/epidemiology , Sindbis Virus/classification , Sindbis Virus/genetics , Thogotovirus/classification , Thogotovirus/isolation & purification , Uukuniemi virus/classification , Uukuniemi virus/genetics , West Nile virus/classification , West Nile virus/genetics
2.
Ticks Tick Borne Dis ; 9(5): 1129-1132, 2018 07.
Article in English | MEDLINE | ID: mdl-29699908

ABSTRACT

Following the identification of severe fever with thrombocytopenia syndrome and Heartland viruses, the interest on tick-borne phleboviruses has increased rapidly. Uukuniemi virus has been proposed as a model for tick-borne phleboviruses. However, the number of available sequences is limited. In the current study we performed whole-genome sequencing on two Uukuniemi viral strains isolated in 2000 and 2004 from Ixodes ricinus ticks in the Czech Republic. Both strains cluster together with Potepli63 strain isolated in the country in 1963. Although the Czech strains were isolated many years apart, a high identity was seen at the nucleotide and amino acid levels, suggesting that UUKV has a relatively stable genome.


Subject(s)
Ixodes/virology , Uukuniemi virus/genetics , Uukuniemi virus/isolation & purification , Animals , Bunyaviridae Infections/epidemiology , Czech Republic/epidemiology , Genome, Viral , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/virology , Whole Genome Sequencing
3.
J Virol ; 89(9): 4849-56, 2015 May.
Article in English | MEDLINE | ID: mdl-25673721

ABSTRACT

UNLABELLED: Uukuniemi virus (UUKV) is a tick-borne member of the Phlebovirus genus (family Bunyaviridae) and has been widely used as a safe laboratory model to study aspects of bunyavirus replication. Recently, a number of new tick-borne phleboviruses have been discovered, some of which, like severe fever with thrombocytopenia syndrome virus and Heartland virus, are highly pathogenic in humans. UUKV could now serve as a useful comparator to understand the molecular basis for the different pathogenicities of these related viruses. We established a reverse-genetics system to recover UUKV entirely from cDNA clones. We generated two recombinant viruses, one in which the nonstructural protein NSs open reading frame was deleted from the S segment and one in which the NSs gene was replaced with green fluorescent protein (GFP), allowing convenient visualization of viral infection. We show that the UUKV NSs protein acts as a weak interferon antagonist in human cells but that it is unable to completely counteract the interferon response, which could serve as an explanation for its inability to cause disease in humans. IMPORTANCE: Uukuniemi virus (UUKV) is a tick-borne phlebovirus that is apathogenic for humans and has been used as a convenient model to investigate aspects of phlebovirus replication. Recently, new tick-borne phleboviruses have emerged, such as severe fever with thrombocytopenia syndrome virus in China and Heartland virus in the United States, that are highly pathogenic, and UUKV will now serve as a comparator to aid in the understanding of the molecular basis for the virulence of these new viruses. To help such investigations, we have developed a reverse-genetics system for UUKV that permits manipulation of the viral genome. We generated viruses lacking the nonstructural protein NSs and show that UUKV NSs is a weak interferon antagonist. In addition, we created a virus that expresses GFP and thus allows convenient monitoring of virus replication. These new tools represent a significant advance in the study of tick-borne phleboviruses.


Subject(s)
Interferons/antagonists & inhibitors , Uukuniemi virus/immunology , Uukuniemi virus/physiology , Viral Nonstructural Proteins/metabolism , Cell Line , DNA, Complementary/genetics , DNA, Viral/genetics , Gene Deletion , Humans , Recombination, Genetic , Reverse Genetics , Uukuniemi virus/genetics , Viral Nonstructural Proteins/genetics
4.
J Virol ; 87(6): 3187-95, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23283959

ABSTRACT

Evolutionary insights into the phleboviruses are limited because of an imprecise classification scheme based on partial nucleotide sequences and scattered antigenic relationships. In this report, the serologic and phylogenetic relationships of the Uukuniemi group viruses and their relationships with other recently characterized tick-borne phleboviruses are described using full-length genome sequences. We propose that the viruses currently included in the Uukuniemi virus group be assigned to five different species as follows: Uukuniemi virus, EgAn 1825-61 virus, Fin V707 virus, Chizé virus, and Zaliv Terpenia virus would be classified into the Uukuniemi species; Murre virus, RML-105-105355 virus, and Sunday Canyon virus would be classified into a Murre virus species; and Grand Arbaud virus, Precarious Point virus, and Manawa virus would each be given individual species status. Although limited sequence similarity was detected between current members of the Uukuniemi group and Severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland virus, a clear serological reaction was observed between some of them, indicating that SFTSV and Heartland virus should be considered part of the Uukuniemi virus group. Moreover, based on the genomic diversity of the phleboviruses and given the low correlation observed between complement fixation titers and genetic distance, we propose a system for classification of the Bunyaviridae based on genetic as well as serological data. Finally, the recent descriptions of SFTSV and Heartland virus also indicate that the public health importance of the Uukuniemi group viruses must be reevaluated.


Subject(s)
Uukuniemi virus/classification , Genome, Viral , Genotype , RNA, Viral/genetics , Sequence Analysis, DNA , Serotyping , Uukuniemi virus/genetics , Uukuniemi virus/immunology
5.
Virus Res ; 167(1): 118-23, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22808531

ABSTRACT

The aim of this study was to evaluate the contribution of positively charged amino acid residues for the Uukuniemi virus (UUKV) N protein functionality. Based on phlebovirus nucleocapsid (N) protein alignments and 3D-structure predictions of UUKV N protein, 14 positively charged residues were chosen as targets for the mutagenesis. The impact of mutations to the N protein functionality was analyzed using minigenome-, virus-like particle-, and mammalian two-hybrid-assays. Seven of the mutations affected the functional competence in all three assays, while others had milder impact or no impact at all. In the 3D-model of UUKV N protein, five of the affected residues, R61, R64, R73, R98 and R115, were located either within or in close proximity to the central cavity that could potentially bind RNA.


Subject(s)
Mutation , Nucleocapsid Proteins/genetics , Uukuniemi virus/genetics , Amino Acid Sequence , Amino Acids/chemistry , Amino Acids/genetics , Amino Acids/metabolism , DNA Mutational Analysis , Molecular Sequence Data , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , Phlebovirus/chemistry , Phlebovirus/genetics , Phlebovirus/metabolism , Sequence Alignment , Uukuniemi virus/chemistry , Uukuniemi virus/metabolism
6.
J Virol ; 81(7): 3198-205, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17229712

ABSTRACT

We have analyzed the importance of specific amino acids in the cytoplasmic tail of the glycoprotein G(N) for packaging of ribonucleoproteins (RNPs) into virus-like particles (VLPs) of Uukuniemi virus (UUK virus), a member of the Bunyaviridae family. In order to study packaging, we added the G(N)/G(C) glycoprotein precursor (p110) to a polymerase I-driven minigenome rescue system to generate VLPs that are released into the supernatant. These particles can infect new cells, and reporter gene expression can be detected. To determine the role of UUK virus glycoproteins in RNP packaging, we performed an alanine scan of the glycoprotein G(N) cytoplasmic tail (amino acids 1 to 81). First, we discovered three regions in the tail (amino acids 21 to 25, 46 to 50, and 71 to 81) which are important for minigenome transfer by VLPs. Further mutational analysis identified four amino acids that were important for RNP packaging. These amino acids are essential for the binding of nucleoproteins and RNPs to the glycoprotein without affecting the morphology of the particles. No segment-specific interactions between the RNA and the cytoplasmic tail could be observed. We propose that VLP systems are useful tools for analyzing protein-protein interactions important for packaging of viral genome segments, assembly, and budding of other members of the Bunyaviridae family.


Subject(s)
Cytoplasm/metabolism , Genome, Viral/genetics , Glycoproteins/metabolism , Ribonucleoproteins/metabolism , Uukuniemi virus/genetics , Uukuniemi virus/metabolism , Virus Assembly , Alanine/genetics , Alanine/metabolism , Amino Acid Sequence , Animals , Cell Line , Cricetinae , Genes, Reporter/genetics , Glycoproteins/chemistry , Glycoproteins/genetics , Microscopy, Electron, Transmission , Molecular Sequence Data , Mutation/genetics , Nucleoproteins/genetics , Nucleoproteins/metabolism , Protein Binding , Uukuniemi virus/ultrastructure , Virion/genetics , Virion/metabolism , Virion/ultrastructure
7.
J Virol ; 80(21): 10428-35, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16928751

ABSTRACT

In the present report we describe an infectious virus-like particle (VLP) system for the Uukuniemi (UUK) virus, a member of the Bunyaviridae family. It utilizes our recently developed reverse genetic system based on the RNA polymerase I minigenome system for UUK virus used to study replication, encapsidation, and transcription by monitoring reporter gene expression. Here, we have added the glycoprotein precursor expression plasmid together with the minigenome, nucleoprotein, and polymerase to generate VLPs, which incorporate the minigenome and are released into the supernatant. The particles are able to infect new cells, and reporter gene expression can be monitored if the trans-acting viral proteins (RNA polymerase and nucleoprotein) are also expressed in these cells. No minigenome transfer occurred in the absence of glycoproteins, demonstrating that the glycoproteins are absolutely required for the generation of infectious particles. Moreover, expression of glycoproteins alone was sufficient to produce and release VLPs. We show that the ribonucleoproteins (RNPs) are incorporated into VLPs but are not required for the generation of particles. Morphological analysis of the particles by electron microscopy revealed that VLPs, either with or without minigenomes, display a surface morphology indistinguishable from that of the authentic UUK virus and that they bud into Golgi vesicles in the same way as UUK virus does. This infectious VLP system will be very useful for studying the bunyaviral structural components required for budding and packaging of RNPs and receptor binding and may also be useful for the development of new vaccines for the human pathogens from this family.


Subject(s)
Uukuniemi virus/physiology , Animals , Bunyaviridae Infections/virology , Cell Line , Cricetinae , Genome, Viral , Golgi Apparatus/ultrastructure , Golgi Apparatus/virology , Microscopy, Electron , Neutralization Tests , Transfection , Uukuniemi virus/genetics , Uukuniemi virus/pathogenicity , Uukuniemi virus/ultrastructure , Virion/genetics , Virion/pathogenicity , Virion/physiology , Virion/ultrastructure , Virus Assembly
8.
J Virol ; 76(21): 10849-60, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12368328

ABSTRACT

We have performed an extensive mutational analysis of the proposed promoter region of the phlebovirus Uukuniemi (UUK), a member of the Bunyaviridae family. This was achieved by using a recently developed RNA polymerase I (Pol I)-driven reverse genetics system (R. Flick and R. F. Pettersson, J. Virol. 75:1643-1655, 2001). Chimeric cDNAs containing the coding region for the reporter chloramphenicol acetyltransferase (CAT) in an antisense orientation were flanked by the 5'- and 3'-terminal nontranslated regions of the UUK virus-sense RNA (vRNA) derived from the medium-sized (M) RNA segment. The chimeric cDNAs (Pol I expression cassettes) were cloned between the murine Pol I promoter and terminator, and the plasmids were transfected into BHK-21 cells. CAT activity was determined after cotransfection with viral expression plasmids encoding the RNA-dependent RNA polymerase (L) and the nucleoprotein (N) or, alternatively, after superinfection with UUK virus helper virus. Using oligonucleotide-directed mutagenesis, single point mutations (substitutions, deletions, and insertions) were introduced into the viral promoter region. Differences in CAT activities were interpreted to reflect the efficiency of mRNA transcription from the mutated promoter and the influence on RNA replication. Analysis of 109 mutants allowed us to define two important regulatory regions within the proximal promoter region (site A, positions 3 to 5 and 2 to 4; site B, positions 8 and 8, where underlined nucleotides refer to positions in the vRNA 3' end). Complementary double nucleotide exchanges in the proximal promoter region, which maintained the possibility for base pairing between the 5' and 3' ends, demonstrated that nucleotides in the two described regions are essential for viral polymerase recognition in a base-specific manner. Thus, mere preservation of panhandle base pairing between the 5' and 3' ends is not sufficient for promoter activity. In conclusion, we have been able to demonstrate that both ends of the M RNA segment build up the promoter region and are involved in the specific recognition by the viral polymerase.


Subject(s)
Promoter Regions, Genetic , Uukuniemi virus/genetics , Animals , Cell Line , Chloramphenicol O-Acetyltransferase/genetics , Cricetinae , DNA, Viral , Mutagenesis , RNA, Viral , Untranslated Regions
9.
J Virol ; 75(4): 1643-55, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11160662

ABSTRACT

We describe here the development of a reverse genetics system for the phlebovirus Uukuniemi virus, a member of the Bunyaviridae family, by using RNA polymerase I (pol I)-mediated transcription. Complementary DNAs containing the coding sequence for either chloramphenicol acetyltransferase (CAT) or green fluorescent protein (GFP) (both in antisense orientation) were flanked by the 5'- and 3'-terminal untranslated regions of the Uukuniemi virus sense or complementary RNA derived from the medium-sized (M) RNA segment. This chimeric cDNA (pol I expression cassette) was cloned between the murine pol I promoter and terminator and the plasmid transfected into BHK-21 cells. When such cells were either superinfected with Uukuniemi virus or cotransfected with expression plasmids encoding the L (RNA polymerase), N (nucleoprotein), and NSs (nonstructural protein) viral proteins, strong CAT activity or GFP expression was observed. CAT activity was consistently stronger in cells expressing L plus N than following superinfection. No activity was seen without superinfection, nor was activity detected when either the L or N expression plasmid was omitted. Omitting NSs expression had no effect on CAT activity or GFP expression, indicating that this protein is not needed for viral RNA replication or transcription. CAT activity could be serially passaged to fresh cultures by transferring medium from CAT-expressing cells, indicating that recombinant virus containing the reporter construct had been produced. In summary, we demonstrate that the RNA pol I system, originally developed for influenza virus, which replicates in the nucleus, has strong potential for the development of an efficient reverse genetics system also for Bunyaviridae members, which replicate in the cytoplasm.


Subject(s)
Bunyaviridae Infections/virology , RNA Polymerase I/metabolism , Transcription, Genetic , Uukuniemi virus/genetics , Animals , Base Sequence , Cell Line , Chloramphenicol O-Acetyltransferase/genetics , Chloramphenicol O-Acetyltransferase/metabolism , Cricetinae , DNA, Complementary/genetics , Genes, Reporter/genetics , Genes, Reporter/physiology , Green Fluorescent Proteins , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Molecular Sequence Data , Plasmids/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Recombinant Fusion Proteins/metabolism , Transfection , Uukuniemi virus/metabolism
10.
J Virol ; 72(12): 9585-96, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9811692

ABSTRACT

Members of the Bunyaviridae family acquire an envelope by budding through the lipid bilayer of the Golgi complex. The budding compartment is thought to be determined by the accumulation of the two heterodimeric membrane glycoproteins G1 and G2 in the Golgi. We recently mapped the retention signal for Golgi localization in one Bunyaviridae member (Uukuniemi virus) to the cytoplasmic tail of G1. We now show that a myc-tagged 81-residue G1 tail peptide expressed in BHK21 cells is efficiently targeted to the Golgi complex and retained there during a 3-h chase. Green-fluorescence protein tagged at either end with this peptide or with a C-terminally truncated 60-residue G1 tail peptide was also efficiently targeted to the Golgi. The 81-residue peptide colocalized with mannosidase II (a medial Golgi marker) and partially with p58 (an intermediate compartment marker) and TGN38 (a trans-Golgi marker). In addition, the 81-residue tail peptide induced the formation of brefeldin A-resistant vacuoles that did not costain with markers for other membrane compartments. Removal of the first 10 N-terminal residues had no effect on the Golgi localization but abolished the vacuolar staining. The shortest peptide still able to become targeted to the Golgi encompassed residues 10 to 40. Subcellular fractionation showed that the 81-residue tail peptide was associated with microsomal membranes. Removal of the two palmitylation sites from the tail peptide did not affect Golgi localization and had only a minor effect on the association with microsomal membranes. Taken together, the results provide strong evidence that Golgi retention of the heterodimeric G1-G2 spike protein complex of Uukuniemi virus is mediated by a short region in the cytoplasmic tail of the G1 glycoprotein.


Subject(s)
Golgi Apparatus/virology , Membrane Glycoproteins/physiology , Uukuniemi virus/physiology , Uukuniemi virus/pathogenicity , Viral Proteins/physiology , Amino Acid Sequence , Animals , CD4 Antigens/genetics , CD4 Antigens/physiology , Cell Line , Cricetinae , Cytoplasm/virology , HeLa Cells , Humans , Intracellular Membranes/virology , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/physiology , Protein Sorting Signals/chemistry , Protein Sorting Signals/genetics , Protein Sorting Signals/physiology , Rats , Uukuniemi virus/genetics , Vacuoles/virology , Viral Proteins/chemistry , Viral Proteins/genetics
11.
J Virol ; 71(6): 4717-27, 1997 Jun.
Article in English | MEDLINE | ID: mdl-9151865

ABSTRACT

Members of the Bunyaviridae family mature by a budding process in the Golgi complex. The site of maturation is thought to be largely determined by the accumulation of the two spike glycoproteins, G1 and G2, in this organelle. Here we show that the signal for localizing the Uukuniemi virus (a phlebovirus) spike protein complex to the Golgi complex resides in the cytoplasmic tail of G1. We constructed chimeric proteins in which the ectodomain, transmembrane domain (TMD), and cytoplasmic tail (CT) of Uukuniemi virus G1 were exchanged with the corresponding domains of either vesicular stomatitis virus G protein (VSV G), chicken lysozyme, or CD4, all proteins readily transported to the plasma membrane. The chimeras were expressed in HeLa or BHK-21 cells by using either the T7 RNA polymerase-driven vaccinia virus system or the Semliki Forest virus system. The fate of the chimeric proteins was monitored by indirect immunofluorescence, and their localizations were compared by double labeling with markers specific for the Golgi complex. The results showed that the ectodomain and TMD (including the 10 flanking residues on either side of the membrane) of G1 played no apparent role in targeting chimeric proteins to the Golgi complex. Instead, all chimeras containing the CT of G1 were efficiently targeted to the Golgi complex and colocalized with mannosidase II, a Golgi-specific enzyme. Conversely, replacing the CT of G1 with that from VSV G resulted in the efficient transport of the chimeric protein to the cell surface. Progressive deletions of the G1 tail suggested that the Golgi retention signal maps to a region encompassing approximately residues 10 to 50, counting from the proposed border between the TMD and the tail. Both G1 and G2 were found to be acylated, as shown by incorporation of [3H]palmitate into the viral proteins. By mutational analyses of CD4-G1 chimeras, the sites for palmitylation were mapped to two closely spaced cysteine residues in the G1 tail. Changing either or both of these cysteines to alanine had no effect on the targeting of the chimeric protein to the Golgi complex.


Subject(s)
Golgi Apparatus/microbiology , Membrane Glycoproteins/metabolism , Uukuniemi virus/growth & development , Viral Proteins/metabolism , Amino Acid Sequence , Biological Transport , CD4 Antigens/metabolism , Cell Compartmentation , Cysteine/chemistry , Cytoplasm/chemistry , Fluorescent Antibody Technique, Indirect , HeLa Cells , Humans , Membrane Glycoproteins/chemistry , Molecular Sequence Data , Palmitates/metabolism , Protein Processing, Post-Translational , Recombinant Fusion Proteins , Sequence Deletion , Structure-Activity Relationship , Uukuniemi virus/genetics , Viral Envelope Proteins/chemistry , Viral Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...