Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 89(9): 4849-56, 2015 May.
Article in English | MEDLINE | ID: mdl-25673721

ABSTRACT

UNLABELLED: Uukuniemi virus (UUKV) is a tick-borne member of the Phlebovirus genus (family Bunyaviridae) and has been widely used as a safe laboratory model to study aspects of bunyavirus replication. Recently, a number of new tick-borne phleboviruses have been discovered, some of which, like severe fever with thrombocytopenia syndrome virus and Heartland virus, are highly pathogenic in humans. UUKV could now serve as a useful comparator to understand the molecular basis for the different pathogenicities of these related viruses. We established a reverse-genetics system to recover UUKV entirely from cDNA clones. We generated two recombinant viruses, one in which the nonstructural protein NSs open reading frame was deleted from the S segment and one in which the NSs gene was replaced with green fluorescent protein (GFP), allowing convenient visualization of viral infection. We show that the UUKV NSs protein acts as a weak interferon antagonist in human cells but that it is unable to completely counteract the interferon response, which could serve as an explanation for its inability to cause disease in humans. IMPORTANCE: Uukuniemi virus (UUKV) is a tick-borne phlebovirus that is apathogenic for humans and has been used as a convenient model to investigate aspects of phlebovirus replication. Recently, new tick-borne phleboviruses have emerged, such as severe fever with thrombocytopenia syndrome virus in China and Heartland virus in the United States, that are highly pathogenic, and UUKV will now serve as a comparator to aid in the understanding of the molecular basis for the virulence of these new viruses. To help such investigations, we have developed a reverse-genetics system for UUKV that permits manipulation of the viral genome. We generated viruses lacking the nonstructural protein NSs and show that UUKV NSs is a weak interferon antagonist. In addition, we created a virus that expresses GFP and thus allows convenient monitoring of virus replication. These new tools represent a significant advance in the study of tick-borne phleboviruses.


Subject(s)
Interferons/antagonists & inhibitors , Uukuniemi virus/immunology , Uukuniemi virus/physiology , Viral Nonstructural Proteins/metabolism , Cell Line , DNA, Complementary/genetics , DNA, Viral/genetics , Gene Deletion , Humans , Recombination, Genetic , Reverse Genetics , Uukuniemi virus/genetics , Viral Nonstructural Proteins/genetics
2.
J Virol ; 87(6): 3187-95, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23283959

ABSTRACT

Evolutionary insights into the phleboviruses are limited because of an imprecise classification scheme based on partial nucleotide sequences and scattered antigenic relationships. In this report, the serologic and phylogenetic relationships of the Uukuniemi group viruses and their relationships with other recently characterized tick-borne phleboviruses are described using full-length genome sequences. We propose that the viruses currently included in the Uukuniemi virus group be assigned to five different species as follows: Uukuniemi virus, EgAn 1825-61 virus, Fin V707 virus, Chizé virus, and Zaliv Terpenia virus would be classified into the Uukuniemi species; Murre virus, RML-105-105355 virus, and Sunday Canyon virus would be classified into a Murre virus species; and Grand Arbaud virus, Precarious Point virus, and Manawa virus would each be given individual species status. Although limited sequence similarity was detected between current members of the Uukuniemi group and Severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland virus, a clear serological reaction was observed between some of them, indicating that SFTSV and Heartland virus should be considered part of the Uukuniemi virus group. Moreover, based on the genomic diversity of the phleboviruses and given the low correlation observed between complement fixation titers and genetic distance, we propose a system for classification of the Bunyaviridae based on genetic as well as serological data. Finally, the recent descriptions of SFTSV and Heartland virus also indicate that the public health importance of the Uukuniemi group viruses must be reevaluated.


Subject(s)
Uukuniemi virus/classification , Genome, Viral , Genotype , RNA, Viral/genetics , Sequence Analysis, DNA , Serotyping , Uukuniemi virus/genetics , Uukuniemi virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...