Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.314
Filter
2.
Methods Mol Biol ; 2775: 411-422, 2024.
Article in English | MEDLINE | ID: mdl-38758334

ABSTRACT

Cryptococcus neoformans infections are a major worldwide concern as current treatment strategies are becoming less effective in alleviating the infection. The most extreme and fatal cases are those of immunocompromised individuals. Clinical treatments for cryptococcosis are limited to a few classes of approved drugs, and due to a rise in drug resistance, these drugs are becoming less effective. Therefore, it is essential to develop innovative ways to control this infection. Vaccinations have emerged as a safe, viable, and cost-effective solution to treat a number of diseases over the years. Currently, there are no clinically available vaccines to treat cryptococcal infections, but a number of studies have shown promising results in animal models. Here, we present step-by-step experimental protocols using live-attenuated or heat-killed C. neoformans cells as a vaccination strategy in a preventive or in a therapeutic murine model of cryptococcosis.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Disease Models, Animal , Fungal Vaccines , Cryptococcus neoformans/immunology , Cryptococcosis/immunology , Cryptococcosis/prevention & control , Animals , Fungal Vaccines/immunology , Mice , Vaccination/methods , Vaccines, Attenuated/immunology , Humans
3.
Methods Mol Biol ; 2775: 393-410, 2024.
Article in English | MEDLINE | ID: mdl-38758333

ABSTRACT

Creating a safe and effective vaccine against infection by the fungal pathogen Cryptococcus neoformans is an appealing option that complements the discovery of new small molecule antifungals. Recent animal studies have yielded promising results for a variety of vaccines that include live-attenuated and heat-killed whole-cell vaccines, as well as subunit vaccines formulated around recombinant proteins. Some of the recombinantly engineered cryptococcal mutants in the chitosan biosynthesis pathway are avirulent and very effective at conferring protective immunity. Mice vaccinated with these avirulent chitosan-deficient strains are protected from a lethal pulmonary infection with C. neoformans strain KN99. Heat-killed derivatives of the vaccination strains are likewise effective in a murine model of infection. The efficacy of these whole-cell vaccines, however, is dependent on a number of factors, including the inoculation dose, route of vaccination, frequency of vaccination, and the specific mouse strain used in the study. Here, we present detailed methods for identifying and optimizing various factors influencing vaccine potency and efficacy in various inbred mouse strains using a chitosan-deficient cda1Δcda2Δcda3Δ strain as a whole-cell vaccine candidate. This chapter describes the protocols for immunizing three different laboratory mouse strains with vaccination regimens that use intranasal, orotracheal, and subcutaneous vaccination routes after the animals were sedated using two different types of anesthesia.


Subject(s)
Chitosan , Cryptococcosis , Cryptococcus neoformans , Fungal Vaccines , Animals , Chitosan/chemistry , Mice , Fungal Vaccines/immunology , Fungal Vaccines/genetics , Fungal Vaccines/administration & dosage , Cryptococcosis/immunology , Cryptococcosis/prevention & control , Cryptococcosis/microbiology , Cryptococcus neoformans/immunology , Cryptococcus neoformans/genetics , Disease Models, Animal , Vaccination/methods , Female , Vaccines, Attenuated/immunology , Vaccines, Attenuated/genetics
4.
Vet Q ; 44(1): 1-12, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38726839

ABSTRACT

Duck plague (DP) is an acute, contagious and fatal disease, caused by duck enteritis virus (DEV), with worldwide distribution causing several outbreaks and posing severe economic losses. The present study was carried out with a goal of development of a live attenuated cell culture based DP vaccine using an Indian strain of DEV and evaluation of its safety, efficacy along with complete genome analysis. The live attenuated DP vaccine (DPvac/IVRI-19) was developed by serial propagation of a virulent isolate of DEV (DEV/India/IVRI-2016) in the chicken embryo fibroblast (CEF) primary cell culture. Adaptation of DEV in CEF cell culture was indicated by more rapid appearance of cytopathic effects (CPE) and gradual increase of virus titre, which reached up to 107.5 TCID50/mL after 41 passages. The safety, immunogenicity and efficacy of the vaccine were determined by immunization trials in ducklings. The DPvac/IVRI-19 was found to be avirulent and completely safe in the ducklings. Further, the vaccine induced both humoral and cell mediated immune responses and afforded 100% protection against the virulent DEV challenge. A comparison of the whole genome of DPvac/IVRI-19 (MZ911871) and DEV/India/IVRI-2016 (MZ824102) revealed significant number of mutations, which might be associated with viral attenuation. Phylogenetic tree of DEV/India/IVRI-2016 revealed its evolutionary relationship with other DEV isolates, but it formed a separate cluster with certain unique mutations. Thus, with the proven safety and 100% efficacy, the DPvac/IVRI-19 is suitable for large scale production with precisely pure form of vaccine and has potential utility at national and global levels.


Subject(s)
Ducks , Fibroblasts , Mardivirus , Poultry Diseases , Vaccines, Attenuated , Viral Vaccines , Animals , Vaccines, Attenuated/immunology , Ducks/virology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Fibroblasts/virology , Chick Embryo , Viral Vaccines/immunology , Mardivirus/immunology , Mardivirus/pathogenicity , Herpesviridae Infections/veterinary , Herpesviridae Infections/prevention & control , Herpesviridae Infections/virology , India
5.
PLoS Pathog ; 20(5): e1012198, 2024 May.
Article in English | MEDLINE | ID: mdl-38739647

ABSTRACT

Respiratory syncytial virus (RSV) is the most important viral agent of severe pediatric respiratory illness worldwide, but there is no approved pediatric vaccine. Here, we describe the development of the live-attenuated RSV vaccine candidate Min AL as well as engineered derivatives. Min AL was attenuated by codon-pair deoptimization (CPD) of seven of the 11 RSV open reading frames (ORFs) (NS1, NS2, N, P, M, SH and L; 2,073 silent nucleotide substitutions in total). Min AL replicated efficiently in vitro at the permissive temperature of 32°C but was highly temperature sensitive (shut-off temperature of 36°C). When serially passaged at increasing temperatures, Min AL retained greater temperature sensitivity compared to previous candidates with fewer CPD ORFs. However, whole-genome deep-sequencing of passaged Min AL revealed mutations throughout its genome, most commonly missense mutations in the polymerase cofactor P and anti-termination transcription factor M2-1 (the latter was not CPD). Reintroduction of selected mutations into Min AL partially rescued its replication in vitro at temperatures up to 40°C, confirming their compensatory effect. These mutations restored the accumulation of positive-sense RNAs to wild-type (wt) RSV levels, suggesting increased activity by the viral transcriptase, whereas viral protein expression, RNA replication, and virus production were only partly rescued. In hamsters, Min AL and derivatives remained highly restricted in replication in the upper and lower airways, but induced serum IgG and IgA responses to the prefusion form of F (pre F) that were comparable to those induced by wt RSV, as well as robust mucosal and systemic IgG and IgA responses against RSV G. Min AL and derivatives were fully protective against challenge virus replication. The derivatives had increased genetic stability compared to Min AL. Thus, Min AL and derivatives with selected mutations are stable, attenuated, yet highly-immunogenic RSV vaccine candidates that are available for further evaluation.


Subject(s)
Open Reading Frames , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Vaccines, Attenuated , Virus Replication , Animals , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus Vaccines/genetics , Vaccines, Attenuated/immunology , Vaccines, Attenuated/genetics , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Cricetinae , Administration, Intranasal , Codon , Immunity, Mucosal , Antibodies, Viral/immunology , Antibodies, Viral/blood , Humans , Respiratory Syncytial Virus, Human/immunology , Respiratory Syncytial Virus, Human/genetics , Mesocricetus , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/genetics
6.
Vet Immunol Immunopathol ; 272: 110772, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704989

ABSTRACT

A live, infectious vaccine candidate for epizootic bovine abortion, designated EBAA Vaccine, USDA-APHIS Product code #1544.00, has been reported to be both safe and effective. Previous studies established that a single dose of EBAA vaccine administered to cows at potencies of either 2000 or 500 live P. abortibovis-infected murine spleen cells (P.a.-LIC) induced protective immunity for a minimum of 5 months. The current study employed 19 pregnant cows that were challenged with P. abortibovis in their 2nd trimester of gestation; 9 were vaccinated 17.2-months earlier as 1-year-olds with 2000 P.a.-LIC and 10 served as negative controls. Eighty-nine percent of the vaccinates gave birth to healthy calves as compared to 10% of challenge controls. Vaccine efficacy was significant when analyzed by prevented fractions (87.7%; 95% CI=0.4945-0.9781). Serologic data supports previous findings that pregnant cows with detectable P. abortibovis antibodies are immune to P. abortibovis challenge as demonstrated by the birth of healthy calves.


Subject(s)
Abortion, Veterinary , Animals , Cattle , Female , Pregnancy , Abortion, Veterinary/immunology , Abortion, Veterinary/prevention & control , Cattle Diseases/immunology , Cattle Diseases/prevention & control , Seasons , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage
7.
Viral Immunol ; 37(4): 216-219, 2024 05.
Article in English | MEDLINE | ID: mdl-38717823

ABSTRACT

In May 2022, mpox began to spread worldwide, posing a serious threat to human public health. Modified Vaccinia Ankara-Bavaria Nordic (MVA-BN) is a live attenuated orthopoxvirus vaccine that has been authorized by the U.S. Food and Drug Administration as the vaccine of choice for the prevention of mpox. In this study, we conducted a meta-analysis of all currently published literature on the efficacy and safety of the MVA-BN vaccine in the real world, showing that the MVA-BN vaccine is effective and safe, with efficacy of up to 75% with a single dose and up to 80% with a two-dose vaccine. Meanwhile, we found that subcutaneous injection has lower local and systemic adverse events than intradermal injection, regardless of single- or two-dose vaccination, and subcutaneous injection is better tolerated in children, the elderly, or people with underlying medical conditions. These results have important reference value for clinical practice.


Subject(s)
Vaccine Efficacy , Vaccines, Attenuated , Humans , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Poxviridae Infections/prevention & control , Poxviridae Infections/immunology , Vaccinia virus/immunology , Vaccinia virus/genetics , Vaccination , Injections, Subcutaneous , Injections, Intradermal , Viral Vaccines/adverse effects , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Orthopoxvirus/immunology , Orthopoxvirus/genetics , Child
8.
JCI Insight ; 9(9)2024 May 08.
Article in English | MEDLINE | ID: mdl-38716733

ABSTRACT

Vaccination of malaria-naive volunteers with a high dose of Plasmodium falciparum sporozoites chemoattenuated by chloroquine (CQ) (PfSPZ-CVac [CQ]) has previously demonstrated full protection against controlled human malaria infection (CHMI). However, lower doses of PfSPZ-CVac [CQ] resulted in incomplete protection. This provides the opportunity to understand the immune mechanisms needed for better vaccine-induced protection by comparing individuals who were protected with those not protected. Using mass cytometry, we characterized immune cell composition and responses of malaria-naive European volunteers who received either lower doses of PfSPZ-CVac [CQ], resulting in 50% protection irrespective of the dose, or a placebo vaccination, with everyone becoming infected following CHMI. Clusters of CD4+ and γδ T cells associated with protection were identified, consistent with their known role in malaria immunity. Additionally, EMRA CD8+ T cells and CD56+CD8+ T cell clusters were associated with protection. In a cohort from a malaria-endemic area in Gabon, these CD8+ T cell clusters were also associated with parasitemia control in individuals with lifelong exposure to malaria. Upon stimulation with P. falciparum-infected erythrocytes, CD4+, γδ, and EMRA CD8+ T cells produced IFN-γ and/or TNF, indicating their ability to mediate responses that eliminate malaria parasites.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Sporozoites , Humans , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , CD8-Positive T-Lymphocytes/immunology , Adult , Sporozoites/immunology , Male , CD4-Positive T-Lymphocytes/immunology , Chloroquine/therapeutic use , Chloroquine/pharmacology , Female , Young Adult , Gabon , Vaccination/methods , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Europe , Parasitemia/immunology , Adolescent , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , European People
9.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 441-446, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38645870

ABSTRACT

Objective: To study the immunoadjuvant effects of chitosan oligosaccharide (COS), including the immune activation and the triggering of lysosomal escape, and to explore whether COS can be used as an adjuvant for attenuated live bacteria vector vaccines. Methods: 1) Mouse macrophages RAW264.7 cells were cultured with COS at 0 mg/mL (the control group) and 0.1-4 mg/mL for 24 h and the effect on cell viability was measured by CCK8 assay. Mouse macrophages RAW264.7 were treated with COS at 0 (the control group), 1, 2, and 4 mg/mL for 24 h. Then, the mRNA expression levels of the cytokines, including IFN-γ, IL-10, TGF-ß, and TLR4, were determined by RT-qPCR assay. 2) RAW264.7 cells were treated with 1 mL of PBS containing different components, including calcein at 50 µg/mL, COS at 2 mg/mL, and bafilomycin A1, an inhibitor, at 1 µmol/mL, for culturing. The cells were divided into the Calcein group, Calcein+COS group, and Calcein+COS+Bafilomycin A1 group accordingly. Laser scanning confocal microscopy was used to observe the phagocytosis and the intracellular fluorescence distribution of calcein, a fluorescent dye, in RAW264.7 cells in the presence or absence of COS intervention to determine whether COS was able to trigger lysosomal escape. 3) LM∆E6E7 and LI∆E6E7, the attenuated Listeria vector candidate therapeutic vaccines for cervical cancer, were encapsulated with COS at the mass concentrations of 0.5 mg/mL, 1 mg/mL, 2 mg/mL , 4 mg/mL, and 8 mg/mL. Then, the changes in zeta potential were measured to select the concentration of COS that successfully encapsulated the bacteria. Phagocytosis of the vaccine strains by RAW264.7 cells was measured before and after LM∆E6E7 and LI∆E6E7 were coated with COS at 2 mg/mL. Results: 1) CCK8 assays showed that, compared with the findings for the control group, the intervention of RAW264.7 cells with COS at different concentrations for 24 h was not toxic to the cells and promoted cell proliferation, with the difference being statistically significant (P<0.05). According to the RT-qPCR results, compared with those of the control group, the COS intervention up-regulated the mRNA levels of TLR4 and IFN-γ in RAW264.7 cells, while it inhibited the mRNA expression levels of TGF-ß and IL-10, with the most prominent effect being observed in the 4 mg/mL COS group (P<0.05). 2) Laser scanning confocal microscopy revealed that the amount of fluorescent dye released from lysosomes into the cells was greater in the Calcein+COS group than that in the Calcein group. In other words, a greater amount of fluorescent dye was released from lysosomes into the cells under COS intervention. Furthermore, this process could be blocked by bafilomycin A1. 3) The zeta potential results showed that COS could successfully encapsulate the surface of bacteria when its mass concentration reached 2 mg/mL. Before and after the vaccine strain was encapsulated by COS, the phagocytosis of LM∆E6E7 by RAW264.7 cells was 5.70% and 22.00%, respectively, showing statistically significant differences (P<0.05); the phagocytosis of LI∆E6E7 by RAW264.7 cells was 1.55% and 6.12%, respectively, showing statistically significant differences (P<0.05). Conclusion: COS has the effect of activating the immune response of macrophages and triggering lysosomal escape. The candidates strains of coated live attenuated bacterial vector vaccines can promote the phagocytosis of bacteria by macrophages. Further research is warranted to develop COS into an adjuvant for bacterial vector vaccine.


Subject(s)
Adjuvants, Immunologic , Bacterial Vaccines , Chitosan , Oligosaccharides , Animals , Mice , RAW 264.7 Cells , Oligosaccharides/pharmacology , Adjuvants, Immunologic/pharmacology , Bacterial Vaccines/immunology , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Vaccines, Attenuated/immunology , Cytokines/metabolism , Cell Survival/drug effects
10.
Nat Commun ; 15(1): 3553, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670948

ABSTRACT

Immunization via the respiratory route is predicted to increase the effectiveness of a SARS-CoV-2 vaccine. Here, we evaluate the immunogenicity and protective efficacy of one or two doses of a live-attenuated murine pneumonia virus vector expressing SARS-CoV-2 prefusion-stabilized spike protein (MPV/S-2P), delivered intranasally/intratracheally to male rhesus macaques. A single dose of MPV/S-2P is highly immunogenic, and a second dose increases the magnitude and breadth of the mucosal and systemic anti-S antibody responses and increases levels of dimeric anti-S IgA in the airways. MPV/S-2P also induces S-specific CD4+ and CD8+ T-cells in the airways that differentiate into large populations of tissue-resident memory cells within a month after the boost. One dose induces substantial protection against SARS-CoV-2 challenge, and two doses of MPV/S-2P are fully protective against SARS-CoV-2 challenge virus replication in the airways. A prime/boost immunization with a mucosally-administered live-attenuated MPV vector could thus be highly effective in preventing SARS-CoV-2 infection and replication.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Macaca mulatta , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Male , Antibodies, Viral/immunology , Mice , CD8-Positive T-Lymphocytes/immunology , Genetic Vectors/immunology , Genetic Vectors/genetics , Antibodies, Neutralizing/immunology , Administration, Intranasal , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Immunoglobulin A/immunology , CD4-Positive T-Lymphocytes/immunology , Humans
11.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673913

ABSTRACT

Shigellosis is a severe gastrointestinal disease that annually affects approximately 270 million individuals globally. It has particularly high morbidity and mortality in low-income regions; however, it is not confined to these regions and occurs in high-income nations when conditions allow. The ill effects of shigellosis are at their highest in children ages 2 to 5, with survivors often exhibiting impaired growth due to infection-induced malnutrition. The escalating threat of antibiotic resistance further amplifies shigellosis as a serious public health concern. This review explores Shigella pathology, with a primary focus on the status of Shigella vaccine candidates. These candidates include killed whole-cells, live attenuated organisms, LPS-based, and subunit vaccines. The strengths and weaknesses of each vaccination strategy are considered. The discussion includes potential Shigella immunogens, such as LPS, conserved T3SS proteins, outer membrane proteins, diverse animal models used in Shigella vaccine research, and innovative vaccine development approaches. Additionally, this review addresses ongoing challenges that necessitate action toward advancing effective Shigella prevention and control measures.


Subject(s)
Dysentery, Bacillary , Shigella Vaccines , Shigella , Humans , Shigella Vaccines/immunology , Shigella Vaccines/administration & dosage , Dysentery, Bacillary/prevention & control , Dysentery, Bacillary/immunology , Animals , Shigella/immunology , Shigella/pathogenicity , Vaccines, Subunit/immunology , Vaccine Development , Vaccines, Attenuated/immunology
12.
Front Immunol ; 15: 1367253, 2024.
Article in English | MEDLINE | ID: mdl-38646533

ABSTRACT

Bovine respiratory disease (BRD) is one of the most common diseases in the cattle industry worldwide; it is caused by multiple bacterial or viral coinfections, of which Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the most notable pathogens. Although live vaccines have demonstrated better efficacy against BRD induced by both pathogens, there are no combined live and marker vaccines. Therefore, we developed an attenuated and marker M. bovis-BoHV-1 combined vaccine based on the M. bovis HB150 and BoHV-1 gG-/tk- strain previously constructed in our lab and evaluated in rabbits. This study aimed to further evaluate its safety and protective efficacy in cattle using different antigen ratios. After immunization, all vaccinated cattle had a normal rectal temperature and mental status without respiratory symptoms. CD4+, CD8+, and CD19+ cells significantly increased in immunized cattle and induced higher humoral and cellular immune responses, and the expression of key cytokines such as IL-4, IL-12, TNF-α, and IFN-γ can be promoted after vaccination. The 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 BoHV-1 gG-/tk- combined strain elicited the most antibodies while significantly increasing IgG and cellular immunity after challenge. In conclusion, the M. bovis HB150 and BoHV-1 gG-/tk- combined strain was clinically safe and protective in calves; the mix of 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 BoHV-1 gG-/tk- strain was most promising due to its low amount of shedding and highest humoral and cellular immune responses compared with others. This study introduces an M. bovis-BoHV-1 combined vaccine for application in the cattle industry.


Subject(s)
Herpesvirus 1, Bovine , Mycoplasma bovis , Vaccines, Attenuated , Vaccines, Combined , Animals , Cattle , Herpesvirus 1, Bovine/immunology , Vaccines, Combined/immunology , Vaccines, Combined/administration & dosage , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Mycoplasma bovis/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/adverse effects , Cytokines/metabolism , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Mycoplasma Infections/prevention & control , Mycoplasma Infections/veterinary , Mycoplasma Infections/immunology , Vaccines, Marker/immunology , Vaccines, Marker/administration & dosage , Vaccination/veterinary , Vaccine Efficacy , Immunity, Humoral , Bovine Respiratory Disease Complex/prevention & control , Bovine Respiratory Disease Complex/immunology , Bovine Respiratory Disease Complex/virology
13.
PLoS Negl Trop Dis ; 18(4): e0012120, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38648230

ABSTRACT

Chikungunya fever virus (CHIKV) is a mosquito-borne alphavirus that causes wide-spread human infections and epidemics in Asia, Africa and recently, in the Americas. CHIKV is considered a priority pathogen by CEPI and WHO. Despite recent approval of a live-attenuated CHIKV vaccine, development of additional vaccines is warranted due to the worldwide outbreaks of CHIKV. Previously, we developed immunization DNA (iDNA) plasmid capable of launching live-attenuated CHIKV vaccine in vivo. Here we report the use of CHIKV iDNA plasmid to prepare a novel, live-attenuated CHIKV vaccine V5040 with rearranged RNA genome. In V5040, genomic RNA was rearranged to encode capsid gene downstream from the glycoprotein genes. Attenuated mutations derived from experimental CHIKV 181/25 vaccine were also engineered into E2 gene of V5040. The DNA copy of rearranged CHIKV genomic RNA with attenuated mutations was cloned into iDNA plasmid pMG5040 downstream from the CMV promoter. After transfection in vitro, pMG5040 launched replication of V5040 virus with rearranged genome and attenuating E2 mutations. Furthermore, V5040 virus was evaluated in experimental murine models for general safety and immunogenicity. Vaccination with V5040 virus subcutaneously resulted in elicitation of CHIKV-specific, virus-neutralizing antibodies. The results warrant further evaluation of V5040 virus with rearranged genome as a novel live-attenuated vaccine for CHIKV.


Subject(s)
Antibodies, Viral , Chikungunya Fever , Chikungunya virus , Genome, Viral , Vaccines, Attenuated , Viral Vaccines , Virus Replication , Animals , Vaccines, Attenuated/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/administration & dosage , Mice , Chikungunya virus/genetics , Chikungunya virus/immunology , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Chikungunya Fever/prevention & control , Chikungunya Fever/immunology , Chikungunya Fever/virology , Antibodies, Viral/blood , Female , Humans , Chlorocebus aethiops , Antibodies, Neutralizing/blood , Vero Cells , Mice, Inbred BALB C
14.
Vaccine ; 42(13): 3166-3171, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38677792

ABSTRACT

BACKGROUND: Immunisation against herpes zoster is recommended for adults aged ≥ 50 years. Two vaccines, a live attenuated (ZVL, Zostavax®) and an adjuvant recombinant subunit (HZ/su, Shingrix®), are available in Australia. Immunisation guidelines are shifting their recommendations towards HZ/su because of higher efficacy in preventing herpes zoster and associated complications. However, there are limited post-marketing data comparing the safety profiles of these vaccines. METHODS: Data from SmartVax, an active surveillance system for monitoring adverse events following immunisation (AEFIs) utilised by > 450 clinics throughout Australia, were analysed. Data from patients aged ≥ 50 years, who received ZVL or HZ/su, from 1 June 2021 to 31 May 2022, at clinics that utilised SmartVax were included. The proportion of records where patients who reported any, local, and systemic AEFIs after receiving ZVL or HZ/su were compared using multivariable logistic regression models. RESULTS: Data from 10,392 immunisation records (n = 8341 ZVL; n = 2051 HZ/su) were included. The proportion of AEFIs reported was higher with HZ/su (41.9 % [any], 33.8 % [local], 25.2 % [systemic]) than with ZVL (8.7 % [any], 6.2 % [local], 3.5 % [systemic]). After controlling for demographic variables, HZ/su presented a 6-fold increase in the odds (OR 6.44; 95 %CI: 5.57-7.46) of a reported AEFI compared to ZVL. Only 59 (0.6 %) of vaccinations lead to medical attention being sought due to an AEFI. CONCLUSIONS: While rates of AEFIs was higher with HZ/su than ZVL, most AEFIs were mild and did not require medical attention. Our findings support the change in vaccine recommendations and the use of HZ/su in immunisation programs.


Subject(s)
Herpes Zoster Vaccine , Herpes Zoster , Product Surveillance, Postmarketing , Humans , Herpes Zoster Vaccine/adverse effects , Herpes Zoster Vaccine/administration & dosage , Herpes Zoster Vaccine/immunology , Australia/epidemiology , Herpes Zoster/prevention & control , Herpes Zoster/epidemiology , Male , Female , Middle Aged , Aged , Vaccination/adverse effects , Aged, 80 and over , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Herpesvirus 3, Human/immunology , Adverse Drug Reaction Reporting Systems/statistics & numerical data
15.
Virus Res ; 345: 199378, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38643857

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant threat to human health globally. It is crucial to develop a vaccine to reduce the effect of the virus on public health, economy, and society and regulate the transmission of SARS-CoV-2. Influenza B virus (IBV) can be used as a vector that does not rely on the current circulating influenza A strains. In this study, we constructed an IBV-based vector vaccine by inserting a receptor-binding domain (RBD) into a non-structural protein 1 (NS1)-truncated gene (rIBV-NS110-RBD). Subsequently, we assessed its safety, immunogenicity, and protective efficacy against SARS-CoV-2 in mice, and observed that it was safe in a mouse model. Intranasal administration of a recombinant rIBV-NS110-RBD vaccine induced high levels of SARS-CoV-2-specific IgA and IgG antibodies and T cell-mediated immunity in mice. Administering two doses of the intranasal rIBV-NS110-RBD vaccine significantly reduced the viral load and lung damage in mice. This novel IBV-based vaccine offers a novel approach for controlling the SARS-CoV-2 pandemic.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Influenza B virus , Mice, Inbred BALB C , SARS-CoV-2 , Vaccines, Attenuated , Animals , Mice , Influenza B virus/immunology , Influenza B virus/genetics , Antibodies, Viral/blood , Antibodies, Viral/immunology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/immunology , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Female , Administration, Intranasal , Humans , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Immunoglobulin A/blood , Disease Models, Animal , Immunoglobulin G/blood , Viral Load , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology
16.
Hum Vaccin Immunother ; 20(1): 2341456, 2024 12 31.
Article in English | MEDLINE | ID: mdl-38650460

ABSTRACT

Few papers focus their attention on VZV vaccination effectiveness among people living with HIV (PLWH). Flanking the live attenuated vaccine (VZL) available, a newly recombinant vaccine (RZV) was recently introduced and approved for HZ prevention among adults. PLWH represents a population on which a particular attention should be applied, in order to guarantee the vaccine efficacy and safety. We performed a literature search in USNLM, PubMed, PubMed Central, PMC and Cochrane Library. From all the publications found eligible, data were extracted and processed per population, vaccine type, immunogenicity and ADRs. The review of the 13 included studies shows that both RZV and VZL are immunogenic and have an acceptable safety profile in adults and children living with HIV. However, given the lack of research available about vaccine efficacy in preventing VZV and HZ in PLWH, additional studies need to be performed, in order to achieve a full completeness of data.


Subject(s)
HIV Infections , Herpes Zoster Vaccine , Herpes Zoster , Vaccines, Attenuated , Vaccines, Synthetic , Humans , Vaccines, Attenuated/immunology , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/administration & dosage , HIV Infections/immunology , HIV Infections/prevention & control , Herpes Zoster Vaccine/immunology , Herpes Zoster Vaccine/adverse effects , Herpes Zoster Vaccine/administration & dosage , Vaccines, Synthetic/immunology , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/administration & dosage , Herpes Zoster/prevention & control , Herpes Zoster/immunology , Vaccines, Inactivated/immunology , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/administration & dosage , Immunogenicity, Vaccine , Vaccine Efficacy , Herpesvirus 3, Human/immunology , Adult , Child , Vaccination , Chickenpox Vaccine/immunology , Chickenpox Vaccine/administration & dosage , Chickenpox Vaccine/adverse effects
17.
Avian Dis ; 68(1): 18-24, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38687103

ABSTRACT

The application of live attenuated Salmonella Typhimurium vaccines has significantly helped control Salmonella in poultry products. Because the U.S. Department of Agriculture-Food Safety Inspection Service (USDA-FSIS) scores all Salmonella as positive, regardless of serovar, attenuated vaccine strains that are identified at processing contribute negatively toward Salmonella performance standards. This study was designed to determine the incidence of a live attenuated Salmonella serovar Typhimurium vaccine identified in broiler products by FSIS and to develop a PCR assay for screening of isolates. Salmonella Typhimurium short-read sequences from broiler samples uploaded to the National Center for Biotechnology Information (NCBI) Pathogen Detection database by the USDA-FSIS from 2016 to 2022 were downloaded and assembled. These were analyzed using the Basic Local Alignment Search Tool (BLAST) with a sequence unique to field strains, followed by a sequence unique to the vaccine strain. The PCR assays were developed against field and vaccine strains by targeting transposition events in the crp and cya genes and validated by screening Salmonella serovar Typhimurium isolates. Between 2016 and 2022, 1708 Salmonella Typhimurium isolates of chicken origin were found in the NCBI Pathogen Detection database, corresponding to 7.99% of all Salmonella identified. Of these, 104 (5.97%) were identified as the vaccine strain. The PCR assay differentiated field strains from the vaccine strain when applied to isolates and was also able to detect the vaccine strain from DNA isolated from mixed serovar overnight Salmonella enrichment cultures. Live attenuated Salmonella vaccines are a critical preharvest tool for Salmonella control and are widely used in industry. With forthcoming regulations that will likely focus on Salmonella Typhimurium, along with other serovars, there is a need to distinguish between isolates belonging to the vaccine strain and those that are responsible for causing human illness.


Detección in silico y por PCR de una cepa vacunal viva atenuada de Salmonella Typhimurium. La aplicación de vacunas vivas atenuadas contra Salmonella Typhimurium ha ayudado significativamente a controlar Salmonella en productos avícolas. Debido a que el Servicio de Inspección de Seguridad Alimentaria del Departamento de Agricultura de los Estados Unidos. (USDA-FSIS) califica todas las Salmonella como positivas, independientemente del serovar. Las cepas atenuadas de la vacuna que se identifican en el procesamiento contribuyen negativamente a los estándares de desempeño de Salmonella. Este estudio fue diseñado para determinar la incidencia de una vacuna viva atenuada de Salmonella serovar Typhimurium identificada en productos de pollo de engorde por el FSIS y para desarrollar un ensayo de PCR para la detección de aislados. Se recolectaron y ensamblaron secuencias de lectura corta de Salmonella Typhimurium de muestras de pollos de engorde introducidas en la plataforma de detección de patógenos del Centro Nacional de Información Biotecnológica (NCBI) por el USDA-FSIS entre los años 2016 al 2022. Estos se analizaron utilizando la herramienta de búsqueda de alineación local básica con una secuencia exclusiva para las cepas de campo, seguida de una secuencia exclusiva para la cepa vacunal. Los ensayos de PCR se desarrollaron contra cepas de campo y vacunales centrándose en eventos de transposición en los genes crp y cya y se validaron mediante la detección de aislados de Salmonella serovar Typhimurium. Entre 2016 y 2022, se encontraron 1708 aislados de Salmonella Typhimurium de origen avícola en el sistema de detección de patógenos del NCBI, lo que corresponde al 7.99 % de todas las Salmonellas identificadas. De ellas, 104 (5.97%) fueron identificadas como cepa vacunal. El ensayo de PCR diferenció las cepas de campo de la cepa de la vacuna cuando se aplicó a los aislados y también fue capaz de detectar la cepa de la vacuna a partir del ADN aislado de cultivos de enriquecimiento por toda la noche de Salmonella con serovares mixtos. Las vacunas vivas atenuadas contra Salmonella son una herramienta fundamental para el control de Salmonella y se utilizan ampliamente en la industria. Con las próximas regulaciones que probablemente se centrarán en Salmonella Typhimurium, junto con otros serovares, es necesario distinguir entre los aislados que pertenecen a la cepa vacunal y los que son responsables de causar enfermedades humanas.


Subject(s)
Chickens , Polymerase Chain Reaction , Poultry Diseases , Salmonella Infections, Animal , Salmonella Vaccines , Salmonella typhimurium , Vaccines, Attenuated , Salmonella typhimurium/genetics , Salmonella typhimurium/isolation & purification , Vaccines, Attenuated/immunology , Animals , Salmonella Vaccines/immunology , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Salmonella Infections, Animal/prevention & control , Salmonella Infections, Animal/microbiology , Polymerase Chain Reaction/veterinary , Computer Simulation
18.
Eur J Immunol ; 54(5): e2250133, 2024 May.
Article in English | MEDLINE | ID: mdl-38571392

ABSTRACT

Live-attenuated yellow fever vaccine (YF17D) was developed in the 1930s as the first ever empirically derived human vaccine. Ninety years later, it is still a benchmark for vaccines made today. YF17D triggers a particularly broad and polyfunctional response engaging multiple arms of innate, humoral and cellular immunity. This unique immunogenicity translates into an extraordinary vaccine efficacy and outstanding longevity of protection, possibly by single-dose immunization. More recently, progress in molecular virology and synthetic biology allowed engineering of YF17D as a powerful vector and promising platform for the development of novel recombinant live vaccines, including two licensed vaccines against Japanese encephalitis and dengue, even in paediatric use. Likewise, numerous chimeric and transgenic preclinical candidates have been described. These include prophylactic vaccines against emerging viral infections (e.g. Lassa, Zika and SARS-CoV-2) and parasitic diseases (e.g. malaria), as well as therapeutic applications targeting persistent infections (e.g. HIV and chronic hepatitis), and cancer. Efforts to overcome historical safety concerns and manufacturing challenges are ongoing and pave the way for wider use of YF17D-based vaccines. In this review, we summarize recent insights regarding YF17D as vaccine platform, and how YF17D-based vaccines may complement as well as differentiate from other emerging modalities in response to unmet medical needs and for pandemic preparedness.


Subject(s)
Vaccines, Attenuated , Yellow Fever Vaccine , Yellow fever virus , Humans , Yellow Fever Vaccine/immunology , Yellow fever virus/immunology , Vaccines, Attenuated/immunology , Animals , Yellow Fever/prevention & control , Yellow Fever/immunology , Vaccination/methods
19.
Am J Trop Med Hyg ; 110(5): 892-901, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38531102

ABSTRACT

Malaria eradication efforts prioritize safe and efficient vaccination strategies, although none with high-level efficacy against malaria infection are yet available. Among several vaccine candidates, Sanaria® PfSPZ Vaccine and Sanaria PfSPZ-CVac are, respectively, live radiation- and chemo-attenuated sporozoite vaccines designed to prevent infection with Plasmodium falciparum, the leading cause of malaria-related morbidity and mortality. We are conducting a randomized normal saline placebo-controlled trial called IDSPZV1 that will analyze the safety, tolerability, immunogenicity, and efficacy of PfSPZ Vaccine and PfSPZ-CVac administered pre-deployment to malaria-naive Indonesian soldiers assigned to temporary duties in a high malaria transmission area. We describe the manifold challenges of enrolling and immunizing 345 soldier participants at their home base in western Indonesia before their nearly 6,000-km voyage to eastern Indonesia, where they are being monitored for incident P. falciparum and Plasmodium vivax malaria cases during 9 months of exposure. The unique regulatory, ethical, and operational complexities of this trial demonstrate the importance of thorough planning, frequent communication, and close follow-up with stakeholders. Effective engagement with the military community and the ability to adapt to unanticipated events have proven key to the success of this trial.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria, Vivax , Military Personnel , Plasmodium falciparum , Sporozoites , Vaccines, Attenuated , Humans , Malaria Vaccines/immunology , Malaria Vaccines/therapeutic use , Malaria Vaccines/administration & dosage , Indonesia/epidemiology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/epidemiology , Sporozoites/immunology , Vaccines, Attenuated/immunology , Vaccines, Attenuated/therapeutic use , Plasmodium falciparum/immunology , Malaria, Vivax/prevention & control , Malaria, Vivax/epidemiology , Male , Adult , Young Adult , Plasmodium vivax/immunology , Female
20.
Am J Vet Res ; 85(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38457927

ABSTRACT

OBJECTIVE: Compare immune responses induced by 2 commercial intranasal (IN) modified-live viral (MLV) vaccines given individually or coadministered and evaluate prevention of infection and lung pathology following bovine herpesvirus-1 (BHV-1) challenge. ANIMALS: 36 male Holstein calves (ages, 5 to 12 days). METHODS: In a randomized complete block design, each calf received an IN injection of either vaccine diluent (Placebo), an MLV vaccine containing bovine herpesvirus-1 (BHV-1; N3), bovine coronavirus vaccine (BC), or both N3 and BC (BC + N3) with a booster 4 weeks later. Nasal secretions and blood were collected weekly. Three weeks after the booster, the calves were challenged with BHV-1, sampled for virus shedding, and euthanized 10 days later to quantify lung pathology. The study period was September 7, 2020, to April 6, 2021. RESULTS: Calves were seropositive for BHV-1 and BC before vaccination. No significant difference in BC-specific serum immunoglobin G and nasal immunoglobin A antibody responses in the BC versus BC + N3 group or BHV-1-specific serum immunoglobin G and nasal immunoglobin A antibody responses in the N3 versus BC + N3 group. Cytokine responses to BHV-1 and BC did not differ among groups. BHV-1 shedding after challenge was significantly reduced in N3 groups versus Placebo and BC. There was a significant reduction in lung pathology in the N3 + BC group versus Placebo. CLINICAL RELEVANCE: This study provides evidence an MLV vaccine containing BHV-1 and an MLV BC vaccine can be coadministered to neonatal calves without significantly altering immune responses to the 2 viruses or compromising the prevention of BHV-1 respiratory disease. Calves receiving the BC + N3 vaccine had a significant reduction in lung pathology after BHV-1 aerosol challenge.


Subject(s)
Administration, Intranasal , Animals, Newborn , Cattle Diseases , Coronavirus Infections , Coronavirus, Bovine , Herpesviridae Infections , Herpesvirus 1, Bovine , Vaccines, Attenuated , Viral Vaccines , Animals , Cattle , Herpesvirus 1, Bovine/immunology , Administration, Intranasal/veterinary , Male , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Coronavirus, Bovine/immunology , Cattle Diseases/prevention & control , Cattle Diseases/virology , Cattle Diseases/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/virology , Herpesviridae Infections/veterinary , Herpesviridae Infections/prevention & control , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Infectious Bovine Rhinotracheitis/prevention & control , Infectious Bovine Rhinotracheitis/immunology , Virus Shedding , Antibodies, Viral/blood , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...