Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.113
Filter
1.
Biotechnol J ; 19(5): e2400091, 2024 May.
Article in English | MEDLINE | ID: mdl-38719615

ABSTRACT

Microalgal emergence is a promising platform with two-decade historical background for producing vaccines and biopharmaceuticals. During that period, microalgal-based vaccines have reported successful production for various diseases. Thus, species selection is important for genetic transformation and delivery methods that have been developed. Although many vaccine prototypes have been produced for infectious and non-infectious diseases, fewer studies have reached immunological and immunoprotective evaluations. Microalgae-made vaccines for Staphylococcus aureus, malaria, influenza, human papilloma, and Zika viruses have been explored in their capacity to induce humoral or cellular immune responses and protective efficacies against experimental challenges. Therefore, specific pathogen antigens and immune system role are important and addressed in controlling these infections. Regarding non-communicable diseases, these vaccines have been investigated for breast cancer; microalgal-produced therapeutic molecules and microalgal-made interferon-α have been explored for hypertension and potential applications in treating viral infections and cancer, respectively. Thus, conducting immunological trials is emphasized, discussing the promising results observed in terms of immunogenicity, desired immune response for controlling affections, and challenges for achieving the desired protection levels. The potential advantages and hurdles associated with this innovative approach are highlighted, underlining the relevance of assessing immune responses in preclinical and clinical trials to validate the efficacy of these biopharmaceuticals. The promising future of this healthcare technology is also envisaged.


Subject(s)
Microalgae , Humans , Vaccines/immunology , Animals
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731972

ABSTRACT

Vaccination is a public health cornerstone that protects against numerous infectious diseases. Despite its benefits, immunization implications on ocular health warrant thorough investigation, particularly in the context of vaccine-induced ocular inflammation. This review aimed to elucidate the complex interplay between vaccination and the eye, focusing on the molecular and immunological pathways implicated in vaccine-associated ocular adverse effects. Through an in-depth analysis of recent advancements and the existing literature, we explored various mechanisms of vaccine-induced ocular inflammation, such as direct infection by live attenuated vaccines, immune complex formation, adjuvant-induced autoimmunity, molecular mimicry, hypersensitivity reactions, PEG-induced allergic reactions, Type 1 IFN activation, free extracellular RNA, and specific components. We further examined the specific ocular conditions associated with vaccination, such as uveitis, optic neuritis, and retinitis, and discussed the potential impact of novel vaccines, including those against SARS-CoV-2. This review sheds light on the intricate relationships between vaccination, the immune system, and ocular tissues, offering insights into informed discussions and future research directions aimed at optimizing vaccine safety and ophthalmological care. Our analysis underscores the importance of vigilance and further research to understand and mitigate the ocular side effects of vaccines, thereby ensuring the continued success of vaccination programs, while preserving ocular health.


Subject(s)
Vaccination , Humans , Vaccination/adverse effects , Vaccination/methods , COVID-19 Vaccines/immunology , COVID-19 Vaccines/adverse effects , Eye/immunology , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , Vaccines/adverse effects , Vaccines/immunology , Animals , Eye Diseases/immunology , Eye Diseases/prevention & control
5.
Adv Protein Chem Struct Biol ; 140: 59-90, 2024.
Article in English | MEDLINE | ID: mdl-38762280

ABSTRACT

It is critical to emphasize the importance of vaccination as it protects us against harmful pathogens. Despite significant progress in vaccine development, there is an ongoing need to develop vaccines that are not only safe but also highly effective in protecting against severe infections. Subunit vaccines are generally safe, but they frequently fail to elicit strong immune responses. As a result, there is a need to improve vaccine effectiveness by combining them with adjuvants, which have the potential to boost the immune system many folds. The process of developing these adjuvants requires searching for molecules capable of activating the immune system, combining these promising compounds with an antigen, and then testing this combination using animal models before approving it for clinical use. Liposomal adjuvants work as delivery adjuvants and its activity depends on certain parameters such as surface charge, vesicle size, surface modification and route of administration. Self-assembly property of peptide adjuvants and discovery of hybrid peptides have widened the scope of peptides in vaccine formulations. Since most pathogenic molecules are not peptide based, phage display technique allows for screening peptide mimics for such pathogens that have potential as adjuvants. This chapter discusses about peptide and liposome-based adjuvants focusing on their properties imparting adjuvanticity along with the methods of formulating them. Methods of adjuvant characterization important for an adjuvant to be approved for clinical trials are also discussed. These include assays for cytotoxicity, T-lymphocyte proliferation, dendritic cell maturation, cytokine and antibody production, toll-like receptor dependent signaling and adjuvant half-life.


Subject(s)
Adjuvants, Immunologic , Liposomes , Adjuvants, Immunologic/chemistry , Humans , Liposomes/chemistry , Animals , Peptides/chemistry , Peptides/immunology , Vaccines/chemistry , Vaccines/immunology
6.
Sci Transl Med ; 16(745): eadm9183, 2024 May.
Article in English | MEDLINE | ID: mdl-38691620

ABSTRACT

As the world's population grows older, vaccination is becoming a key strategy for promoting healthy aging. Despite scientific progress in adult vaccine development, obstacles such as immunosenescence and vaccine hesitancy remain. To unlock the potential of adult vaccines fully, we must enhance immunization programs, dispel misinformation, and invest in research that deepens our understanding of aging and immunity.


Subject(s)
Healthy Aging , Vaccination , Humans , Aging/immunology , Vaccines/immunology
9.
Expert Rev Vaccines ; 23(1): 535-545, 2024.
Article in English | MEDLINE | ID: mdl-38664959

ABSTRACT

INTRODUCTION: Zebrafishes represent a proven model for human diseases and systems biology, exhibiting physiological and genetic similarities and having innate and adaptive immune systems. However, they are underexplored for human vaccinology, vaccine development, and testing. Here we summarize gaps and challenges. AREAS COVERED: Zebrafish models have four potential applications: 1) Vaccine safety: The past successes in using zebrafishes to test xenobiotics could extend to vaccine and adjuvant formulations for general safety or target organs due to the zebrafish embryos' optical transparency. 2) Innate immunity: The zebrafish offers refined ways to examine vaccine effects through signaling via Toll-like or NOD-like receptors in zebrafish myeloid cells. 3) Adaptive immunity: Zebrafishes produce IgM, IgD,and two IgZ immunoglobulins, but these are understudied, due to a lack of immunological reagents for challenge studies. 4) Systems vaccinology: Due to the availability of a well-referenced zebrafish genome, transcriptome, proteome, and epigenome, this model offers potential here. EXPERT OPINION: It remains unproven whether zebrafishes can be employed for testing and developing human vaccines. We are still at the hypothesis-generating stage, although it is possible to begin outlining experiments for this purpose. Through transgenic manipulation, zebrafish models could offer new paths for shaping animal models and systems vaccinology.


Subject(s)
Adaptive Immunity , Adjuvants, Immunologic , Immunity, Innate , Models, Animal , Vaccine Development , Vaccines , Zebrafish , Zebrafish/immunology , Animals , Adjuvants, Immunologic/administration & dosage , Humans , Vaccines/immunology , Vaccines/administration & dosage , Vaccinology/methods
10.
J Control Release ; 369: 475-492, 2024 May.
Article in English | MEDLINE | ID: mdl-38569943

ABSTRACT

Skin is the body's largest organ and serves as a protective barrier from physical, thermal, and mechanical environmental challenges. Alongside, the skin hosts key immune system players, such as the professional antigen-presenting cells (APCs) like the Langerhans cells in the epidermis and circulating macrophages in the blood. Further, the literature supports that the APCs can be activated by antigen or vaccine delivery via multiple routes of administration through the skin. Once activated, the stimulated APCs drain to the associated lymph nodes and gain access to the lymphatic system. This further allows the APCs to engage with the adaptive immune system and activate cellular and humoral immune responses. Thus, vaccine delivery via skin offers advantages such as reliable antigen delivery, superior immunogenicity, and convenient delivery. Several preclinical and clinical studies have demonstrated the significance of vaccine delivery using various routes of administration via skin. However, such vaccines often employ adjuvant/(s), along with the antigen of interest. Adjuvants augment the immune response to a vaccine antigen and improve the therapeutic efficacy. Due to these reasons, adjuvants have been successfully used with infectious disease vaccines, cancer immunotherapy, and immune-mediated diseases. To capture these developments, this review will summarize preclinical and clinical study results of vaccine delivery via skin in the presence of adjuvants. A focused discussion regarding the FDA-approved adjuvants will address the experiences of using such adjuvant-containing vaccines. In addition, the challenges and regulatory concerns with these adjuvants will be discussed. Finally, the review will share the prospects of adjuvant-containing vaccines delivered via skin.


Subject(s)
Adjuvants, Immunologic , Administration, Cutaneous , Skin , Vaccination , Vaccines , Humans , Animals , Vaccination/methods , Adjuvants, Immunologic/administration & dosage , Skin/immunology , Vaccines/administration & dosage , Vaccines/immunology , Antigen-Presenting Cells/immunology
11.
J Control Release ; 369: 556-572, 2024 May.
Article in English | MEDLINE | ID: mdl-38580136

ABSTRACT

Vaccines represent one of the most powerful and cost-effective innovations for controlling a wide range of infectious diseases caused by various viruses and bacteria. Unlike mRNA and DNA-based vaccines, subunit vaccines carry no risk of insertional mutagenesis and can be lyophilized for convenient transportation and long-term storage. However, existing adjuvants are often associated with toxic effect and reactogenicity, necessitating expanding the repertoire of adjuvants with better biocompatibility, for instance, designing self-adjuvating polymeric carriers. We herein report a novel subunit vaccine delivery platform constructed via in situ free radical polymerization of C7A (2-(Hexamethyleneimino) ethyl methacrylate) and acrylamide around the surface of individual protein antigens. Using ovalbumin (OVA) as a model antigen, we observed substantial increases in both diameter (∼70 nm) and surface potential (-1.18 mV) following encapsulation, referred to as n(OVA)C7A. C7A's ultra pH sensitivity with a transition pH around 6.9 allows for rapid protonation in acidic environments. This property facilitates crucial processes such as endosomal escape and major histocompatibility complex (MHC)-I-mediated antigen presentation, culminating in the substantial CD8+ T cell activation. Additionally, compared to OVA nanocapsules without the C7A components and native OVA without modifications, we observed heightened B cell activation within the germinal center, along with remarkable increases in serum antibody and cytokine production. It's important to note that mounting evidence suggests that adjuvant effects, particularly its targeted stimulation of type I interferons (IFNs), can contribute to advantageous adaptive immune responses. Beyond its exceptional potency, the nanovaccine also demonstrated robust formation of immune memory and exhibited a favorable biosafety profile. These findings collectively underscore the promising potential of our nanovaccine in the realm of immunotherapy and vaccine development.


Subject(s)
Mice, Inbred C57BL , Ovalbumin , T-Lymphocytes, Cytotoxic , Animals , Ovalbumin/immunology , Ovalbumin/administration & dosage , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/drug effects , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Female , Methacrylates/chemistry , Polymers/chemistry , Polymers/administration & dosage , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Mice , Vaccines/administration & dosage , Vaccines/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Nanovaccines
13.
Drug Discov Today ; 29(6): 103991, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663578

ABSTRACT

The development of vaccines has had a crucial role in preventing and controlling infectious diseases on a global scale. Innovative formulations of biomimetic vaccines inspired by natural defense mechanisms combine long-term antigen stability, immunogenicity, and targeted delivery with sustained release. Types of biomimetic nanoparticle (NP) include bacterial outer membrane vesicles (OMVs), cell membrane-decorated NPs, liposomes, and exosomes. These approaches have shown potential for cancer immunotherapy, and in antibacterial and antiviral applications. Despite current challenges, nanovaccines have immense potential to transform disease prevention and treatment, promising therapeutic approaches for the future. In this review, we highlight recent advances in biomimetic vaccine design, mechanisms of action, and clinical applications, emphasizing their role in personalized medicine, targeted drug delivery, and immunomodulation.


Subject(s)
Nanoparticles , Vaccines , Humans , Animals , Vaccines/administration & dosage , Vaccines/immunology , Biomimetics/methods , Drug Delivery Systems/methods , Biomimetic Materials/chemistry , Precision Medicine/methods , Nanovaccines
14.
Int J Biol Macromol ; 269(Pt 1): 131802, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670178

ABSTRACT

Genome editing involves precise modification of specific nucleotides in the genome using nucleases like CRISPR/Cas, ZFN, or TALEN, leading to increased efficiency of homologous recombination (HR) for gene editing, and it can result in gene disruption events via non-homologous end joining (NHEJ) or homology-driven repair (HDR). Genome editing, particularly CRISPR-Cas9, revolutionizes vaccine development by enabling precise modifications of pathogen genomes, leading to enhanced vaccine efficacy and safety. It allows for tailored antigen optimization, improved vector design, and deeper insights into host genes' impact on vaccine responses, ultimately enhancing vaccine development and manufacturing processes. This review highlights different types of genome editing methods, their associated risks, approaches to overcome the shortcomings, and the diverse roles of genome editing.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Editing/methods , Humans , Animals , Vaccines/immunology , Vaccines/genetics , Vaccine Development
15.
Vet Res ; 55(1): 53, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658996

ABSTRACT

Gene expression for Th1/Th2 cytokines (IL-4 and IFN-É£), regulatory cytokines (TGF-ß and IL-10) and the transcriptional factor FoxP3 was analyzed in the liver and hepatic lymph nodes (HLN) from sheep immunized with partially protective and non-protective vaccine candidates and challenged with Fasciola hepatica. FoxP3 T cells were also evaluated by immunohistochemistry (IHQ). The most remarkable difference between the partially protected vaccinated (V1) group and the non-protected vaccinated (V2) group was a more severe expansion of FoxP3 T cells recorded by IHQ in both the liver and HLN of the V2 group as compared to the V1 group, whereas no differences were found between the V2 group and the infected control (IC) group. Similar results were recorded for FoxP3 gene expression although significant differences among V1 and V2 groups were only significant in the HLN, while FoxP3 gene expression was very similar in the V2 and IC groups both in the liver and HLN. No significant differences for the remaining cytokines were recorded between the V1 and V2 groups, but in the liver the V2 group shows significant increases of IFN-É£ and IL-10 as compared to the uninfected control (UC) group whereas the V1 group did not. The lower expansion of FoxP3 T cells and lower increase of IFN-É£ and IL-10 in the partially protected vaccinated group may be related with lower hepatic lesions and fluke burdens recorded in this group as compared to the other two infected groups. The most relevant change in regulatory cytokine gene expression was the significant increase of TGF-ß in the liver of IC, V1 and V2 groups as compared to the UC group, which could be related to hepatic lesions.


Subject(s)
Cytokines , Fasciola hepatica , Fascioliasis , Forkhead Transcription Factors , Sheep Diseases , Animals , Fascioliasis/veterinary , Fascioliasis/prevention & control , Fascioliasis/immunology , Fasciola hepatica/immunology , Sheep , Forkhead Transcription Factors/metabolism , Sheep Diseases/prevention & control , Sheep Diseases/immunology , Sheep Diseases/parasitology , Cytokines/metabolism , Liver/parasitology , Liver/immunology , Vaccines/immunology , Vaccines/administration & dosage , Th1 Cells/immunology , Lymph Nodes/immunology , Female , Th2 Cells/immunology
16.
J Mater Chem B ; 12(17): 4118-4137, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38591323

ABSTRACT

Vaccines represent one of the most significant inventions in human history and have revolutionized global health. Generally, a vaccine functions by triggering the innate immune response and stimulating antigen-presenting cells, leading to a defensive adaptive immune response against a specific pathogen's antigen. As a key element, adjuvants are chemical materials often employed as additives to increase a vaccine's efficacy and immunogenicity. For over 90 years, adjuvants have been essential components in many human vaccines, improving their efficacy by enhancing, modulating, and prolonging the immune response. Here, we provide a timely and comprehensive review of the historical development and the current status of adjuvants, covering their classification, mechanisms of action, and roles in different vaccines. Additionally, we perform systematic analysis of the current licensing processes and highlights notable examples from clinical trials involving vaccine adjuvants. Looking ahead, we anticipate future trends in the field, including the development of new adjuvant formulations, the creation of innovative adjuvants, and their integration into the broader scope of systems vaccinology and vaccine delivery. The article posits that a deeper understanding of biochemistry, materials science, and vaccine immunology is crucial for advancing vaccine technology. Such advancements are expected to lead to the future development of more effective vaccines, capable of combating emerging infectious diseases and enhancing public health.


Subject(s)
Adjuvants, Vaccine , Humans , Adjuvants, Vaccine/chemistry , Vaccines/immunology , Animals , Adjuvants, Immunologic
17.
J Biomed Semantics ; 15(1): 4, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664818

ABSTRACT

BACKGROUND: Pathogenic parasites are responsible for multiple diseases, such as malaria and Chagas disease, in humans and livestock. Traditionally, pathogenic parasites have been largely an evasive topic for vaccine design, with most successful vaccines only emerging recently. To aid vaccine design, the VIOLIN vaccine knowledgebase has collected vaccines from all sources to serve as a comprehensive vaccine knowledgebase. VIOLIN utilizes the Vaccine Ontology (VO) to standardize the modeling of vaccine data. VO did not model complex life cycles as seen in parasites. With the inclusion of successful parasite vaccines, an update in parasite vaccine modeling was needed. RESULTS: VIOLIN was expanded to include 258 parasite vaccines against 23 protozoan species, and 607 new parasite vaccine-related terms were added to VO since 2022. The updated VO design for parasite vaccines accounts for parasite life stages and for transmission-blocking vaccines. A total of 356 terms from the Ontology of Parasite Lifecycle (OPL) were imported to VO to help represent the effect of different parasite life stages. A new VO class term, 'transmission-blocking vaccine,' was added to represent vaccines able to block infectious transmission, and one new VO object property, 'blocks transmission of pathogen via vaccine,' was added to link vaccine and pathogen in which the vaccine blocks the transmission of the pathogen. Additionally, our Gene Set Enrichment Analysis (GSEA) of 140 parasite antigens used in the parasitic vaccines identified enriched features. For example, significant patterns, such as signal, plasma membrane, and entry into host, were found in the antigens of the vaccines against two parasite species: Plasmodium falciparum and Toxoplasma gondii. The analysis found 18 out of the 140 parasite antigens involved with the malaria disease process. Moreover, a majority (15 out of 54) of P. falciparum parasite antigens are localized in the cell membrane. T. gondii antigens, in contrast, have a majority (19/24) of their proteins related to signaling pathways. The antigen-enriched patterns align with the life cycle stage patterns identified in our ontological parasite vaccine modeling. CONCLUSIONS: The updated VO modeling and GSEA analysis capture the influence of the complex parasite life cycles and their associated antigens on vaccine development.


Subject(s)
Biological Ontologies , Animals , Parasites/immunology , Protozoan Vaccines/immunology , Humans , Vaccines/immunology , Models, Biological
18.
Vet Parasitol ; 328: 110154, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38490160

ABSTRACT

Previous vaccination trials have demonstrated that thiol proteins affinity purified from Ostertagia ostertagi excretory-secretory products (O. ostertagi ES-thiol) are protective against homologous challenge. Here we have shown that protection induced by this vaccine was consistent across four independent vaccine-challenge experiments. Protection is associated with reduced cumulative faecal egg counts across the duration of the trials, relative to control animals. To better understand the diversity of antigens in O. ostertagi ES-thiol we used high-resolution shotgun proteomics to identify 490 unique proteins in the vaccine preparation. The most numerous ES-thiol proteins, with 91 proteins identified, belong to the sperm-coating protein/Tpx/antigen 5/pathogenesis-related protein 1 (SCP/TAPS) family. This family includes previously identified O. ostertagi vaccine antigens O. ostertagi ASP-1 and ASP-2. The ES-thiol fraction also has numerous proteinases, representing three distinct classes, including: metallo-; aspartyl- and cysteine proteinases. In terms of number of family members, the M12 astacin-like metalloproteinases, with 33 proteins, are the most abundant proteinase family in O. ostertagi ES-thiol. The O. ostertagi ES-thiol proteome provides a comprehensive database of proteins present in this vaccine preparation and will guide future vaccine antigen discovery projects.


Subject(s)
Antigens, Helminth , Ostertagia , Vaccines , Animals , Ostertagia/immunology , Vaccines/immunology , Antigens, Helminth/immunology , Ostertagiasis/veterinary , Ostertagiasis/prevention & control , Ostertagiasis/immunology , Sulfhydryl Compounds , Feces/parasitology , Proteomics , Parasite Egg Count/veterinary
19.
Cell Rep ; 43(4): 113977, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38512869

ABSTRACT

Next-generation vaccines may be delivered via the skin and mucosa. The stratified squamous epithelium (SSE) represents the outermost layer of the skin (epidermis) and type II mucosa (epithelium). Langerhans cells (LCs) have been considered the sole antigen-presenting cells (APCs) to inhabit the SSE; however, it is now clear that dendritic cells (DCs) are also present. Importantly, there are functional differences in how LCs and DCs take up and process pathogens as well as their ability to activate and polarize T cells, though whether DCs participate in neuroimmune interactions like LCs is yet to be elucidated. A correct definition and functional characterization of APCs in the skin and anogenital tissues are of utmost importance for the design of better vaccines and blocking pathogen transmission. Here, we provide a historical perspective on the evolution of our understanding of the APCs that inhabit the SSE, including a detailed review of the most recent literature.


Subject(s)
Dendritic Cells , Langerhans Cells , Vaccines , Langerhans Cells/immunology , Humans , Dendritic Cells/immunology , Animals , Vaccines/immunology , Mucous Membrane/immunology , Mucous Membrane/cytology , Epithelial Cells/immunology , Skin/immunology
20.
Int J Infect Dis ; 143: 107014, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38499058

ABSTRACT

Tropical infectious diseases inflict an unacceptable burden of disease on humans living in developing countries. Although anti-pathogenic drugs have been widely used, they carry a constant threat of selecting for resistance. Vaccines offer a promising means by which to enhance the global control of tropical infectious diseases; however, these have been difficult to develop, mostly because of the complex nature of the pathogen lifecycles. Here, we present recently developed vaccine candidates for five tropical infectious diseases in the form of a catalog that have either entered clinical trials or have been licensed for use. We deliberate on recently licensed dengue vaccines, provide evidence why combination vaccination could have a synergistic impact on schistosomiasis, critically appraise the value of typhoid conjugate vaccines, and discuss the potential of vaccines in the efforts to eliminate vivax malaria and hookworms.


Subject(s)
Dengue , Humans , Dengue/prevention & control , Dengue Vaccines/immunology , Dengue Vaccines/administration & dosage , Schistosomiasis/prevention & control , Communicable Diseases , Tropical Medicine , Vaccines/immunology , Typhoid Fever/prevention & control , Malaria, Vivax/prevention & control , Vaccine Development
SELECTION OF CITATIONS
SEARCH DETAIL
...