Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.100
Filter
1.
Nat Commun ; 15(1): 5112, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879641

ABSTRACT

Virus infectivity is traditionally determined by endpoint titration in cell cultures, and requires complex processing steps and human annotation. Here we developed an artificial intelligence (AI)-powered automated framework for ready detection of virus-induced cytopathic effect (DVICE). DVICE uses the convolutional neural network EfficientNet-B0 and transmitted light microscopy images of infected cell cultures, including coronavirus, influenza virus, rhinovirus, herpes simplex virus, vaccinia virus, and adenovirus. DVICE robustly measures virus-induced cytopathic effects (CPE), as shown by class activation mapping. Leave-one-out cross-validation in different cell types demonstrates high accuracy for different viruses, including SARS-CoV-2 in human saliva. Strikingly, DVICE exhibits virus class specificity, as shown with adenovirus, herpesvirus, rhinovirus, vaccinia virus, and SARS-CoV-2. In sum, DVICE provides unbiased infectivity scores of infectious agents causing CPE, and can be adapted to laboratory diagnostics, drug screening, serum neutralization or clinical samples.


Subject(s)
Artificial Intelligence , Cytopathogenic Effect, Viral , Microscopy , SARS-CoV-2 , Humans , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Microscopy/methods , COVID-19/virology , Neural Networks, Computer , Animals , Vaccinia virus/physiology , Vaccinia virus/pathogenicity , Saliva/virology , Chlorocebus aethiops , Vero Cells , Rhinovirus/pathogenicity , Rhinovirus/physiology , Cell Line
2.
Commun Biol ; 7(1): 721, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862613

ABSTRACT

The genome folds into complex configurations and structures thought to profoundly impact its function. The intricacies of this dynamic structure-function relationship are not well understood particularly in the context of viral infection. To unravel this interplay, here we provide a comprehensive investigation of simultaneous host chromatin structural (via Hi-C and ATAC-seq) and functional changes (via RNA-seq) in response to vaccinia virus infection. Over time, infection significantly impacts global and local chromatin structure by increasing long-range intra-chromosomal interactions and B compartmentalization and by decreasing chromatin accessibility and inter-chromosomal interactions. Local accessibility changes are independent of broad-scale chromatin compartment exchange (~12% of the genome), underscoring potential independent mechanisms for global and local chromatin reorganization. While infection structurally condenses the host genome, there is nearly equal bidirectional differential gene expression. Despite global weakening of intra-TAD interactions, functional changes including downregulated immunity genes are associated with alterations in local accessibility and loop domain restructuring. Therefore, chromatin accessibility and local structure profiling provide impactful predictions for host responses and may improve development of efficacious anti-viral counter measures including the optimization of vaccine design.


Subject(s)
Chromatin , Vaccinia virus , Chromatin/metabolism , Chromatin/genetics , Animals , Vaccinia virus/genetics , Vaccinia virus/physiology , Chlorocebus aethiops , Vero Cells , Vaccinia/virology , Vaccinia/immunology , Host-Pathogen Interactions/genetics , Multiomics
3.
Adv Exp Med Biol ; 1451: 183-204, 2024.
Article in English | MEDLINE | ID: mdl-38801579

ABSTRACT

Poxviridae family includes several viruses that infecting humans usually causes skin lesions only, but in some cases their clinical course is complicated by viral pneumonia (with or without bacterial superinfections). Historically variola virus has been the poxviridae most frequently associated with the development of pneumonia with many large outbreaks worldwide before its eradication in 1980. It is still considered a biological threat for its potential in biological warfare and bioterrorism. Smallpox pneumonia can be severe with the onset of acute respiratory distress syndrome (ARDS) and death. Vaccinia virus, used for vaccination against smallpox exceptionally, in immunocompromised patients, can induce generalized (with also lung involvement) severe disease after vaccination. MPXV virus occasionally can cause pneumonia particularly in immunocompromised patients. The pathophysiology of poxviridae pneumonia is still an area of active research; however, in animal models these viruses can cause both direct damage to the lower airways epithelium and a hyperinflammatory syndrome, like a cytokine storm. Multiple mechanisms of immune evasion have also been described. The treatment of poxviridae pneumonia is mainly based on careful supportive care. Despite the absence of randomized clinical trials in patients with poxviridae pneumonia there are antiviral drugs, such as tecovirimat, cidofovir and brincidofovir, FDA-approved for use in smallpox and also available under an expanded access protocol for treatment of MPXV. There are 2 (replication-deficient modified vaccinia Ankara and replication-competent vaccinia virus) smallpox vaccines FDA-approved with the first one also approved for prevention of MPXV in adults that are at high risk of infection.


Subject(s)
Antiviral Agents , Poxviridae Infections , Humans , Animals , Poxviridae Infections/drug therapy , Poxviridae Infections/virology , Poxviridae Infections/immunology , Antiviral Agents/therapeutic use , Pneumonia, Viral/virology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/complications , Poxviridae/pathogenicity , Poxviridae/physiology , Poxviridae/genetics , Vaccinia virus/pathogenicity , Vaccinia virus/physiology , Smallpox/virology , Smallpox/prevention & control , Variola virus/pathogenicity , Variola virus/genetics
4.
Adv Exp Med Biol ; 1451: 369-381, 2024.
Article in English | MEDLINE | ID: mdl-38801591

ABSTRACT

Despite the significant advancement of new tools and technology in the field of medical biology and molecular biology, the challenges in the treatment of most cancer types remain constant with the problem of developing resistance toward drugs and no substantial enhancement in the overall survival rate of cancer patients. Immunotherapy has shown the most promising results in different clinical and preclinical trials in the treatment of various cancer due to its higher efficacy and minimum collateral damage in many cancer patients as compared to conventional chemotherapy and radiotherapy. An oncolytic virus is a new class of immunotherapy that can selectively replicate in tumor cells and destroy them by the process of cell lysis while exerting minimum or no effect on a normal cell. Besides this, it can also activate the host's innate immune system, which generates an anti-tumor immune response to eliminate the tumor cells. Several wild types and genetically modified viruses have been investigated to show oncolytic behavior. Vaccinia virus has been studied extensively and tested for its promising oncolytic nature on various model systems and clinical trials. Recently, several engineered vaccinia viruses have been developed that express the desired genes encoded for selective penetration in tumor cells and enhanced activation of the immune system for generating anti-tumor immunity. However, further investigation is required to prove their potential and enhance their therapeutic efficacy.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Poxviridae , Humans , Oncolytic Virotherapy/methods , Neoplasms/therapy , Neoplasms/immunology , Oncolytic Viruses/genetics , Oncolytic Viruses/physiology , Animals , Poxviridae/genetics , Poxviridae/physiology , Immunotherapy/methods , Vaccinia virus/genetics , Vaccinia virus/immunology , Vaccinia virus/physiology
5.
J Colloid Interface Sci ; 671: 216-231, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38801796

ABSTRACT

Colorectal cancer (CRC) is a prevalent malignancy with insidious onset and diagnostic challenges, highlighting the need for therapeutic approaches to enhance theranostic outcomes. In this study, we elucidated the unique temperature-resistant properties of the oncolytic vaccinia virus (OVV), which can synergistically target tumors under photothermal conditions. To capitalize on this characteristic, we harnessed the potential of the OVV by surface-loading it with indocyanine green (ICG) and encapsulating it within a platelet membrane (PLTM), resulting in the creation of PLTM-ICG-OVV (PIOVV). This complex seamlessly integrates virotherapy, photodynamic therapy (PDT), and photothermal therapy (PTT). The morphology, size, dispersion stability, optical properties, and cellular uptake of PIOVV were evaluated using transmission electron microscopy (TEM). In vitro and in vivo experiments revealed specificity of PIOVV for cancer cells; it effectively induced apoptosis and suppressed CT26 cell proliferation. In mouse models, PIOVV exhibits enhanced fluorescence at tumor sites, accompanied by prolonged blood circulation. Under 808 nm laser irradiation, PIOVV significantly inhibited tumor growth. This strategy holds the potential for advancing phototherapy, oncolytic virology, drug delivery, and tumor-specific targeting, particularly in the context of CRC theranostics.


Subject(s)
Colorectal Neoplasms , Indocyanine Green , Oncolytic Virotherapy , Oncolytic Viruses , Photochemotherapy , Vaccinia virus , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Animals , Colorectal Neoplasms/therapy , Colorectal Neoplasms/pathology , Mice , Vaccinia virus/physiology , Oncolytic Viruses/physiology , Humans , Oncolytic Virotherapy/methods , Blood Platelets , Cell Line, Tumor , Mice, Inbred BALB C , Apoptosis/drug effects , Cell Proliferation/drug effects , Optical Imaging , Photothermal Therapy , Combined Modality Therapy , Particle Size , Surface Properties , Infrared Rays , Mice, Nude
6.
Cell Rep ; 43(4): 114050, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38564336

ABSTRACT

Seo et al.1 shed light on virus-host interactions as they reveal how poxvirus A51R stabilizes microtubules in infected cells, which impacts vaccinia virus virulence in mice by potentially inhibiting reactive-oxygen-species-dependent antiviral responses in macrophages.


Subject(s)
Host-Parasite Interactions , Microtubules , Vaccinia virus , Viral Proteins , Vaccinia virus/pathogenicity , Vaccinia virus/physiology , Virulence , Microtubules/metabolism , Viral Proteins/metabolism , Humans , Animals , Mice
7.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673835

ABSTRACT

Virotherapy is one of the perspective technologies in the treatment of malignant neoplasms. Previously, we have developed oncolytic vaccinia virus VV-GMCSF-Lact and its high cytotoxic activity and antitumor efficacy against glioma was shown. In this work, using immortalized and patient-derived cells with different sensitivity to VV-GMCSF-Lact, we evaluated the cytotoxic effect of chemotherapy agents. Additionally, we studied the combination of VV-GMCSF-Lact with temozolomide which is the most preferred drug for glioma treatment. Experimental results indicate that first adding temozolomide and then the virus to the cells is inherently more efficient than dosing it in the reverse order. Testing these regimens in the U87 MG xenograft glioblastoma model confirmed this effect, as assessed by tumor growth inhibition index and histological analysis. Moreover, VV-GMCSF-Lact as monotherapy is more effective against U87 MG glioblastoma xenografts comparing temozolomide.


Subject(s)
Glioma , Granulocyte-Macrophage Colony-Stimulating Factor , Oncolytic Virotherapy , Oncolytic Viruses , Temozolomide , Vaccinia virus , Xenograft Model Antitumor Assays , Humans , Animals , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Temozolomide/pharmacology , Temozolomide/therapeutic use , Cell Line, Tumor , Mice , Glioma/therapy , Glioma/drug therapy , Glioma/pathology , Vaccinia virus/genetics , Vaccinia virus/physiology , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Mice, Nude , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Glioblastoma/therapy , Glioblastoma/drug therapy , Glioblastoma/pathology , Combined Modality Therapy
8.
Cell Rep ; 43(3): 113882, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38457341

ABSTRACT

Numerous viruses alter host microtubule (MT) networks during infection, but how and why they induce these changes is unclear in many cases. We show that the vaccinia virus (VV)-encoded A51R protein is a MT-associated protein (MAP) that directly binds MTs and stabilizes them by both promoting their growth and preventing their depolymerization. Furthermore, we demonstrate that A51R-MT interactions are conserved across A51R proteins from multiple poxvirus genera, and highly conserved, positively charged residues in A51R proteins mediate these interactions. Strikingly, we find that viruses encoding MT interaction-deficient A51R proteins fail to suppress a reactive oxygen species (ROS)-dependent antiviral response in macrophages that leads to a block in virion morphogenesis. Moreover, A51R-MT interactions are required for VV virulence in mice. Collectively, our data show that poxviral MAP-MT interactions overcome a cell-intrinsic antiviral ROS response in macrophages that would otherwise block virus morphogenesis and replication in animals.


Subject(s)
Poxviridae , Virus Replication , Animals , Mice , Reactive Oxygen Species/metabolism , Poxviridae/genetics , Vaccinia virus/physiology , Viral Proteins/metabolism , Microtubules/metabolism , Antiviral Agents/metabolism
9.
Cell Rep ; 43(3): 113788, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38461415

ABSTRACT

Histone deacetylases (HDACs) regulate gene expression and innate immunity. Previously, we showed that HDAC5 is degraded during Vaccinia virus (VACV) infection and is a restriction factor for VACV and herpes simplex virus type 1. Here, we report that HDAC5 promotes interferon regulatory factor 3 (IRF3) activation downstream of Toll-IL-1 receptor (TIR) domain-containing adaptor molecule-1 or Sendai virus-mediated stimulation without requiring HDAC activity. Loss of HDAC5-mediated IRF3 activation is restored by re-introduction of HDAC5 but not HDAC1 or HDAC4. The antiviral activity of HDAC5 is antagonized by VACV protein C6 and orthologs from the orthopoxviruses cowpox, rabbitpox, camelpox, monkeypox, and variola. Infection by many of these viruses induces proteasomal degradation of HDAC5, and expression of C6 alone can induce HDAC5 degradation. Mechanistically, C6 binds to the dimerization domain of HDAC5 and prevents homodimerization and heterodimerization with HDAC4. Overall, this study describes HDAC5 as a positive regulator of IRF3 activation and provides mechanistic insight into how the poxviral protein C6 binds to HDAC5 to antagonize its function.


Subject(s)
Orthopoxvirus , Variola virus , Monkeypox virus/metabolism , Variola virus/metabolism , Orthopoxvirus/metabolism , Interferon Regulatory Factor-3/metabolism , Vaccinia virus/physiology , Histone Deacetylases/metabolism
10.
Cancer Sci ; 115(4): 1129-1140, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38351514

ABSTRACT

Oncolytic viruses (OVs) possess the unique ability to selectively replicate within tumor cells, leading to their destruction, while also reversing the immunosuppression within the tumor microenvironment and triggering an antitumor immune response. As a result, OVs have emerged as one of the most promising approaches in cancer therapy. However, the effective delivery of intravenously administered OVs faces significant challenges imposed by various immune cells within the peripheral blood, hindering their access to tumor sites. Notably, neutrophils, the predominant white blood cell population comprising approximately 50%-70% of circulating white cells in humans, show phagocytic properties. Our investigation revealed that the majority of oncolytic vaccinia viruses (VV) are engulfed and degraded by neutrophils in the bloodstream. The depletion of neutrophils using the anti-LY6G Ab (1-A8) resulted in an increased accumulation of circulating oncolytic VV in the peripheral blood and enhanced deposition at the tumor site, consequently amplifying the antitumor effect. Neutrophils heavily rely on PI3K signaling to sustain their phagocytic process. Additionally, our study determined that the inhibition of the PI3Kinase delta isoform by idelalisib (CAL-101) suppressed the uptake of oncolytic VV by neutrophils. This inhibition led to a greater presence of oncolytic VV in both the peripheral blood and at the tumor site, resulting in improved efficacy against the tumor. In conclusion, our study showed that inhibiting neutrophil functions can significantly enhance the antitumor efficacy of intravenous oncolytic VV.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Viruses/physiology , Vaccinia virus/physiology , Neutrophils/pathology , Oncolytic Virotherapy/methods , Phosphatidylinositol 3-Kinases , Neoplasms/pathology , Tumor Microenvironment
11.
J Virol ; 98(3): e0148523, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38412044

ABSTRACT

Vaccinia virus (VACV) is a large DNA virus that encodes scores of proteins that modulate the host immune response. VACV protein C4 is one such immunomodulator known to inhibit the activation of both the NF-κB signaling cascade and the DNA-PK-mediated DNA sensing pathway. Here, we show that the N-terminal region of C4, which neither inhibits NF-κB nor mediates interaction with DNA-PK, still contributes to virus virulence. Furthermore, this domain interacts directly and with high affinity to the C-terminal domain of filamin B (FLNB). FLNB is a large actin-binding protein that stabilizes the F-actin network and is implicated in other cellular processes. Deletion of FLNB from cells results in larger VACV plaques and increased infectious viral yield, indicating that FLNB restricts VACV spread. These data demonstrate that C4 has a new function that contributes to virulence and engages the cytoskeleton. Furthermore, we show that the cytoskeleton performs further previously uncharacterized functions during VACV infection. IMPORTANCE: Vaccinia virus (VACV), the vaccine against smallpox and monkeypox, encodes many proteins to counteract the host immune response. Investigating these proteins provides insights into viral immune evasion mechanisms and thereby indicates how to engineer safer and more immunogenic VACV-based vaccines. Here, we report that the N-terminal domain of VACV protein C4 interacts directly with the cytoskeletal protein filamin B (FLNB), and this domain of C4 contributes to virus virulence. Furthermore, VACV replicates and spreads better in cells lacking FLNB, thus demonstrating that FLNB has antiviral activity. VACV utilizes the cytoskeleton for movement within and between cells; however, previous studies show no involvement of C4 in VACV replication or spread. Thus, C4 associates with FLNB for a different reason, suggesting that the cytoskeleton has further uncharacterized roles during virus infection.


Subject(s)
Filamins , Vaccinia virus , Viral Proteins , Humans , Cell Line , DNA/metabolism , Filamins/genetics , Filamins/metabolism , NF-kappa B/metabolism , Vaccinia/virology , Vaccinia virus/pathogenicity , Vaccinia virus/physiology , Viral Proteins/genetics , Viral Proteins/metabolism , Animals
12.
FEBS J ; 291(11): 2388-2404, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38145501

ABSTRACT

Necroptosis, a potent host defense mechanism, limits viral replication and pathogenesis through three distinct initiation pathways. Toll-like receptor 3 (TLR3) via TIR-domain-containing adapter-inducing interferon-ß (TRIF), Z-DNA-binding protein 1 (ZBP1) and tumor necrosis factor (TNF)α mediate necroptosis, with ZBP1 and TNF playing pivotal roles in controlling viral infections, with the role of TLR3-TRIF being less clear. ZBP1-mediated necroptosis is initiated when host ZBP1 senses viral Z-form double stranded RNA and recruits receptor-interacting serine/threonine-protein kinase 3 (RIPK3), driving a mixed lineage kinase domain-like pseudokinase (MLKL)-dependent necroptosis pathway, whereas TNF-mediated necroptosis is initiated by TNF signaling, which drives a RIPK1-RIPK3-MLKL pathway, resulting in necroptosis. Certain viruses (cytomegalovirus, herpes simplex virus and vaccinia) have evolved to produce proteins that compete with host defense systems, preventing programmed cell death pathways from being initiated. Two engineered viruses deficient of active forms of these proteins, murine cytomegalovirus M45mutRHIM and vaccinia virus E3∆Zα, trigger ZBP1-dependent necroptosis in mouse embryonic fibroblasts. By contrast, when bone-marrow-derived macrophages are infected with the viruses, necroptosis is initiated predominantly through the TNF-mediated pathway. However, when the TNF pathway is blocked by RIPK1 inhibitors or a TNF blockade, ZBP1-mediated necroptosis becomes the prominent pathway in bone-marrow-derived macrophages. Overall, these data implicate a cell-type preference for either TNF-mediated or ZBP1-mediated necroptosis pathways in host responses to viral infections. These preferences are important to consider when evaluating disease models that incorporate necroptosis because they may contribute to tissue-specific reactions that could alter the balance of inflammation versus control of virus, impacting the organism as a whole.


Subject(s)
Necroptosis , RNA-Binding Proteins , Receptor-Interacting Protein Serine-Threonine Kinases , Signal Transduction , Virus Diseases , Animals , Humans , Mice , Necroptosis/genetics , Protein Kinases/metabolism , Protein Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Ribonucleotide Reductases , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 3/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Vaccinia virus/genetics , Vaccinia virus/physiology , Vaccinia virus/metabolism , Vaccinia virus/immunology , Viral Proteins , Virus Diseases/metabolism , Virus Diseases/pathology , Virus Diseases/genetics , Virus Diseases/virology , Virus Diseases/immunology
13.
Antiviral Res ; 216: 105651, 2023 08.
Article in English | MEDLINE | ID: mdl-37270160

ABSTRACT

Many poxviruses are significant human and animal pathogens, including viruses that cause smallpox and mpox (formerly monkeypox). Identifying novel and potent antiviral compounds is critical to successful drug development targeting poxviruses. Here we tested two compounds, nucleoside trifluridine, and nucleotide adefovir dipivoxil, for antiviral activities against vaccinia virus (VACV), mpox virus (MPXV), and cowpox virus (CPXV) in physiologically relevant primary human fibroblasts. Both compounds potently inhibited the replication of VACV, CPXV, and MPXV (MA001 2022 isolate) in plaque assays. In our recently developed assay based on a recombinant VACV expressing secreted Gaussia luciferase, they both exhibited high potency in inhibiting VACV replication with EC50s in the low nanomolar range. In addition, both trifluridine and adefovir dipivoxil inhibited VACV DNA replication and downstream viral gene expression. Our results characterized trifluridine and adefovir dipivoxil as strong poxvirus antiviral compounds and further validate the VACV Gaussia luciferase assay as a highly efficient and reliable reporter tool for identifying poxvirus inhibitors. Given that both compounds are FDA-approved drugs, and trifluridine is already used to treat ocular vaccinia, further development of trifluridine and adefovir dipivoxil holds great promise in treating poxvirus infections, including mpox.


Subject(s)
Mpox (monkeypox) , Poxviridae , Vaccinia , Animals , Humans , Vaccinia virus/physiology , Vaccinia/drug therapy , Cowpox virus , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Trifluridine/metabolism , Cell Line , Poxviridae/metabolism
14.
Int J Mol Sci ; 24(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37298195

ABSTRACT

Little is known about whether type 1 (IFNγ), 2 (IL-4/IL-13), or 3 (IL-17A/IL-22) cytokines affect the susceptibility of keratinocytes (KC) to viruses. These immune pathways predominate in various skin diseases: lupus, atopic dermatitis (AD), and psoriasis, respectively. Janus kinase inhibitors (JAKi) are approved to treat both AD and psoriasis, and are in clinical development for lupus. We evaluated whether these cytokines alter viral susceptibility of KC and determined if this effect is modulated by treatment with JAKi. Viral susceptibility to vaccinia virus (VV) or herpes simplex virus-1 (HSV-1) ± JAKi was assessed in immortalized and primary human KC pretreated with cytokines. Exposure to type 2 (IL-4 + IL-13) or the type 3 (IL-22) cytokines significantly increased KC viral susceptibility. Specifically, there was a peak increase of 12.2 ± 3.1-fold (IL-4 + IL-13) or 7.7 ± 2.8-fold (IL-22) in VV infection as measured by plaque number. Conversely, IFNγ significantly reduced susceptibility to VV (63.1 ± 64.4-fold). The IL-4 + IL-13-induced viral susceptibility was reduced (44 ± 16%) by JAK1 inhibition, while the IL-22-enhanced viral susceptibility was diminished (76 ± 19%) by TYK2 inhibition. IFNγ-mediated resistance to viral infection was reversed by JAK2 inhibition (366 ± 294% increase in infection). Cytokines expressed in AD skin (IL-4, IL-13, IL-22) increase KC viral susceptibility while IFNγ is protective. JAKi that target JAK1 or TYK2 reversed cytokine-enhanced viral susceptibility, while JAK2 inhibition reduced the protective effects of IFNγ.


Subject(s)
Dermatitis, Atopic , Janus Kinase Inhibitors , Psoriasis , Humans , Cytokines/metabolism , Interleukin-13/pharmacology , Interleukin-4/pharmacology , Interleukin-4/therapeutic use , Keratinocytes/metabolism , Psoriasis/drug therapy , Dermatitis, Atopic/drug therapy , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Vaccinia virus/physiology
15.
Front Immunol ; 14: 1093381, 2023.
Article in English | MEDLINE | ID: mdl-36911702

ABSTRACT

Natural killer (NK) cells have an established role in controlling poxvirus infection and there is a growing interest to exploit their capabilities in the context of poxvirus-based oncolytic therapy and vaccination. How NK cells respond to poxvirus-infected cells to become activated is not well established. To address this knowledge gap, we studied the NK cell response to vaccinia virus (VACV) in vivo, using a systemic infection murine model. We found broad alterations in NK cells transcriptional activity in VACV-infected mice, consistent with both direct target cell recognition and cytokine exposure. There were also alterations in the expression levels of specific NK surface receptors (NKRs), including the Ly49 family and SLAM receptors, as well as upregulation of memory-associated NK markers. Despite the latter observation, adoptive transfer of VACV-expercienced NK populations did not confer protection from infection. Comparison with the NK cell response to murine cytomegalovirus (MCMV) infection highlighted common features, but also distinct NK transcriptional programmes initiated by VACV. Finally, there was a clear overlap between the NK transcriptional response in humans vaccinated with an attenuated VACV, modified vaccinia Ankara (MVA), demonstrating conservation between the NK response in these different host species. Overall, this study provides new data about NK cell activation, function, and homeostasis during VACV infection, and may have implication for the design of VACV-based therapeutics.


Subject(s)
Poxviridae , Vaccinia , Mice , Humans , Animals , Vaccinia virus/physiology , Killer Cells, Natural/metabolism , Cytokines/metabolism
16.
J Virol ; 96(18): e0109322, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36098514

ABSTRACT

Receptor for activated C kinase 1 (RACK1) is a small ribosomal subunit protein that is phosphorylated by vaccinia virus (VacV) to maximize translation of postreplicative (PR) mRNAs that harbor 5' polyA leaders. However, RACK1 is a multifunctional protein that both controls translation directly and acts as a scaffold for signaling to and from the ribosome. This includes stress signaling that is activated by ribosome-associated quality control (RQC) and ribotoxic stress response (RSR) pathways. As VacV infection activates RQC and stress signaling, whether RACK1 influences viral protein synthesis through its effects on translation, signaling, or both remains unclear. Examining the effects of genetic knockout of RACK1 on the phosphorylation of key mitogenic and stress-related kinases, we reveal that loss of RACK1 specifically blunts the activation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) at late stages of infection. However, RACK1 was not required for JNK recruitment to ribosomes, and unlike RACK1 knockout, JNK inhibitors had no effect on viral protein synthesis. Moreover, reduced JNK activity during infection in RACK1 knockout cells contrasted with the absolute requirement for RACK1 in RSR-induced JNK phosphorylation. Comparing the effects of RACK1 knockout alongside inhibitors of late stage replication, our data suggest that JNK activation is only indirectly affected by the absence of RACK1 due to reduced viral protein accumulation. Cumulatively, our findings in the context of infection add further support for a model whereby RACK1 plays a specific and direct role in controlling translation of PR viral mRNAs that is independent of its role in ribosome-based stress signaling. IMPORTANCE Receptor for activated C kinase 1 (RACK1) is a multifunctional ribosomal protein that regulates translation directly and mediates signaling to and from the ribosome. While recent work has shown that RACK1 is phosphorylated by vaccinia virus (VacV) to stimulate translation of postreplicative viral mRNAs, whether RACK1 also contributes to VacV replication through its roles in ribosome-based stress signaling remains unclear. Here, we characterize the role of RACK1 in infected cells. In doing so, we find that RACK1 is essential for stress signal activation by ribotoxic stress responses but not by VacV infection. Moreover, although the loss of RACK1 reduces the level of stress-associated JNK activation in infected cells, this is an indirect consequence of RACK1's specific requirement for the synthesis of postreplicative viral proteins, the accumulation of which determines the level of cellular stress. Our findings reveal both the specific role of RACK1 and the complex downstream effects of its control of viral protein synthesis in the context of infection.


Subject(s)
Protein Biosynthesis , Receptors for Activated C Kinase , Ribosomes , Signal Transduction , Stress, Physiological , Vaccinia virus , JNK Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinase 8/metabolism , Protein Biosynthesis/genetics , RNA, Messenger/genetics , Receptors for Activated C Kinase/genetics , Receptors for Activated C Kinase/metabolism , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Signal Transduction/genetics , Stress, Physiological/genetics , Vaccinia virus/physiology , Viral Proteins/metabolism
17.
J Virol ; 96(11): e0039822, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35543552

ABSTRACT

Poxvirus proteins remodel signaling throughout the cell by targeting host enzymes for inhibition and redirection. Recently, it was discovered that early in infection the vaccinia virus (VACV) B12 pseudokinase copurifies with the cellular kinase VRK1, a proviral factor, in the nucleus. Although the formation of this complex correlates with inhibition of cytoplasmic VACV DNA replication and likely has other downstream signaling consequences, the molecular mechanisms involved are poorly understood. Here, we further characterize how B12 and VRK1 regulate one another during poxvirus infection. First, we demonstrate that B12 is stabilized in the presence of VRK1 and that VRK1 and B12 coinfluence their respective solubility and subcellular localization. In this regard, we find that B12 promotes VRK1 colocalization with cellular DNA during mitosis and that B12 and VRK1 may be tethered cooperatively to chromatin. Next, we observe that the C-terminal tail of VRK1 is unnecessary for B12-VRK1 complex formation or its proviral activity. Interestingly, we identify a point mutation of B12 capable of abrogating interaction with VRK1 and which renders B12 nonrepressive during infection. Lastly, we investigated the influence of B12 on the host factor BAF and antiviral signaling pathways and find that B12 triggers redistribution of BAF from the cytoplasm to the nucleus. In addition, B12 increases DNA-induced innate immune signaling, revealing a new functional consequence of the B12 pseudokinase. Together, this study characterizes the multifaceted roles B12 plays during poxvirus infection that impact VRK1, BAF, and innate immune signaling. IMPORTANCE Protein pseudokinases comprise a considerable fraction of the human kinome, as well as other forms of life. Recent studies have demonstrated that their lack of key catalytic residues compared to their kinase counterparts does not negate their ability to intersect with molecular signal transduction. While the multifaceted roles pseudokinases can play are known, their contribution to virus infection remains understudied. Here, we further characterize the mechanism of how the VACV B12 pseudokinase and human VRK1 kinase regulate one another in the nucleus during poxvirus infection and inhibit VACV DNA replication. We find that B12 disrupts regulation of VRK1 and its downstream target BAF, while also enhancing DNA-dependent innate immune signaling. Combined with previous data, these studies contribute to the growing field of nuclear pathways targeted by poxviruses and provide evidence of unexplored roles of B12 in the activation of antiviral immunity.


Subject(s)
Immunity, Innate , Intracellular Signaling Peptides and Proteins , Poxviridae Infections , Protein Serine-Threonine Kinases , Vaccinia virus , DNA/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Phosphorylation , Poxviridae Infections/immunology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Vaccinia , Vaccinia virus/enzymology , Vaccinia virus/physiology
18.
Viruses ; 14(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-35215908

ABSTRACT

The transcription factors IRF3 and NF-κB are crucial in innate immune signalling in response to many viral and bacterial pathogens. However, mechanisms leading to their activation remain incompletely understood. Viral RNA can be detected by RLR receptors, such as RIG-I and MDA5, and the dsRNA receptor TLR3. Alternatively, the DExD-Box RNA helicases DDX1-DDX21-DHX36 activate IRF3/NF-κB in a TRIF-dependent manner independent of RIG-I, MDA5, or TLR3. Here, we describe DDX50, which shares 55.6% amino acid identity with DDX21, as a non-redundant factor that promotes activation of the IRF3 signalling pathway following its stimulation with viral RNA or infection with RNA and DNA viruses. Deletion of DDX50 in mouse and human cells impaired IRF3 phosphorylation and IRF3-dependent endogenous gene expression and cytokine/chemokine production in response to cytoplasmic dsRNA (polyIC transfection), and infection by RNA and DNA viruses. Mechanistically, whilst DDX50 co-immunoprecipitated TRIF, it acted independently to the previously described TRIF-dependent RNA sensor DDX1. Indeed, shRNA-mediated depletion of DDX1 showed DDX1 was dispensable for signalling in response to RNA virus infection. Importantly, loss of DDX50 resulted in a significant increase in replication and dissemination of virus following infection with vaccinia virus, herpes simplex virus, or Zika virus, highlighting its important role as a broad-ranging viral restriction factor.


Subject(s)
DEAD-box RNA Helicases/metabolism , Herpes Simplex/metabolism , Interferon Regulatory Factor-3/metabolism , Simplexvirus/physiology , Vaccinia virus/physiology , Vaccinia/metabolism , Zika Virus Infection/metabolism , Zika Virus/physiology , Animals , DEAD-box RNA Helicases/genetics , Herpes Simplex/genetics , Herpes Simplex/virology , Host-Pathogen Interactions , Humans , Interferon Regulatory Factor-3/genetics , Mice , Phosphorylation , Signal Transduction , Simplexvirus/genetics , Vaccinia/genetics , Vaccinia/virology , Vaccinia virus/genetics , Zika Virus/genetics , Zika Virus Infection/genetics , Zika Virus Infection/virology
19.
Viruses ; 14(2)2022 02 19.
Article in English | MEDLINE | ID: mdl-35216024

ABSTRACT

Modulation of the host cell cycle is a common strategy used by viruses to create a pro-replicative environment. To facilitate viral genome replication, vaccinia virus (VACV) has been reported to alter cell cycle regulation and trigger the host cell DNA damage response. However, the cellular factors and viral effectors that mediate these changes remain unknown. Here, we set out to investigate the effect of VACV infection on cell proliferation and host cell cycle progression. Using a subset of VACV mutants, we characterise the stage of infection required for inhibition of cell proliferation and define the viral effectors required to dysregulate the host cell cycle. Consistent with previous studies, we show that VACV inhibits and subsequently shifts the host cell cycle. We demonstrate that these two phenomena are independent of one another, with viral early genes being responsible for cell cycle inhibition, and post-replicative viral gene(s) responsible for the cell cycle shift. Extending previous findings, we show that the viral kinase F10 is required to activate the DNA damage checkpoint and that the viral B1 kinase and/or B12 pseudokinase mediate degradation of checkpoint effectors p53 and p21 during infection. We conclude that VACV modulates host cell proliferation and host cell cycle progression through temporal expression of multiple VACV effector proteins. (209/200.).


Subject(s)
Cell Cycle/physiology , DNA Damage , Host-Pathogen Interactions/genetics , Vaccinia virus/genetics , Viral Proteins/genetics , Cell Proliferation , HCT116 Cells , HeLa Cells , Humans , Mutation , Tumor Suppressor Protein p53 , Vaccinia virus/physiology , Virus Replication
20.
J Gen Virol ; 103(1)2022 01.
Article in English | MEDLINE | ID: mdl-35020582

ABSTRACT

The morphogenesis of vaccinia virus (VACV, family Poxviridae), the smallpox vaccine, is a complex process involving multiple distinct cellular membranes and resulting in multiple different forms of infectious virion. Efficient release of enveloped virions, which promote systemic spread of infection within hosts, requires the VACV protein E2 but the molecular basis of E2 function remains unclear and E2 lacks sequence homology to any well-characterised family of proteins. We solved the crystal structure of VACV E2 to 2.3 Å resolution, revealing that it comprises two domains with novel folds: an N-terminal annular (ring) domain and a C-terminal globular (head) domain. The C-terminal head domain displays weak structural homology with cellular (pseudo)kinases but lacks conserved surface residues or kinase features, suggesting that it is not enzymatically active, and possesses a large surface basic patch that might interact with phosphoinositide lipid headgroups. Recent deep learning methods have revolutionised our ability to predict the three-dimensional structures of proteins from primary sequence alone. VACV E2 is an exemplar 'difficult' viral protein target for structure prediction, being comprised of multiple novel domains and lacking sequence homologues outside Poxviridae. AlphaFold2 nonetheless succeeds in predicting the structures of the head and ring domains with high and moderate accuracy, respectively, allowing accurate inference of multiple structural properties. The advent of highly accurate virus structure prediction marks a step-change in structural virology and beckons a new era of structurally-informed molecular virology.


Subject(s)
Poxviridae/metabolism , Vaccinia virus/chemistry , Vaccinia virus/physiology , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Replication , Binding Sites , Crystallography, X-Ray , Protein Binding , Protein Conformation , Vaccinia virus/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...