Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 305
Filter
1.
Ugeskr Laeger ; 186(23)2024 Jun 03.
Article in Danish | MEDLINE | ID: mdl-38903031

ABSTRACT

About 40 % of new-onset epilepsy is drug refractory. If epilepsy surgery is not an option or fails, vagal nerve stimulation (VNS) can be considered. VNS efficacy is reported as more than 50 % seizure frequency reduction in 50-56 % of patients. Features in the newer models offer additional treatment optimization possibilities. Side effects include hoarseness, cough, and dyspnoea. Caution is advised for patients with sleep apnoea or lung disease. VNS has specific limitations concerning MRI. This review presents an overview of VNS treatment in Denmark and discusses future challenges.


Subject(s)
Drug Resistant Epilepsy , Vagus Nerve Stimulation , Humans , Vagus Nerve Stimulation/adverse effects , Drug Resistant Epilepsy/therapy
3.
Acta Neurochir (Wien) ; 166(1): 193, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662025

ABSTRACT

Vagal neuropathy causing vocal fold palsy is an uncommon complication of vagal nerve stimulator (VNS) placement. It may be associated with intraoperative nerve injury or with device stimulation. Here we present the first case of delayed, compressive vagal neuropathy associated with VNS coil placement which presented with progressive hoarseness and vocal cord paralysis. Coil removal and vagal neurolysis was performed to relieve the compression. Larger 3 mm VNS coils were placed for continuation of therapy. Coils with a larger inner diameter should be employed where possible to prevent this complication. The frequency of VNS-associated vagal nerve compression may warrant further investigation.


Subject(s)
Vagus Nerve Stimulation , Vocal Cord Paralysis , Humans , Male , Nerve Compression Syndromes/etiology , Nerve Compression Syndromes/surgery , Vagus Nerve , Vagus Nerve Diseases/etiology , Vagus Nerve Diseases/surgery , Vagus Nerve Stimulation/adverse effects , Vagus Nerve Stimulation/instrumentation , Vagus Nerve Stimulation/methods , Vocal Cord Paralysis/etiology , Aged
4.
Brain Behav ; 14(3): e3452, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38468454

ABSTRACT

INTRODUCTION: Invasive neuromodulation interventions such as deep brain stimulation (DBS) and vagal nerve stimulation (VNS) are important treatments for movement disorders and epilepsy, but literature focused on young patients treated with DBS and VNS is limited. This retrospective study aimed to examine naturalistic outcomes of VNS and DBS treatment of epilepsy and dystonia in children, adolescents, and young adults. METHODS: We retrospectively assessed patient demographic and outcome data that were obtained from electronic health records. Two researchers used the Clinical Global Impression scale to retrospectively rate the severity of neurologic and psychiatric symptoms before and after patients underwent surgery to implant DBS electrodes or a VNS device. Descriptive and inferential statistics were used to examine clinical effects. RESULTS: Data from 73 patients were evaluated. Neurologic symptoms improved for patients treated with DBS and VNS (p < .001). Patients treated with DBS did not have a change in psychiatric symptoms, whereas psychiatric symptoms worsened for patients treated with VNS (p = .008). The frequency of postoperative complications did not differ between VNS and DBS groups. CONCLUSION: Young patients may have distinct vulnerabilities for increased psychiatric symptoms during treatment with invasive neuromodulation. Child and adolescent psychiatrists should consider a more proactive approach and greater engagement with DBS and VNS teams that treat younger patients.


Subject(s)
Deep Brain Stimulation , Drug Resistant Epilepsy , Dystonia , Epilepsy , Vagus Nerve Stimulation , Child , Adolescent , Young Adult , Humans , Retrospective Studies , Deep Brain Stimulation/adverse effects , Vagus Nerve Stimulation/adverse effects , Epilepsy/etiology , Dystonia/etiology , Treatment Outcome , Drug Resistant Epilepsy/therapy
5.
Brain Stimul ; 17(2): 382-391, 2024.
Article in English | MEDLINE | ID: mdl-38499287

ABSTRACT

BACKGROUND: Vagus nerve stimulation (VNS) at low frequencies (≤30 Hz) has been an established treatment for drug-resistant epilepsy (DRE) for over 25 years. OBJECTIVE: To examine the initial safety and efficacy performance of an investigational, high-frequency (≥250 Hz) VNS paradigm herein called "Microburst VNS" (µVNS). µVNS consists of short, high-frequency bursts of electrical pulses believed to preferentially modulate certain brain regions. METHODS: Thirty-three (33) participants were enrolled into an exploratory feasibility study, 21 with focal-onset seizures and 12 with generalized-onset seizures. Participants were titrated to a personalized target dose of µVNS using an investigational fMRI protocol. Participants were then followed for up to 12 months, with visits every 3 months, and monitored for side-effects at all time points. This study was registered as NCT03446664 on February 27th, 2018. RESULTS: The device was well-tolerated. Reported adverse events were consistent with typical low frequency VNS outcomes and tended to diminish in severity over time, including dysphonia, cough, dyspnea, and implant site pain. After 12 months of µVNS, the mean seizure frequency reduction for all seizures was 61.3% (median reduction: 70.4%; 90% CI of median: 48.9%-83.3%). The 12-month responder rate (≥50% reduction) was 63.3% (90% CI: 46.7%-77.9%) and the super-responder rate (≥80% reduction) was 40% (90% CI: 25.0%-56.6%). Participants with focal-onset seizures appeared to benefit similarly to participants with generalized-onset seizures (mean reduction in seizures at 12 months: 62.6% focal [n = 19], versus 59.0% generalized [n = 11]). CONCLUSION: Overall, µVNS appears to be safe and potentially a promising therapeutic alternative to traditional VNS. It merits further investigation in randomized controlled trials which will help determine the impact of investigational variables and which patients are most suitable for this novel therapy.


Subject(s)
Drug Resistant Epilepsy , Feasibility Studies , Vagus Nerve Stimulation , Humans , Male , Female , Vagus Nerve Stimulation/methods , Vagus Nerve Stimulation/instrumentation , Vagus Nerve Stimulation/adverse effects , Adult , Drug Resistant Epilepsy/therapy , Middle Aged , Young Adult , Epilepsy, Generalized/therapy , Epilepsy, Generalized/physiopathology , Treatment Outcome , Epilepsies, Partial/therapy , Epilepsies, Partial/physiopathology , Adolescent , Magnetic Resonance Imaging
6.
J Affect Disord ; 354: 82-88, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38452937

ABSTRACT

BACKGROUND: It is a well-established fact that post-stroke depression (PSD) is a prevalent condition that affects a significant proportion of individuals who have suffered a stroke. Hence, our research endeavors to explore the safety, efficacy and the potential molecular mechanism of transcutaneous auricular vagus nerve stimulation (ta-VNS) for the treatment of depression in PSD patients by conducting a double-blind, sham-controlled, randomized trial. METHODS: Patients who had experienced strokes and exhibited depressive symptoms, with a Hamilton Depression Scale (HAMD-17) score of ≥8 and met the DSM-IV criteria, were diagnosed with PSD. A volunteer sample of participants (N = 80) were randomly divided into either the ta-VNS group (which received ta-VNS in addition to conventional treatment) or the control group (which received conventional treatment only), in a 1:1 ratio. The effectiveness of the interventions was evaluated using the 17-item Hamilton Rating Scale for Depression (HAMD-17), Zung Self-Rating Depression Scale (SDS), and Barthel Index (BI) scores. Furthermore, Plasma BDNF, CREB1, and 5-HT levels were measured before and after treatment. RESULTS: The concomitant application of ta-VNS demonstrated a remarkable reduction in HAMD-17 and SDS scores, leading to noteworthy enhancements in patients' daily functioning, as evidenced by improved activities of daily living, at all assessed time points, in contrast to the control group (p < 0.0001). Notably, the ta-VNS group exhibited superior effects in modulating the measured neurotrophic biomarkers when compared to the control group (p < 0.05). CONCLUSIONS: The synergistic approach of combining ta-VNS with conventional treatment has demonstrated remarkable efficacy and tolerability in managing depression following a stroke.


Subject(s)
Stroke , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Depression/etiology , Depression/therapy , Vagus Nerve Stimulation/adverse effects , Activities of Daily Living , Stroke/complications , Stroke/therapy , Double-Blind Method , Vagus Nerve , Treatment Outcome
7.
Epilepsia Open ; 9(2): 704-716, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38318727

ABSTRACT

OBJECTIVE: Evaluate the long-term efficacy of vagus nerve stimulation (VNS) in patients with developmental and epileptic encephalopathies (DEE) compared with epilepsy patients without intellectual disability (ID). METHODS: Long-term outcomes from a Norwegian VNS quality registry are reported in 105 patients with DEEs (Lennox-Gastaut syndrome [LGS] n = 62; Dravet n = 16; Rett n = 9; other syndromes n = 18) were compared with 212 epilepsy patients without ID, with median follow-up of 88 and 72 months, respectively. Total seizure reduction was evaluated at 6, 12, 24, 36, and 60 months. Effect on different seizure types was evaluated at baseline and last observation carried forward (LOCF). RESULTS: Median monthly seizure frequency at LOCF was reduced by 42.2% (p < 0.001) in patients with DEE and by 55.8% (p < 0.001) in patients without ID. In DEE patients, ≥50% seizure reduction at 6 and 24 months were 17.1% and 37.1%, respectively, and 33.5% and 48.6% for patients without ID. Seizure reduction ≥75% at 60 months occurred in 14.3% of DEE patients and 23.1% of patients without ID. Highest median reduction was for atonic seizures, most notably 64.6% for LGS patients. A better effect was seen at 2 years among DEE patients with unchanged medication compared with those with changed medication (54.5% vs. 35.6% responders, p = 0.078). More DEE patients were reported to have greater improvement in ictal or postictal severity (43.8% vs. 28.3%, p = 0.006) and alertness (62.9% vs. 31.6%, p < 0.001) than patients without ID. For both groups, use of the magnet reduced seizure severity. Hoarseness was the most common adverse effect in both groups. In addition, DEE patients were frequently reported to have sleep disturbance, general discomfort, or abdominal problems. SIGNIFICANCE: Our data indicate that VNS is very effective for atonic seizures. Patients without ID had best overall seizure reduction, however, patients with DEE had higher retention rates probably due to other positive effects. PLAIN LANGUAGE SUMMARY: DEE refers to a group of patients with severe epilepsy and intellectual disability. Many of these patients have restricted lifestyles with frequent seizures. VNS is a treatment option for patients who do not respond well to medicines, either because of insufficient effect or serious adverse effects. Our study shows that VNS is well tolerated in this patient group and leads to a reduction in all seizure types, most notably for seizures leading to fall. Many patients experience other positive effects like shorter and milder seizures, as well as improvement in alertness.


Subject(s)
Epilepsy , Intellectual Disability , Lennox Gastaut Syndrome , Vagus Nerve Stimulation , Humans , Vagus Nerve Stimulation/adverse effects , Intellectual Disability/therapy , Intellectual Disability/etiology , Treatment Outcome , Epilepsy/therapy , Seizures/etiology , Lennox Gastaut Syndrome/therapy
8.
Neurosciences (Riyadh) ; 29(1): 10-17, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38195125

ABSTRACT

OBJECTIVES: To assess the frequency of adverse effects among pediatric and adult patients and the clinical variables associated with a higher probability of developing side effects. METHODS: This retrospective study enrolled pediatric and adult patients who underwent Vagus nerve stimulation (VNS) implantation at our institution and had documented follow-up during clinic visits for at least 6 months after implantation. Data collected included demographic information, epilepsy diagnosis, and device data. RESULTS: A total of 43 patients with drug-resistant epilepsy who received a VNS device at our institution were enrolled. The median follow-up period was 12 months. Fourteen patients (32.55%) reported no side effects from VNS therapy. Side effects ranged from mild to severe, with significant side effects observed in 8 patients. Data on therapy efficacy were collected, and 10 patients (23.26%) reported no change in seizure frequency following device implantation. CONCLUSION: This study demonstrates that VNS is an important adjunct treatment option for epilepsy patients. Dysphagia and dyspnea can be significant adverse effects leading to treatment discontinuation, aspiration pneumonia, intensive care unit (ICU) admission, and prolonged hospital stay. These effects are more frequent in patients with symptomatic generalized epilepsy, global developmental delay at baseline, previous ICU admissions, abnormal brain magnetic resonance imaging findings, and seizures with multiple semiologies.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Generalized , Vagus Nerve Stimulation , Adult , Humans , Child , Drug Resistant Epilepsy/therapy , Retrospective Studies , Vagus Nerve Stimulation/adverse effects , Seizures
9.
Ann Pharm Fr ; 82(1): 163-173, 2024 Jan.
Article in French | MEDLINE | ID: mdl-37625530

ABSTRACT

INTRODUCTION: Vagal neurostimulation (VNS) medical devices (MDs) are used to treat drug-resistant epilepsy. Using a magnet, the patient can activate on the stimulations in order to stop a seizure or interrupt the adverse effects (AEs) of the device. The objective is to evaluate the improvement of the patients' knowledge about the VNS following a pharmaceutical educational interview (PEI) as well as their satisfaction. MATERIALS AND METHODS: The pharmaceutical educational interview regarding drugs and DMs was performed by the clinical pharmacist at the patient's bed after VNS implantation. A questionnaire about VNS devices (operation, adverse effects, recommendations) and assessing knowledge was submitted to patients before and after the PEI. Satisfaction was assessed by the Likert scale. RESULTS: From March 2020 to August 2021, 18 implanted patients were included in the study. In 78% of cases (14/18), the total number of good responses after PEI increased. The mean good response was significantly increased from 16.11/25 (64%) before PEI to 22.33/25 (89%) after PEI (P-value<0.01). The maximum satisfaction score (4/4) was given in 71% of the items. DISCUSSION-CONCLUSION: The results support the relevance of PEI. Patients feel a need for information and consider the interview useful. An improvement in knowledge was observed, which allows us to hope for an optimization of the effectiveness of the device, in particular, a reduction in seizures and AE. This study shows the feasibility and the interest of the development of clinical pharmacy applied to medical devices in complementarity with the expertise on drugs.


Subject(s)
Drug Resistant Epilepsy , Drug-Related Side Effects and Adverse Reactions , Vagus Nerve Stimulation , Humans , Patient Satisfaction , Vagus Nerve Stimulation/adverse effects , Vagus Nerve Stimulation/methods , Drug Resistant Epilepsy/etiology , Drug Resistant Epilepsy/therapy , Vagus Nerve , Pharmaceutical Preparations , Treatment Outcome , Retrospective Studies
10.
Dev Med Child Neurol ; 66(4): 440-444, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37448317

ABSTRACT

The experience with neurostimulation for childhood epilepsy is far less extensive than for adults. Nevertheless, the implementation of these techniques could be of great value, especially considering the detrimental effects of ongoing seizures on the developing brain. In this review, we discuss the available evidence for neurostimulation for childhood epilepsy. Vagus nerve stimulation (VNS) is the most studied neurostimulation modality in children. Based on mostly retrospective, open-label studies, we can conclude that VNS has a similar safety and efficacy profile in children compared to adults. Although there is little available evidence for deep brain stimulation (DBS) and responsive neurostimulation (RNS) in children, both DBS and RNS show promise in reducing seizure frequency with few complications. The implementation of non-invasive techniques with a more appealing safety profile has gained interest. Small randomized control trials and open-label studies have investigated transcranial direct current simulation for childhood epilepsy, demonstrating promising but inconsistent findings.


Subject(s)
Epilepsy , Vagus Nerve Stimulation , Child , Humans , Deep Brain Stimulation/adverse effects , Epilepsy/therapy , Retrospective Studies , Seizures , Vagus Nerve Stimulation/adverse effects , Vagus Nerve Stimulation/methods , Randomized Controlled Trials as Topic
11.
Neuromodulation ; 27(2): 333-342, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36997454

ABSTRACT

OBJECTIVES: Transcutaneous auricular vagus nerve stimulation (TaVNS) is a supplementary treatment for gastric symptoms resulting from dysrhythmias. The main objective of this study was to quantify the effects of 10, 40, and 80 Hz TaVNS and sham in healthy individuals in response to a 5-minute water-load (WL5) test. MATERIALS AND METHODS: Eighteen healthy volunteers aged between 21 and 55 years (body mass index: 27.1 ± 3.2) were recruited. Each subject fasted for up to eight hours and participated in four 95-minute sessions, which consisted of 30 fasted baseline, 30 minutes TaVNS, WL5, and 30 minutes post-WL5. Heart rate variability was assessed using sternal electrocardiogram. Body-surface gastric mapping and bloating (/10) were recorded. One-way ANOVA with post hoc Tukey test was performed to test the difference between TaVNS protocols in terms of frequency, amplitude, bloating scores, root mean square of the successive differences (RMSSD), and stress index (SI). RESULTS: On average, the subjects consumed 526 ± 160 mL of water, with volume ingested correlated to bloating (mean score 4.1 ± 1.8; r = 0.36, p = 0.029). In general, the reduction in frequency and rhythm stability during the post-WL5 period in sham was normalized by all three TaVNS protocols. Both 40- and 80-Hz protocols also caused increases in amplitude during the stim-only and/or post-WL5 periods. RMSSD increased during the 40-Hz protocol. SI increased during the 10-Hz protocol but decreased during the 40- and 80-Hz protocols. CONCLUSION: TaVNS proved effective in normalizing gastric dysrhythmias by WL5 in healthy subjects by altering both parasympathetic and sympathetic pathways.


Subject(s)
Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Young Adult , Adult , Middle Aged , Vagus Nerve Stimulation/adverse effects , Stomach , Analysis of Variance , Vagus Nerve , Water
12.
JACC Clin Electrophysiol ; 10(2): 346-355, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37999672

ABSTRACT

BACKGROUND: Low-level transcutaneous stimulation of the auricular branch of the vagus nerve at the tragus is antiarrhythmic and anti-inflammatory in animals and humans. Preliminary studies show that transcutaneous vagus nerve stimulation (tVNS) is beneficial in animal models of postural tachycardia syndrome (POTS). OBJECTIVES: In this study the authors conducted a sham-controlled, double-blind, randomized clinical trial to examine the effect of tVNS on POTS over a 2-month period relative to sham stimulation. METHODS: tVNS (20 Hz, 1 mA below discomfort threshold) was delivered using an ear clip attached to either the tragus (active; n = 12) or the ear lobe (sham; n = 14) for 1 hour daily over a 2-month period. Postural tachycardia was assessed during the baseline and 2-month visit. Heart rate variability based on 5-minute electrocardiogram, serum cytokines, and antiautonomic autoantibodies were measured at the respective time points. RESULTS: Mean age was 34 ± 11 years (100% female; 81% Caucasian). Adherence to daily stimulation was 83% in the active arm and 86% in the sham arm (P > 0.05). Postural tachycardia was significantly less in the active arm compared with the sham arm at 2 months (mean postural increase in heart rate 17.6 ± 9.9 beats/min vs 31.7 ± 14.4 beats/min; P = 0.01). Antiadrenergic autoantibodies and inflammatory cytokines were lower in the active arm compared with the sham arm at 2 months (P < 0.05). Heart rate variability was better in the active arm. No device-related side effects were observed. CONCLUSIONS: Our results support the emerging paradigm of noninvasive neuromodulation to treat POTS. Mechanistically, this effect appears to be related to reduction of antiautonomic autoantibodies and inflammatory cytokines, and improvement in autonomic tone. Further studies are warranted. (Autoimmune Basis for Postural Tachycardia Syndrome; NCT05043051).


Subject(s)
Postural Orthostatic Tachycardia Syndrome , Vagus Nerve Stimulation , Humans , Animals , Female , Young Adult , Adult , Middle Aged , Male , Vagus Nerve Stimulation/adverse effects , Vagus Nerve Stimulation/methods , Postural Orthostatic Tachycardia Syndrome/therapy , Autoantibodies , Cytokines , Tachycardia/therapy
13.
Obes Surg ; 34(1): 1-14, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38040984

ABSTRACT

INTRODUCTION: Obesity affects millions of Americans. The vagal nerves convey the degree of stomach fullness to the brain via afferent visceral fibers. Studies have found that vagal nerve stimulation (VNS) promotes reduced food intake, causes weight loss, and reduces cravings and appetite. METHODS: Here, we evaluate the efficacy of a novel stimulus waveform applied bilaterally to the subdiaphragmatic vagal nerve stimulation (sVNS) for almost 13 weeks. A stimulating cuff electrode was implanted in obesity-prone Sprague Dawley rats maintained on a high-fat diet. Body weight, food consumption, and daily movement were tracked over time and compared against three control groups: sham rats on a high-fat diet that were implanted with non-operational cuffs, rats on a high-fat diet that were not implanted, and rats on a standard diet that were not implanted. RESULTS: Results showed that rats on a high-fat diet that received sVNS attained a similar weight to rats on a standard diet due primarily to a reduction in daily caloric intake. Rats on a high-fat diet that received sVNS had significantly less body fat than other high-fat controls. Rats receiving sVNS also began moving a similar amount to rats on the standard diet. CONCLUSION: Results from this study suggest that bilateral subdiaphragmatic vagal nerve stimulation can alter the rate of growth of rats maintained on a high-fat diet through a reduction in daily caloric intake, returning their body weight to that which is similar to rats on a standard diet over approximately 13 weeks.


Subject(s)
Obesity, Morbid , Vagus Nerve Stimulation , Humans , Rats , Animals , Body Weight/physiology , Adiposity , Vagus Nerve Stimulation/adverse effects , Rats, Sprague-Dawley , Obesity, Morbid/surgery , Obesity/therapy , Obesity/etiology , Diet, High-Fat , Vagus Nerve/physiology
14.
Int J Audiol ; 63(4): 250-259, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36799648

ABSTRACT

OBJECTIVES: The aim of this interventional non-randomised prospective controlled study was to assess the effectiveness of transcutaneous vagus nerve stimulation (tVNS) in human subjects with tinnitus. DESIGN: The ParasymTM tVNS device was paired with an auditory stimulation. Treatment and observations were conducted over 12 weeks. Audiological evaluation was performed. Responses from a set of questionnaires and quantitative electroencephalography (qEEG) before and after treatment were collected. Voice measurements were done to assess possible side-effects of tVNS. STUDY SAMPLE: The study involved 29 adults who had chronic tinnitus (15 patients who underwent tVNS paired with sounds and a control group of 14 patients who did not). RESULTS: In general, subjective and objective measurements of tinnitus showed no improvement in the study group compared to the controls, although certain parameters as gauged by the questionnaires did statistically improve. The loudness and frequency of tinnitus remained the same in both groups. For the qEEG, activity in the theta band increased significantly in the study group compared to the control group. CONCLUSIONS: The tVNS was not effective in reducing tinnitus symptoms in our study group. However, changes in the theta band suggest there might be cortical effects that might, with sustained treatment, lead to improvements.


Subject(s)
Tinnitus , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Adult , Humans , Prospective Studies , Research Design , Tinnitus/diagnosis , Tinnitus/therapy , Vagus Nerve Stimulation/adverse effects
15.
Trials ; 24(1): 683, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872628

ABSTRACT

BACKGROUND: The autonomic nervous system can be responsible for the initiation and maintenance of arrhythmias. Low-level tragus stimulation (LLTS), a noninvasive form of autonomic neuromodulation, has been shown to be effective in treating atrial fibrillation. We intended to treat frequent premature ventricular complexes (PVCs) with LLTS. METHODS AND DESIGN: The present study will be a prospective multicenter, double-blind, randomized, controlled trial to assess the antiarrhythmic effects of LLTS on frequent PVCs in patients without structured heart disease (SHD). A total of 100 patients with PVC burden > 10% will be randomly assigned to the active or sham LLTS in 1:1 fashion and receive the proposed intervention for 6 months. The primary outcome is PVC burden at 6 months as assessed by 10 days of continuous ambulatory electrocardiographic monitoring. Secondary outcomes include heart rate variability (HRV), quality of life, skin sympathetic nerve activity, and inflammatory markers. Adverse events will also be recorded. DISCUSSION: The present trial will be the first to evaluate the effect of LLTS on frequent PVCs on patients without SHD. LLTS may serve as a low-cost, minimal-risk, and non-invasive alternative to conventional antiarrhythmic therapy. TRIAL REGISTRATION: ClinicalTrial.gov NCT04909528. Registered on 17 June 2021. World health organization trial registration data set was shown in Supplementary Table 1.


Subject(s)
Atrial Fibrillation , Vagus Nerve Stimulation , Ventricular Premature Complexes , Humans , Vagus Nerve Stimulation/adverse effects , Quality of Life , Prospective Studies , Ventricular Premature Complexes/diagnosis , Ventricular Premature Complexes/therapy , Atrial Fibrillation/diagnosis , Atrial Fibrillation/therapy , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
16.
Sci Rep ; 13(1): 15415, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37723225

ABSTRACT

Vagus nerve stimulation (VNS) is used to deliver electric current to stimulate the vagus nerve. The aim of this study is to carry out a systematic review and meta-analysis to determine its effects on motor function in patients with stroke. PubMED, Embase, Web of Science (WoS), and Scopus were searched. Data on time since stroke, and mean scores and standard deviation on outcomes such as level of impairment and motor function were extracted. The results showed that invasive (MD 2.66, 95% CI 1.19-4.13, P = 0.0004) and non-invasive (MD 24.16, 95% CI 23.56-24.75, P = 0.00001) VNS are superior at improving level of motor impairment than the control post intervention and at follow-up respectively. Similarly, VNS improved motor function post intervention (MD 0.28, 95% CI 0.15-0.41, P < 0.0001); and there was no significant difference in adverse events between invasive VNS and control (OR 2.15, 95% CI 0.97-4.74, P = 0.06), and between non-invasive VNS and control (OR 4.54, 95% CI 0.48-42.97, P = 0.19). VNS can be used to improve motor function in patients with stroke.


Subject(s)
Stroke , Vagus Nerve Stimulation , Humans , Vagus Nerve Stimulation/adverse effects , Patients , Stroke/therapy , Electricity , Upper Extremity
17.
J Crohns Colitis ; 17(12): 1897-1909, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37738465

ABSTRACT

BACKGROUND AND AIMS: Crohn's disease [CD] is a debilitating, inflammatory condition affecting the gastrointestinal tract. There is no cure and sustained clinical and endoscopic remission is achieved by fewer than half of patients with current therapies. The immunoregulatory function of the vagus nerve, the 'inflammatory reflex', has been established in patients with rheumatoid arthritis and biologic-naive CD. The aim of this study was to explore the safety and efficacy of vagus nerve stimulation in patients with treatment-refractory CD, in a 16-week, open-label, multicentre, clinical trial. METHODS: A vagus nerve stimulator was implanted in 17 biologic drug-refractory patients with moderately to severely active CD. One patient exited the study pre-treatment, and 16 patients were treated with vagus nerve stimulation [4/16 receiving concomitant biologics] during 16 weeks of induction and 24 months of maintenance treatment. Endpoints included clinical improvement, patient-reported outcomes, objective measures of inflammation [endoscopic/molecular], and safety. RESULTS: There was a statistically significant and clinically meaningful decrease in CD Activity Index at Week 16 [mean ±â€…SD: -86.2 ±â€…92.8, p = 0.003], a significant decrease in faecal calprotectin [-2923 ±â€…4104, p = 0.015], a decrease in mucosal inflammation in 11/15 patients with paired endoscopies [-2.1 ±â€…1.7, p = 0.23], and a decrease in serum tumour necrosis factor and interferon-γ [46-52%]. Two quality-of-life indices improved in 7/11 patients treated without biologics. There was one study-related severe adverse event: a postoperative infection requiring device explantation. CONCLUSIONS: Neuroimmune modulation via vagus nerve stimulation was generally safe and well tolerated, with a clinically meaningful reduction in clinical disease activity associated with endoscopic improvement, reduced levels of faecal calprotectin and serum cytokines, and improved quality of life.


Subject(s)
Biological Products , Crohn Disease , Vagus Nerve Stimulation , Humans , Crohn Disease/drug therapy , Prospective Studies , Quality of Life , Vagus Nerve Stimulation/adverse effects , Remission Induction , Inflammation , Biological Products/therapeutic use , Leukocyte L1 Antigen Complex
18.
BMC Neurol ; 23(1): 289, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37532979

ABSTRACT

BACKGROUND: Over 55 million adults are living with dementia globally, which is projected to reach 157 million by 2050. Mild cognitive impairment (MCI), a syndrome of memory impairment with intact activities of daily living, may precede dementia by several years. Around 5-15% of individuals with MCI convert to dementia annually. Novel treatments which delay progression of MCI to dementia are urgently needed. Transcutaneous vagal nerve stimulation (tVNS) is a non-invasive neuromodulation technique that targets the vagus nerve. Importantly, tVNS has been shown to improve cognition in healthy volunteers, but has not been extensively examined as a potential therapeutic approach in MCI. VINCI-AD will examine the safety and feasibility of tVNS in older adults with MCI. DESIGN: VINCI-AD is an investigator-led, single-site, single-blind, sham-controlled crossover pilot study which aims to assess the safety and feasibility of tVNS in 40 participants with amnestic MCI. All participants will attend for three consecutive study visits during which they will be randomised to receive no stimulation (baseline), active tVNS stimulation (stimulation at cymba conchae of left ear) or sham tVNS stimulation (at earlobe). Safety will be primarily assessed by ascertainment of adverse events. Further safety assessment will examine the impact of acute tVNS on subjective (orthostatic symptoms), peripheral (finometry-based blood pressure) and central (assessed via Near Infrared Spectroscopy [NIRS]) haemodynamic responses to active stand. Feasibility will be determined using a custom-designed occupational assessment of device usability. Exploratory secondary analysis in VINCI-AD will examine the potential impact of acute tVNS on associative memory, spatial memory and inhibitory control to inform sample size estimates for future trials of tVNS in older adults with MCI. DISCUSSION: VINCI-AD will report on the safety (adverse events/haemodynamic responses to active stand) and feasibility of tVNS as a potential therapeutic option in MCI. Detailed reporting of study eligibility and completion rates will be reported. Exploratory analysis will examine the potential cognitive benefits of acute tVNS on cognitive function in MCI to report potential effect sizes that may inform future clinical trials in this cohort. TRIAL REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT05514756 . Trial Registration Number NCT05514756 (24th August 2022 for this protocol, version 1.0.).


Subject(s)
Cognitive Dysfunction , Dementia , Vagus Nerve Stimulation , Aged , Humans , Activities of Daily Living , Cognitive Dysfunction/therapy , Feasibility Studies , Pilot Projects , Single-Blind Method , Vagus Nerve/physiology , Vagus Nerve Stimulation/adverse effects , Vagus Nerve Stimulation/methods
19.
Sleep Med ; 110: 68-75, 2023 10.
Article in English | MEDLINE | ID: mdl-37542741

ABSTRACT

BACKGROUND: Vagal nerve stimulators (VNS), which have been approved for management of refractory epilepsy and depression, induce unique disturbances of breathing during sleep (SDBVNS) that are not captured well using standard criteria. The primary purpose of this retrospective study was to compare AASM definitions with alternative criteria to more accurately measure SDBVNS We also sought to assess outcome variables that may be clinically relevant and response to positive airway pressure therapy. METHODS: We analyzed the electronic medical records and comprehensive polysomnography results of all adult subjects with active VNS for epilepsy who were referred to the sleep center for suspected sleep apnea (2015-2020). We compared standard AASM criteria for defining apneas/hypopnea index (AHIAASM) with three novel scoring criteria for hypopnea according to degree of oxygen desaturation associated with VNS events: AHIVNS0 (none required); AHIVNS2 (2% required); and AHIVNS3 (3% required). RESULTS: Twenty-six subjects were included in the final analysis with 35 PSGs (14 females/12 males). The mean age was 33.6 years and mean body mass index (BMI) of 32.2 kg/m2. AHIAASM measured ≥ 15/hour in 7 (26.9%) subjects versus 21 (80.8%) by AHIVNS0; 15 (70.0%) by AHIVNS2; and 5 (19.2%) by AHIVNS3. Clinically significant hypoxemia was not present. The mean time SpO2<89% was 7 (20.8) minutes. Oximetry tracings often showed a desaturation pattern that resembled a sawfish rather than sawtooth. Arousals specifically linked to VNS activation were not elevated (2.9/hour). The baseline AHIVNS0 was 27.7/hour with a lowest AHIVNS0 on PAP of 27.9/hr. CONCLUSIONS: AASM scoring criteria significantly underestimated the degree of VNS induced respiratory disturbances. VNS events were not associated with increased arousals or significant hypoxemia. PAP therapy was an ineffective treatment in this population. This study adds to the increasing body of evidence of sleep disordered breathing related to VNS and questions the clinical significance of this finding.


Subject(s)
Sleep Apnea Syndromes , Vagus Nerve Stimulation , Male , Adult , Female , Humans , Vagus Nerve Stimulation/adverse effects , Retrospective Studies , Sleep/physiology , Sleep Apnea Syndromes/therapy , Respiration
SELECTION OF CITATIONS
SEARCH DETAIL
...