Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.937
Filter
1.
J Basic Microbiol ; 64(6): e2300751, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38644586

ABSTRACT

NAD+-dependent (2 R,3 R)­2,3­butanediol dehydrogenase (BDH) from Neisseria gonorrhoeae (NgBDH) is a representative member of the medium-chain dehydrogenase/reductase (MDR) superfamily. To date, little information is available on the substrate binding sites and catalytic residues of BDHs from this superfamily. In this work, according to molecular docking studies, we found that conserved residues Phe120 and Val161 form strong hydrophobic interactions with both (2 R,3 R)­2,3­butanediol (RR-BD) and meso-2,3­butanediol (meso-BD) and that mutations of these residues to alanine or threonine impair substrate binding. To further evaluate the roles of these two residues, Phe120 and Val161 were mutated to alanine or threonine. Kinetic analysis revealed that, relative to those of wild type, the apparent KM values of the Phe120Ala mutant for RR-BD and meso-BD increased 36- and 369-fold, respectively; the catalytic efficiencies of this mutant with RR-BD and meso-BD decreased approximately 586- and 3528-fold, respectively; and the apparent KM values of the Val161Ala mutant for RR-BD and meso-BD increased 4- and 37-fold, respectively, the catalytic efficiencies of this mutant with RR-BD and meso-BD decreased approximately 3- and 28-fold, respectively. Additionally, the Val161Thr mutant slightly decreased catalytic efficiencies (twofold with RR-BD; 7.3-fold with meso-BD) due to an increase in KM (sixfold for RR-BD; 24-fold for meso-BD) and a slight increase (2.8-fold with RR-BD; 3.3-fold with meso-BD) in kcat. These findings validate the critical roles of Phe120 and Val161 of NgBDH in substrate binding and catalysis. Overall, the current study provides a better understanding of the substrate binding and catalysis of BDHs within the MDR superfamily.


Subject(s)
Alcohol Oxidoreductases , Butylene Glycols , Molecular Docking Simulation , Mutagenesis, Site-Directed , Neisseria gonorrhoeae , Phenylalanine , Neisseria gonorrhoeae/enzymology , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/chemistry , Kinetics , Butylene Glycols/metabolism , Phenylalanine/metabolism , Phenylalanine/genetics , Binding Sites , Substrate Specificity , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Valine/metabolism , Valine/genetics , Catalytic Domain , Hydrophobic and Hydrophilic Interactions
2.
Int J Mol Sci ; 25(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542117

ABSTRACT

Rabson-Mendenhall syndrome (RMS) is a rare autosomal recessive disorder characterized by severe insulin resistance, resulting in early-onset diabetes mellitus. We report the first case of RMS in a Paraguayan patient. The patient is a 6-year-old girl who presented with hypertrichosis, acanthosis nigricans, nephrocalcinosis, and elevated levels of glucose and insulin that served as diagnostic indicators for RMS. Genetic testing by next-generation sequencing (NGS) revealed two pathogenic variants in exons 2 and 19 of the INSR gene: c.332G>T (p.Gly111Val) and c.3485C>T (p.Ala1162Val), in combined heterozygosis. The novel INSR c. 332G>T variant leads to the substitution of glycine to valine at position 111 in the protein, and multiple in silico software programs predicted it as pathogenic. The c.3485C>T variant leads to the substitution of alanine to valine at position 1162 in the protein previously described for insulin resistance and RMS. The management of RMS is particularly challenging in children, and the use of metformin is often limited by its side effects. The patient was managed with nutritional measures due to the early age of onset. This report expands the knowledge of RMS to the Paraguayan population and adds a novel pathogenic variant to the existing literature.


Subject(s)
Donohue Syndrome , Insulin Resistance , Child , Female , Humans , Donohue Syndrome/diagnosis , Insulin Resistance/genetics , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Mutation , Valine/genetics , Antigens, CD/genetics
3.
Obesity (Silver Spring) ; 32(2): 423-435, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38269471

ABSTRACT

OBJECTIVE: Genetic studies have suggested that the branched-chain amino acids (BCAAs) valine, leucine, and isoleucine have a causal association with type 2 diabetes (T2D). However, inferences are based on a limited number of genetic loci associated with BCAAs. METHODS: Instrumental variables (IVs) for each BCAA were constructed and validated using large well-powered data sets and their association with T2D was tested using a two-sample inverse-variance weighted Mendelian randomization approach. Sensitivity analyses were performed to ensure the accuracy of the findings. A reverse association was assessed using instrumental variables for T2D. RESULTS: Estimated effect sizes between BCAA IVs and T2D, excluding outliers, were as follows: valine (ß = 0.14 change in log-odds per SD change in valine, 95% CI: -0.06 to 0.33, p = 0.17), leucine (ß = 0.15, 95% CI: -0.02 to 0.32, p = 0.09), and isoleucine (ß = 0.13, 95% CI: -0.08 to 0.34, p = 0.24). In contrast, T2D IVs were positively associated with each BCAA, i.e., valine (ß = 0.08 per SD change in levels per log-odds change in T2D, 95% CI: 0.05 to 0.10, p = 1.8 × 10-9 ), leucine (ß = 0.06, 95% CI: 0.04 to 0.09, p = 4.5 × 10-8 ), and isoleucine (ß = 0.06, 95% CI: 0.04 to 0.08, p = 2.8 × 10-8 ). CONCLUSIONS: These data suggest that the BCAAs are not mediators of T2D risk but are biomarkers of diabetes.


Subject(s)
Amino Acids, Branched-Chain , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/genetics , Mendelian Randomization Analysis , Isoleucine/genetics , Leucine/genetics , Valine/genetics
4.
FEBS J ; 291(8): 1732-1743, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38273457

ABSTRACT

Amyloid fibrils of transthyretin (TTR) consist of full-length TTR and C-terminal fragments starting near residue 50. However, the molecular mechanism underlying the production of the C-terminal fragment remains unclear. Here, we investigated trypsin-induced aggregation and urea-induced unfolding of TTR variants associated with hereditary amyloidosis. Trypsin strongly induced aggregation of variants V30G and V30A, in each of which Val30 in the hydrophobic core of the monomer was mutated to less-bulky amino acids. Variants V30L and V30M, in each of which Val30 was mutated to bulky amino acids, also exhibited trypsin-induced aggregation. On the other hand, pathogenic variant I68L as well as the nonpathogenic V30I did not exhibit trypsin-induced aggregation. The V30G variant was extremely unstable compared with the other variants. The V30G mutation caused the formation of a cavity and the rearrangement of Leu55 in the hydrophobic core of the monomer. These results suggest that highly destabilized transthyretin variants are more susceptible to trypsin digestion.


Subject(s)
Amyloidosis, Familial , Valine , Humans , Trypsin/genetics , Trypsin/metabolism , Valine/genetics , Prealbumin/chemistry , Amyloid/chemistry , Amyloidosis, Familial/genetics
5.
Hemoglobin ; 47(5): 202-204, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37909121

ABSTRACT

In this report we decribed a new α-chain variant found during the measurement of hemoglobin A1c (Hb A1c) using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS). MALDI-TOF MS analysis detected an α-chain variant with a mass of 15,155 Da. However, this Hb variant was not detected during Hb A1c measurement by cation-exchange high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE) methods. Sanger sequencing validated the presence of a heterozygous missense mutation [HBA1: c.239C > T, CD79(GCG > GTG)(Ala > Val)]. The observed 28 Da mass difference exactly matches the theoretical mass difference (28 Da) resulting from the substitution of alanine (89.079) with valine (117.133). As this represents the initial documentation of the mutation, we named it Hb Tangshan after the proband's residence.


Subject(s)
Hemoglobins, Abnormal , Humans , Glycated Hemoglobin/genetics , Hemoglobins, Abnormal/genetics , Hemoglobins, Abnormal/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Chromatography, High Pressure Liquid , Electrophoresis, Capillary , Valine/genetics
6.
Clin Nutr ; 42(12): 2493-2502, 2023 12.
Article in English | MEDLINE | ID: mdl-37922693

ABSTRACT

BACKGROUND: Studies have suggested a possible relevance between branched-chain amino acid (BCAA) catabolic enzymes and cancers. However, few studies have explored the variation in circulating concentrations of BCAAs. Our study used bi-directional, two-sample Mendelian randomization (MR) analysis for predicting the causality between the BCAA levels and 9 types of cancers. METHODS: The largest genome-wide association studies (GWAS) provided data for total BCAAs, valine, leucine, and isoleucine from the UK Biobank. Data on multiple cancer endpoints were collected from various sources, such as the International Lung Cancer Consortium (ILCCO), the Pancreatic Cancer Cohort Consortium 1 (PanScan1), the Breast Cancer Association Consortium (BCAC), the FinnGen Biobank, and the Ovarian Cancer National Alliance (OCAC). The mainly analysis method was the inverse-variance-weighted (IVW). For assessing horizontal pleiotropy, the researchers performed MR-Egger regression and MR-PRESSO global test. Finally, the Cochran's Q test served for evaluating the heterogeneity. RESULTS: Circulating total BCAAs levels (OR 1.708, 95%CI 1.168, 2.498; p = 0.006), valine levels (OR 1.747, 95%CI 1.217, 2.402; p < 0.001), leucine levels (OR 1.923, 95%CI 1.279, 2.890; p = 0.002) as well as isoleucine levels (OR 1.898, 95%CI 1.164, 3.094; p = 0.010) positively correlated with the squamous cell lung cancer risk. Nevertheless, no compelling evidence was found to support a causal link between BCAAs and any other examined cancers. CONCLUSIONS: Increased circulating total-BCAAs levels, leucine levels, isoleucine levels and valine levels had higher hazard of squamous cell lung cancer. No such associations were found for BCAAs with other cancers.


Subject(s)
Breast Neoplasms , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Female , Isoleucine/genetics , Mendelian Randomization Analysis , Leucine/genetics , Genome-Wide Association Study , Amino Acids, Branched-Chain , Valine/genetics , Lung Neoplasms/genetics
7.
J Inherit Metab Dis ; 46(5): 931-942, 2023 09.
Article in English | MEDLINE | ID: mdl-37309295

ABSTRACT

Toxicity of accumulating substrates is a significant problem in several disorders of valine and isoleucine degradation notably short-chain enoyl-CoA hydratase (ECHS1 or crotonase) deficiency, 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) deficiency, propionic acidemia (PA), and methylmalonic aciduria (MMA). Isobutyryl-CoA dehydrogenase (ACAD8) and short/branched-chain acyl-CoA dehydrogenase (SBCAD, ACADSB) function in the valine and isoleucine degradation pathways, respectively. Deficiencies of these acyl-CoA dehydrogenase (ACAD) enzymes are considered biochemical abnormalities with limited or no clinical consequences. We investigated whether substrate reduction therapy through inhibition of ACAD8 and SBCAD can limit the accumulation of toxic metabolic intermediates in disorders of valine and isoleucine metabolism. Using analysis of acylcarnitine isomers, we show that 2-methylenecyclopropaneacetic acid (MCPA) inhibited SBCAD, isovaleryl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase and medium-chain acyl-CoA dehydrogenase, but not ACAD8. MCPA treatment of wild-type and PA HEK-293 cells caused a pronounced decrease in C3-carnitine. Furthermore, deletion of ACADSB in HEK-293 cells led to an equally strong decrease in C3-carnitine when compared to wild-type cells. Deletion of ECHS1 in HEK-293 cells caused a defect in lipoylation of the E2 component of the pyruvate dehydrogenase complex, which was not rescued by ACAD8 deletion. MCPA was able to rescue lipoylation in ECHS1 KO cells, but only in cells with prior ACAD8 deletion. SBCAD was not the sole ACAD responsible for this compensation, which indicates substantial promiscuity of ACADs in HEK-293 cells for the isobutyryl-CoA substrate. Substrate promiscuity appeared less prominent for 2-methylbutyryl-CoA at least in HEK-293 cells. We suggest that pharmacological inhibition of SBCAD to treat PA should be investigated further.


Subject(s)
2-Methyl-4-chlorophenoxyacetic Acid , Propionic Acidemia , Humans , Valine/genetics , Valine/metabolism , Acyl-CoA Dehydrogenase/metabolism , Isoleucine/metabolism , HEK293 Cells , Carnitine
8.
BMC Plant Biol ; 23(1): 209, 2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37085761

ABSTRACT

BACKGROUND: Genes with valine glutamine (VQ) motifs play an essential role in plant growth, development, and resistance to biotic and abiotic stresses. However, little information on the VQ genes in sweetpotato and other Ipomoea species is available. RESULTS: This study identified 55, 58, 50 and 47 VQ genes from sweetpotato (I. batatas), I.triflida, I. triloba and I. nil, respectively. The phylogenetic analysis revealed that the VQ genes formed eight clades (I-VII), and the members in the same group exhibited similar exon-intron structure and conserved motifs distribution. The distribution of the VQ genes among the chromosomes of Ipomoea species was disproportional, with no VQ genes mapped on a few of each species' chromosomes. Duplication analysis suggested that segmental duplication significantly contributes to their expansion in sweetpotato, I.trifida, and I.triloba, while the segmental and tandem duplication contributions were comparable in I.nil. Cis-regulatory elements involved in stress responses, such as W-box, TGACG-motif, CGTCA-motif, ABRE, ARE, MBS, TCA-elements, LTR, and WUN-motif, were detected in the promoter regions of the VQ genes. A total of 30 orthologous groups were detected by syntenic analysis of the VQ genes. Based on the analysis of RNA-seq datasets, it was found that the VQ genes are expressed distinctly among different tissues and hormone or stress treatments. A total of 40 sweetpotato differentially expressed genes (DEGs) refer to biotic (sweetpotato stem nematodes and Ceratocystis fimbriata pathogen infection) or abiotic (cold, salt and drought) stress treatments were detected. Moreover, IbVQ8, IbVQ25 and IbVQ44 responded to the five stress treatments and were selected for quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis, and the results were consistent with the transcriptome analysis. CONCLUSIONS: Our study may provide new insights into the evolution of VQ genes in the four Ipomoea genomes and contribute to the future molecular breeding of sweetpotatoes.


Subject(s)
Ipomoea batatas , Ipomoea , Ipomoea/genetics , Glutamine/genetics , Valine/genetics , Phylogeny , Genome , Ipomoea batatas/genetics , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics
9.
HLA ; 102(2): 248-250, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37076429

ABSTRACT

A missense nucleotide substitution in codon -17 in the leader peptide results in the novel HLA-DRB1*04:354 allele.


Subject(s)
Nucleotides , Valine , Humans , HLA-DRB1 Chains/genetics , Alleles , Valine/genetics , Exons/genetics
10.
BMC Med ; 20(1): 485, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36522747

ABSTRACT

BACKGROUND: Branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) are essential amino acids that are associated with an increased risk of cardiometabolic diseases (CMD). However, there are still only limited insights into potential direct associations between BCAAs and a wide range of CMD parameters, especially those remaining after correcting for covariates and underlying causal relationships. METHODS: To shed light on these relationships, we systematically characterized the associations between plasma BCAA concentrations and a large panel of 537 CMD parameters (including atherosclerosis-related parameters, fat distribution, plasma cytokine concentrations and cell counts, circulating concentrations of cardiovascular-related proteins and plasma metabolites) in 1400 individuals from the Dutch population cohort LifeLines DEEP and 294 overweight individuals from the 300OB cohort. After correcting for age, sex, and BMI, we assessed associations between individual BCAAs and CMD parameters. We further assessed the underlying causality using Mendelian randomization. RESULTS: A total of 838 significant associations were detected for 409 CMD parameters. BCAAs showed both common and specific associations, with the most specific associations being detected for isoleucine. Further, we found that obesity status substantially affected the strength and direction of associations for valine, which cannot be corrected for using BMI as a covariate. Subsequent univariable Mendelian randomization (UVMR), after removing BMI-associated SNPs, identified seven significant causal relationships from four CMD traits to BCAA levels, mostly for diabetes-related parameters. However, no causal effects of BCAAs on CMD parameters were supported. CONCLUSIONS: Our cross-sectional association study reports a large number of associations between BCAAs and CMD parameters. Our results highlight some specific associations for isoleucine, as well as obesity-specific effects for valine. MR-based causality analysis suggests that altered BCAA levels can be a consequence of diabetes and alteration in lipid metabolism. We found no MR evidence to support a causal role for BCAAs in CMD. These findings provide evidence to (re)evaluate the clinical importance of individual BCAAs in CMD diagnosis, prevention, and treatment.


Subject(s)
Atherosclerosis , Diabetes Mellitus , Humans , Isoleucine , Mendelian Randomization Analysis , Cross-Sectional Studies , Amino Acids, Branched-Chain/metabolism , Obesity/epidemiology , Obesity/genetics , Valine/genetics
11.
J Transl Med ; 20(1): 475, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266699

ABSTRACT

BACKGROUND: Although anxiety disorders are one of the most prevalent mental disorders, their underlying biological mechanisms have not yet been fully elucidated. In recent years, genetically determined metabolites (GDMs) have been used to reveal the biological mechanisms of mental disorders. However, this strategy has not been applied to anxiety disorders. Herein, we explored the causality of GDMs on anxiety disorders through Mendelian randomization study, with the overarching goal of unraveling the biological mechanisms. METHODS: A two-sample Mendelian randomization (MR) analysis was implemented to assess the causality of GDMs on anxiety disorders. A genome-wide association study (GWAS) of 486 metabolites was used as the exposure, whereas four different GWAS datasets of anxiety disorders were the outcomes. Notably, all datasets were acquired from publicly available databases. A genetic instrumental variable (IV) was used to explore the causality between the metabolite and anxiety disorders for each metabolite. The MR Steiger filtering method was implemented to examine the causality between metabolites and anxiety disorders. The standard inverse variance weighted (IVW) method was first used for the causality analysis, followed by three additional MR methods (the MR-Egger, weighted median, and MR-PRESSO (pleiotropy residual sum and outlier) methods) for sensitivity analyses in MR analysis. MR-Egger intercept, and Cochran's Q statistical analysis were used to evaluate possible heterogeneity and pleiotropy. Bonferroni correction was used to determine the causative association features (P < 1.03 × 10-4). Furthermore, metabolic pathways analysis was performed using the web-based MetaboAnalyst 5.0 software. All statistical analysis were performed in R software. The STROBE-MR checklist for the reporting of MR studies was used in this study. RESULTS: In MR analysis, 85 significant causative relationship GDMs were identified. Among them, 11 metabolites were overlapped in the four different datasets of anxiety disorders. Bonferroni correction showing1-linoleoylglycerophosphoethanolamine (ORfixed-effect IVW = 1.04; 95% CI 1.021-1.06; Pfixed-effect IVW = 4.3 × 10-5) was the most reliable causal metabolite. Our results were robust even without a single SNP because of a "leave-one-out" analysis. The MR-Egger intercept test indicated that genetic pleiotropy had no effect on the results (intercept = - 0.0013, SE = 0.0006, P = 0.06). No heterogeneity was detected by Cochran's Q test (MR-Egger. Q = 7.68, P = 0.742; IVW. Q = 12.12, P = 0.436). A directionality test conducted by MR Steiger confirmed our estimation of potential causal direction (P < 0.001). In addition, two significant pathways, the "primary bile acid biosynthesis" pathway (P = 0.008) and the "valine, leucine, and isoleucine biosynthesis" pathway (P = 0.03), were identified through metabolic pathway analysis. CONCLUSION: This study provides new insights into the causal effects of GDMs on anxiety disorders by integrating genomics and metabolomics. The metabolites that drive anxiety disorders may be suited to serve as biomarkers and also will help to unravel the biological mechanisms of anxiety disorders.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Polymorphism, Single Nucleotide/genetics , Leucine/genetics , Isoleucine/genetics , Anxiety Disorders/genetics , Valine/genetics , Bile Acids and Salts
12.
NPJ Syst Biol Appl ; 8(1): 41, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36307414

ABSTRACT

Infections due to carbapenem-resistant Enterobacteriaceae have recently emerged as one of the most urgent threats to hospitalized patients within the United States and Europe. By far the most common etiological agent of these infections is Klebsiella pneumoniae, frequently manifesting in hospital-acquired pneumonia with a mortality rate of ~50% even with antimicrobial intervention. We performed transcriptomic analysis of data collected previously from in vitro characterization of both laboratory and clinical isolates which revealed shifts in expression of multiple master metabolic regulators across isolate types. Metabolism has been previously shown to be an effective target for antibacterial therapy, and genome-scale metabolic network reconstructions (GENREs) have provided a powerful means to accelerate identification of potential targets in silico. Combining these techniques with the transcriptome meta-analysis, we generated context-specific models of metabolism utilizing a well-curated GENRE of K. pneumoniae (iYL1228) to identify novel therapeutic targets. Functional metabolic analyses revealed that both composition and metabolic activity of clinical isolate-associated context-specific models significantly differs from laboratory isolate-associated models of the bacterium. Additionally, we identified increased catabolism of L-valine in clinical isolate-specific growth simulations. These findings warrant future studies for potential efficacy of valine transaminase inhibition as a target against K. pneumoniae infection.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Humans , Klebsiella pneumoniae/genetics , Klebsiella Infections/drug therapy , Klebsiella Infections/genetics , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Valine/genetics , Valine/pharmacology
13.
Microb Pathog ; 172: 105769, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36103901

ABSTRACT

Bovine respiratory diseases (BRD) are one of the significant health problems for cattle breeding industry. Influenza D virus (IDV) alone or in combination with other respiratory pathogens plays a role in BRD. According to the IDV-HEF gene region, phylogenetic analyzes revealed five lineages: D/OK, D/660, D/Yama2016, D/Yama2019, and D/CA2019, so far. In this study, despite no success in virus isolation, the presence of IDV was investigated by RT-PCR (partial HEF gene region) in 219 nasal swab samples collected from cattle with BRD between 2012 and 2021. The presence of IDV was demonstrated in two samples, and genome characterization data of the IDV sequences both in the partial and complete HEF gene regions showed that one of the obtained sequences (D/bovine/Turkey-Bursa/ET-138/2021) was in the lineage D/Yama2019 while the other (D/bovine/Turkey-Bursa/ET-130/2013) created a new lineage tentatively called D/Bursa2013 as including few partial IDV sequences reported in Europe. Two nucleotide substitutions (nt252A→G, nt299T→C) were typically characterized for the tentative lineage D/Bursa2013, one of which also leads to a unique amino acid change at position aa100 (V→A). When the amino acid differences between the lineages were evaluated, amino acid substitution changes were detected in four regions [aa12 (Alanine→Aspartic acid), aa19 (Glycine→Arginine), aa22 (Proline→Serine), and aa110 (Aspargine→Arginine)] of the D/Yama2019 lineage, unlike the other lineages. Considering the most common D/OK lineage in Europe, many nucleotide substitutions were shown between D/OK and D/Bursa2013. Accordingly, aminoacid substitutions were observed in aa27 (Threonine→Asparagine) and aa100 (Valine→Alanine) in the D/bovine/Turkey-Bursa/ET-138/2021 sequence. Study results describe the circulation of D/Yama2019 and D/Bursa2013 (new lineage) in Turkey. Expansion of new strains seems possible due to the high mutation rate of influenza viruses. It is important to understand the development of IDV with comprehensive characterization studies.


Subject(s)
Cattle Diseases , Orthomyxoviridae Infections , Orthomyxoviridae , Thogotovirus , Cattle , Animals , Thogotovirus/genetics , Phylogeny , Asparagine/genetics , Aspartic Acid , Orthomyxoviridae Infections/veterinary , Nucleotides , Arginine/genetics , Alanine , Threonine , Serine/genetics , Valine/genetics , Proline/genetics , Glycine
14.
FEMS Microbiol Ecol ; 98(10)2022 10 03.
Article in English | MEDLINE | ID: mdl-36066920

ABSTRACT

Herein, Bacillus subtilis PBE-8's biocontrol efficacy was evaluated through physiological and metabolic approaches against Fusarium oxysporum f.sp. lycopersici (FOL). The study elaborates on PBE-8's cell-free filtrate (CFF) antifungal activity through mycelial growth inhibition, metabolite profiling, and substrates utilization patterns. Additionally, under different CFF concentrations, reduction in spore count (94%-55%), biomass (50%), and cytoplasmic bulbous protrusions in mycelia were also observed. Furthermore, the effect of bacterial CFF on FOL metabolism was confirmed through GC-MS. CFF suppresses the concentration of aliphatic amino acids like L-valine, L-leucine, L-Isoleucine, glycine, and fatty acids such as linoleic acid and α- linolenic acid during the co-culturing conditions, which are essential for pathogenicity and resistance against host's systemic acquired resistance. The phenotype microarray assay revealed that CFF-treated FOL shows phenotype loss in 507 (56.58%) out of 896 substrates. Among 507, twenty-seven substrates showed significant phenotype loss, among which four substrates such as L-glutamic acid, L-glutamine, ammonia, and L-arginine are common in different crucial metabolic pathways of FOL, like alanine, aspartate, and glutamate metabolism, arginine and proline, carbon metabolism, arginine biosynthesis, nitrogen metabolism, amino-acyl tRNA synthesis, and biosynthesis of amino acids. The results suggest that PBE-8 CFF has certain antifungal metabolites that hinder the fungal metabolic pathways.


Subject(s)
Fusarium , Solanum lycopersicum , Alanine/genetics , Alanine/pharmacology , Ammonia , Antifungal Agents/pharmacology , Arginine , Aspartic Acid , Bacillus subtilis/genetics , Biotransformation , Carbon , Fusarium/genetics , Glutamic Acid/genetics , Glutamic Acid/pharmacology , Glutamine/genetics , Glutamine/pharmacology , Glycine , Isoleucine/genetics , Isoleucine/pharmacology , Leucine/genetics , Leucine/pharmacology , Linoleic Acids/pharmacology , Linolenic Acids/pharmacology , Solanum lycopersicum/microbiology , Microarray Analysis , Nitrogen , Phenotype , Plant Diseases/microbiology , Plant Diseases/prevention & control , Proline/genetics , Proline/pharmacology , RNA, Transfer/pharmacology , Valine/genetics , Valine/pharmacology
15.
Nat Commun ; 13(1): 4828, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35973982

ABSTRACT

The genomes of many filamentous fungi, such as Aspergillus spp., include diverse biosynthetic gene clusters of unknown function. We previously showed that low copper levels upregulate a gene cluster that includes crmA, encoding a putative isocyanide synthase. Here we show, using untargeted comparative metabolomics, that CrmA generates a valine-derived isocyanide that contributes to two distinct biosynthetic pathways under copper-limiting conditions. Reaction of the isocyanide with an ergot alkaloid precursor results in carbon-carbon bond formation analogous to Strecker amino-acid synthesis, producing a group of alkaloids we term fumivalines. In addition, valine isocyanide contributes to biosynthesis of a family of acylated sugar alcohols, the fumicicolins, which are related to brassicicolin A, a known isocyanide from Alternaria brassicicola. CrmA homologs are found in a wide range of pathogenic and non-pathogenic fungi, some of which produce fumicicolin and fumivaline. Extracts from A. fumigatus wild type (but not crmA-deleted strains), grown under copper starvation, inhibit growth of diverse bacteria and fungi, and synthetic valine isocyanide shows antibacterial activity. CrmA thus contributes to two biosynthetic pathways downstream of trace-metal sensing.


Subject(s)
Anti-Infective Agents , Biosynthetic Pathways , Anti-Bacterial Agents/metabolism , Anti-Infective Agents/metabolism , Aspergillus fumigatus/metabolism , Carbon/metabolism , Copper/metabolism , Cyanides , Fungi/genetics , Multigene Family , Valine/genetics
16.
J Biol Chem ; 298(10): 102430, 2022 10.
Article in English | MEDLINE | ID: mdl-36037966

ABSTRACT

Methionine/valine polymorphism at position 129 of the human prion protein, huPrP, is tightly associated with the pathogenic phenotype, disease progress, and age of onset of neurodegenerative diseases such as Creutzfeldt-Jakob disease or Fatal Familial Insomnia. This raises the question of whether and how the amino acid type at position 129 influences the structural properties of huPrP, affecting its folding, stability, and amyloid formation behavior. Here, our detailed biophysical characterization of the 129M and 129V variants of recombinant full-length huPrP(23-230) by amyloid formation kinetics, CD spectroscopy, molecular dynamics simulations, and sedimentation velocity analysis reveals differences in their aggregation propensity and oligomer content, leading to deviating pathways for the conversion into amyloid at acidic pH. We determined that the 129M variant exhibits less secondary structure content before amyloid formation and higher resistance to thermal denaturation compared to the 129V variant, whereas the amyloid conformation of both variants shows similar thermal stability. Additionally, our molecular dynamics simulations and rigidity analyses at the atomistic level identify intramolecular interactions responsible for the enhanced monomer stability of the 129M variant, involving more frequent minimum distances between E196 and R156, forming a salt bridge. Removal of the N-terminal half of the 129M full-length variant diminishes its differences compared to the 129V full-length variant and highlights the relevance of the flexible N terminus in huPrP. Taken together, our findings provide insight into structural properties of huPrP and the effects of the amino acid identity at position 129 on amyloid formation behavior.


Subject(s)
Amyloid , Amyloidosis , Creutzfeldt-Jakob Syndrome , Insomnia, Fatal Familial , Polymorphism, Genetic , Prion Proteins , Humans , Amyloid/genetics , Amyloid/chemistry , Amyloidosis/genetics , Creutzfeldt-Jakob Syndrome/genetics , Methionine/genetics , Prion Proteins/chemistry , Prion Proteins/genetics , Protein Folding , Valine/genetics , Insomnia, Fatal Familial/genetics
17.
Autoimmunity ; 55(7): 455-461, 2022 11.
Article in English | MEDLINE | ID: mdl-35918839

ABSTRACT

Autoimmune diseases, which affect approximately 5% of human population, are a range of diseases in which the immune response to self-antigens results in damage or dysfunction of tissues. Recent genome wide association studies (GWAS) have successfully identified novel autoimmune disease-associated loci, with many of them shared by multiple disease-associated pathways but much of the genetics and pathophysiological mechanisms remain still obscure. Considering that most of the potential causal variants are still unknown, many studies showed that the missense variant rs35667974 at interferon-induced with helicase C domain 1 (IFIH1) gene is protective for type 1 diabetes (T1D), psoriasis (PS) and psoriatic arthritis (PsA). Recently, this variant was found to be also associated with ankylosing spondylitis (AS), Crohn's disease (CD) and ulcerative colitis (UC). The IFIH1 gene encodes a cytoplasmic RNA helicase otherwise known as melanoma differentiation-associated 5 (MDA5) that recognizes viral RNA and is involved in innate immunity through recognition of viral RNA. In the present study we sought to investigate the association of the rare rs35667974 variant of IFIH1 gene, which resides in exon 14 and changes a conserved isoleucine at position #923 to valine, in the development of various autoimmune diseases and give a reason for the selectivity affecting different autoimmune diseases. Evolutionary studies and three-dimensional (3 D) homology modelling were employed on the MDA5 protein product, through its association with dsRNA, recognition factor controlling cytokine and chemokine signalling, to investigate the protective role of the MDA5 variant for certain autoimmune diseases.


Subject(s)
Autoimmune Diseases , Interferon-Induced Helicase, IFIH1 , Arthritis, Psoriatic/genetics , Autoantigens , Autoimmune Diseases/genetics , Chemokines/genetics , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Interferon-Induced Helicase, IFIH1/genetics , Interferons , Isoleucine/genetics , Polymorphism, Genetic , RNA, Viral , Valine/genetics
18.
Cell Mol Biol (Noisy-le-grand) ; 68(4): 46-51, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35988269

ABSTRACT

Alzheimer's is the most common cause of dementia in the elderly. In this disease, genetic and environmental factors are involved. In Alzheimer's, changes of nucleotide 196 (G> A) or valine polymorphism of 66-methionine in the BDNF gene is a risk factor for brain-derived neurogenic factors. In China, this polymorphism has not been studied in Alzheimer's patients and perhaps this study could provide appropriate information on the prognosis and susceptibility of the disease. Therefore, in this case-control study, 73 patients with Alzheimer's disease and 100 patients as a healthy control group were studied. Blood samples were taken from the mentioned individuals and DNA was extracted. After quantitative and qualitative DNA analysis, a PCR-RFLP test was performed and the results of both groups were compared. The results showed that 14 patients and 7 people in the control group had BDNF gene polymorphism. In the patient group, the number of people with normal allele was 59. Heterozygous people were 8 and people with methionine/methionine alleles were 6. In the control group, 93 normal individuals, 5 heterozygous individuals, and 2 people had methionine/methionine alleles. In general, increasing the accumulation of valine/methionine polymorphism of the BDNF gene in Alzheimer's patients compared to control can indicate the role of this polymorphism. Clinically, patients with this polymorphism had a more unfavorable clinical condition compared to patients without it. Therefore, evaluation of the presence of this polymorphism can provide appropriate information about the disease status.


Subject(s)
Alzheimer Disease , Brain-Derived Neurotrophic Factor , Aged , Alzheimer Disease/genetics , Asian People/genetics , Brain-Derived Neurotrophic Factor/genetics , Case-Control Studies , Genotype , Humans , Methionine/genetics , Polymorphism, Genetic , Polymorphism, Single Nucleotide/genetics , Valine/genetics
19.
Theor Appl Genet ; 135(8): 2817-2831, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35779128

ABSTRACT

KEY MESSAGE: An alanine to valine mutation of glutamyl-tRNA reductase's 510th amino acid improves 5-aminolevulinic acid synthesis in rice. 5-aminolevulinic acid (ALA) is the common precursor of all tetrapyrroles and plays an important role in plant growth regulation. ALA is synthesized from glutamate, catalyzed by glutamyl-tRNA synthetase (GluRS), glutamyl-tRNA reductase (GluTR), and glutamate-1-semialdehyde aminotransferase (GSAT). In Arabidopsis, ALA synthesis is the rate-limiting step in tetrapyrrole production via GluTR post-translational regulations. In rice, mutations of GluTR and GSAT homologs are known to confer chlorophyll deficiency phenotypes; however, the enzymatic activity of rice GluRS, GluTR, and GSAT and the post-translational regulation of rice GluTR have not been investigated experimentally. We have demonstrated that a suppressor mutation in rice partially reverts the xantha trait. In the present study, we first determine that the suppressor mutation results from a G → A nucleotide substitution of OsGluTR (and an A → V change of its 510th amino acid). Protein homology modeling and molecular docking show that the OsGluTRA510V mutation increases its substrate binding. We then demonstrate that the OsGluTRA510V mutation increases ALA synthesis in Escherichia coli without affecting its interaction with OsFLU. We further explore homologous genes encoding GluTR across 193 plant species and find that the amino acid (A) is 100% conserved at the position, suggesting its critical role in GluTR. Thus, we demonstrate that the gain-of-function OsGluTRA510V mutation underlies suppression of the xantha trait, experimentally proves the enzymatic activity of rice GluRS, GluTR, and GSAT in ALA synthesis, and uncovers conservation of the alanine corresponding to the 510th amino acid of OsGluTR across plant species.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Oryza , Alanine/genetics , Alanine/metabolism , Aldehyde Oxidoreductases , Aminolevulinic Acid/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Molecular Docking Simulation , Mutation , Oryza/genetics , Oryza/metabolism , Valine/genetics , Valine/metabolism
20.
Dent Med Probl ; 59(2): 233-240, 2022.
Article in English | MEDLINE | ID: mdl-35510485

ABSTRACT

BACKGROUND: The sweet taste and bitter taste genes are thought to have an influence on obesity and caries, which are chronic diseases. OBJECTIVES: The aim of the study was to investigate the effects of the polymorphisms of TAS2R38 (the bitter taste gene) and TAS1R2 (the sweet taste gene), which are the most important members of the taste gene family, on the dental status of obese and normal-weight children. MATERIAL AND METHODS: The study included 78 healthy children and 100 children diagnosed with obesity (5-16 years old). The anthropometric measurements and dental status of the children were evaluated. The decayed, missing and filled permanent/primary teeth (DMFT/dmft) index was determined using the standard methods recommended by the World Health Organization (WHO). Blood samples were collected from all subjects and were analyzed via the polymerase chain reaction (PCR) test, with the use of specific primers for the genetic analysis. Five single-nucleotide polymorphisms (SNPs) of the TAS2R38 and TAS1R2 genes were investigated. The truncated Poisson and truncated negative binomial modeling approaches were used with regard to the data. RESULTS: The DMFT/dmft scores were low in obese children and high in children who did not sense the bitter taste (non-tasters). While obese non-taster children had increased DMFT/dmft scores, normalweight non-taster children had decreased DMFT/dmft scores. CONCLUSIONS: The alanine, valine and isoleucine (AVI) as well as proline, alanine and valine (PAV) haplotypes of the TAS2R38 gene are associated with the DMFT/dmft index and obesity. This study showed that the DMFT/dmft scores were decreased in obese children. According to the haplotype analysis of the TAS2R38 gene, the DMFT/dmft scores were increased in non-tasters. When differentiating obese nontasters and control non-tasters, DMFT/dmft increased in obese non-taster patients, while it decreased in control non-taster patients.


Subject(s)
Pediatric Obesity , Receptors, G-Protein-Coupled/genetics , Adolescent , Alanine/genetics , Child , Child, Preschool , Humans , Pediatric Obesity/genetics , Polymorphism, Single Nucleotide , Valine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...